
DoSP: A Deadline-Aware Dynamic
Service Placement Algorithm
for Workflow-Oriented IoT Applications
in Fog-Cloud Computing Environments

Meeniga Sriraghavendra, Priyanka Chawla, Huaming Wu,
Sukhpal Singh Gill, and Rajkumar Buyya

Abstract The next generation Internet of Things (IoT) applications are offering
multiple services and run in a distributed heterogeneous environment. In such appli-
cations, Quality of Service (QoS) requirements are in jeopardy when the computing
operations are only outsourced to the public cloud. For IoT applications, a compre-
hensive framework that supports QoS-aware service placement in a fog computing
environment is highly required. It is a challenging task to orchestrate the time critical
IoT applications in the fog environment. To alleviate this problem, this paper proposes
a novel multitier fog computing architecture called Deadline-oriented Service Place-
ment (DoSP) that provides the services both in fog and cloud nodes. This research
work proposed a methodology to utilize low-cost fog resources while ensuring that
the response time satisfies a given time constraint. It uses the Genetic Algorithm
(GA) to dynamically determine the service placement in the fog environment. In this
work, we used the iFogSim simulator to model DoSP and measured the impact of
the service placement technique in terms of service deadline. It has been observed
that through the proposed solution, there is a reduction in service execution delay,
i.e., approximately 10.19% of the overall response time to the EdgeWard and 2.58%
to the Cloud Only.

Keywords Fog computing · IoT · Cloud computing · Edge computing · Workflow

M. Sriraghavendra · P. Chawla (B)
School of Computer Science, Lovely Professional University, Phagwara, Punjab, India

H. Wu
Center for Applied Mathematics, Tianjin University, Tianjin 300072, PR China
e-mail: whming@tju.edu.cn

S. S. Gill
School of Electronic Engineering and Computer Science, Queen Mary University of London,
Mile End, UK
e-mail: s.s.gill@qmul.ac.uk

R. Buyya
Cloud Computing and Distributed Systems (CLOUDS), Laboratory, School of Computing
and Information Systems, The University of Melbourne, Melbourne, Australia
e-mail: rbuyya@unimelb.edu.au

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
R. Tiwari et al. (eds.), Energy Conservation Solutions for Fog-Edge Computing Paradigms,
Lecture Notes on Data Engineering and Communications Technologies 74,
https://doi.org/10.1007/978-981-16-3448-2_2

21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-3448-2_2&domain=pdf
mailto:whming@tju.edu.cn
mailto:s.s.gill@qmul.ac.uk
mailto:rbuyya@unimelb.edu.au
https://doi.org/10.1007/978-981-16-3448-2_2

22 M. Sriraghavendra et al.

1 Introduction

Cloud computing has been facilitating individuals and organizations by extending
access to remote computing resources on subscription basis. In cloud computing, the
servers are located in a remote place and provide computing resources on demand.
Servers being in the remote place leads to problems such as high latency, high band-
width and energy consumption. Because of these disadvantages cloud computing is
not ideal for Internet of Things (IoT) applications [1], which are latency sensitive,
such as precision agriculture, intelligent transportation, smart homes, smart cities,
smart grids, smart healthcare units and smart supermarkets. Providing services in a
short time is a major research issue that has been addressed by many researchers
in the past few years [2–4]. The issue to get the computation closer to the end
devices, which produce the computational data, is addressed by fog computing tech-
nology. Fog computing is an elongated version of cloud computing with effective
network bandwidth utilization, heterogeneous computation, workload distribution,
and mobility. Some of the extended features of fog computing are described in
Table 1.

Resource provisioning can reduce latency [36] and increase compliance of Service
Level Agreements (SLAs) [5], which has been investigated in [6–10]. However,
mere service provisioning cannot achieve the desired performance, which needs to
be coupled with service placement strategies as explored in [2, 11–17]. So, there is a
need for a comprehensive approach that not only takes care of service placement but
also enhances Quality of Service (QoS) in the heterogeneous and dynamic fog-cloud
computing environment.

The major contributions of this proposed work are as follows: The proposed work
provides a comprehensive solution of QoS-aware service placement to realize highly
optimized service placement of sequential IoT applications in a fog-cloud computing
environment.

1. A Deadline-oriented Service Placement (DoSP) algorithm is proposed, which
analyzes the response time of service placement indifferent layers, and deter-
mines decisions on placingmodules/services ofworkflow-based IoT application
in different layers of fog-cloud architecture.

Table 1 Fog computing features

Factor Description

Low latency The best facilities on the edge of the network are provided

Mobility Disassociates the host identity to the location identity

Real-time interactions Uninterrupted speedy service

Interoperability Objects collaborate and communicate with each other during the
transmission

Low energy consumption Reducing computation and communication energy consumption

DoSP: A Deadline-Aware Dynamic Service Placement Algorithm … 23

2. The fog-cloud environment is simulated using iFogSim toolkit and the perfor-
mance of the service placement algorithm is evaluated. We are able to visualize
the service placement and the different layers determine decisions on placing
modules/services of multiple IoT applications in different layers of fog-cloud
architecture.

The rest of the sections in the paper are organized in the following way: Sect. 2
presents amotivating scenario for the research carried out. Section 3 reviews the liter-
ature on developing and deploying IoT applications, resource allocation and applica-
tion/service placement in the fog-cloud environments. Section 4 presents the system
model which is the basis of the research. The complete methodology used to realize
an approach for deadline-aware efficient service placement is provided in Sect. 5.
Section 6 presents the study on simulation that is made with iFogSim simulator. The
performance evaluation of our approach and comparison with the state-of-the-art
methods is presented. Section 7 concludes the paper along with directions for future
work.

2 Motivation Scenario

Fog computing helps benefit IoT devices and applications. This is an important
proposition based on which this motivating scenario is conceived. Workflow-based
IoTapplications in the real-world need to desire latencywhere the edge of the network
with storage and computing services (fog computing) plays a crucial role. Extending
the cloud computing capability to the edge of the network, and providing a required
inductive usage is by Fog Computing. Placement of IoT applications with proper
utilization of cloud and fog computing resources is a game-changing approach that
will have a huge impact on the deployed applications. Figure 1 shows the motivating
scenario that can be used to investigate the proposition aforementioned.

As presented in Fig. 1, it is evident that a patient respiratory management system
is considered as a motivation scenario. Wearable sensors such as sensors are used
to detect the vital signs of a patient in relation to the cardiovascular system. The
wearable devices equipped with sensors are connected to other digital infrastructure.
The sensors provide heartbeat rate, changes in blood volume of the skin and oxygen
level carried in both. When sensors provide redundant and irrelevant data, they need
to be pre-processed with filtering techniques prior to data analytics. The results of the
analysis provide the severity of the problems and accordingly further steps are taken.
Sometimes the results reflect an emergency situation where immediate attention is
essential. As the application is crucial, in the healthcare domain it is essential to
optimize service placement for better latency besides adhering to deadlines if any. It
is therefore necessary to evaluate the device modules and make decisions on place-
ments in various layers. Low latency reflects high performance while high latency
reflects low performance. This scenariomotivates further research on optimal service
placement as the availability of the application is indispensable. Every application

24 M. Sriraghavendra et al.

Fig. 1 Optimized application module placement architecture

consists of various modules. The modules of the case study application considered
here are described in the following subsections.

2.1 Sensing Module

This is themodulewhere actual sensing of data takes place. It ismade by thewearable
body sensors that are associated with a selected patient. This module is responsible
for generating the patient’s vital signs related to the respiratory system. Thus, it plays
a crucial role in the application, because without this module, other modules would
not exist.

DoSP: A Deadline-Aware Dynamic Service Placement Algorithm … 25

2.2 Data Aggregation Module

This module is responsible for data aggregation, which is needed in order to have
moremeaningful data and also get rid of duplications. It also has a device that converts
the analog signal into digital counterparts and needs to be integrated with a micro-
controller unit that involves in the data aggregation process, it may include filtration
and normalization. The data is aggregated and finally sent to the fog controller node.

2.3 Data Analysis Module

This module is responsible for analyzing data. This is made as per the kind of sensor
data, which involves in machine learning algorithms. It is used to test hypotheses.
Besides, it needs processing power, storage, and to be placed carefully based on the
deadline constraints.

2.4 Decision Making

The analysis module provides the required patterns or interesting facts found in the
analysis. These facts are interpreted, and decisions are made by this module. The
decisions are pertaining to the real-time diagnosis of the patient’s vital signs and
make the necessary steps. A decision vector holds the resultant information.

2.5 Actuation Module

This module is responsible for turning energy into motion or performing its intended
purpose. In general, it converts physical parameters into electrical outputs.

3 Related Work

This segment examines the literature on the location of services in the fog computing
world and its associated aspects.

26 M. Sriraghavendra et al.

3.1 Building and Deployed Fog-Based IoT Applications

Kochovski and Stankovski [1] focused on dependable edge computing and proposed
architecture for constructing smart applications that exploit edge computing in the
context of IoT. Their proposed infrastructure includes edge management services,
virtual clusters, and smart IoTconstruction environments. Edgemanagement services
perform probing, monitoring, alarming and storing. Edgemanagement services work
on top of virtual clusters to support edge computing applications. Pham andHuh [18]
considered a cloud-fog computing environment, where fog nodes are used appropri-
ately along with cloud nodes to enhance performance. Giang et al. [19] proposed a
distributed data flow approach for building IoT applications to be deployed in fog.

3.2 Resource Allocation for IoT Applications in Fog
Environment

It is essential to have resource allocating mechanisms, when the IoT applications are
executed in the fog-cloud environment. Skarlat et al. [6] presented an architecture
or framework for resource allocation in the fog-cloud environment. Delay sensitive
utilization of fog resources was the aim of the framework. Considering SLAs and
QoS, Aazam et al. [7] proposed a framework known as Media Fog Resource Esti-
mation for estimation of resources based on QoS, QoE, Relinquish Rate (RR) and
service give-up ratio.

Yousefpour et al. [20] studied the problem of service provisioning in a dynamic
and distributed computing environment. To solve the dynamic service placement
they have proposed two heuristic algorithms in fog in spite of building a framework
to realize it. They found that the framework could decrease SLA violations besides
increasing the performance of deployed applications. Aazam and Huh [21] consid-
ered many issues with IoT-fog environment due to the mobility of nodes, resource
constrained nature of nodes and heterogeneity of the environment. Taking those
factors into account, they proposed resource estimation and provisioning frame-
work through fog micro-datacenter. Aazam and Huh [22] have researched adaptive
resource estimation and cost allocation models for IoT applications implemented in
the fog computing area.

An architecture for flexible and adaptive resource allocation in fog computing
is proposed by Agarwal et al. [8]. They proposed an algorithm known as Efficient
ResourceAllocation (ERA) for estimation of resources and allocating the same to IoT
applications deployed in fog. On the other hand, Verma et al. [9] focused on reliable
services in the fog by proposing load balancing and data replication techniques and
reduce dependency on the cloud. Alsaffar et al. [23] suggested an architecture for
the dual purpose of the distribution of resources and the allocation of IoT services in
a fog computing system. They found that their work is resulted in meeting the QoS
of applications and SLAs.

DoSP: A Deadline-Aware Dynamic Service Placement Algorithm … 27

In the context of container-based service computing, Tao et al. [24] proposed
a dynamic resource allocation algorithm, which is based on scheduling and fuzzy
inference system. Their contributions may increase the efficiency of the cluster in
terms of average execution time. Ni et al. [25] proposed a model known as Priced
Timed Petri Nets (PTPN), which is a resource allocation strategy in fog computing
and also a model to support the strategy. Shekhar et al. [10] proposed a dynamic and
data-driven cloud and edge system for dynamic resource management in fog in the
presence of performance-sensitive applications. Dang and Hoang [26] proposed a
framework for efficient scheduling of tasks in the fog to realize expected latency, this
framework is known as fog-based region. A joint optimization approach for resource
allocation is investigated by Zhang et al. [27] for efficient resource allocation and
performance of IoT applications in fog-cloud environments.

3.3 Service Placement in Fog Environment

IoT applicationsmay havemicro-services that need to be deployed strategically. Filip
et al. [11] studied cloud-edge environments for scheduling micro-services related to
IoT applications. They proposed a scheduling architecture for real-life utilization
of the fog-edge environment effectively. They used a scheduling policy for better
task scheduling. IoT applications have multiple modules. Mahmud et al. [2] studied
deploying suchmodules in the fog-cloud environment. They proposed amethodology
to fully take advantage of the capabilities of fog nodes in the context of large IoT
applications. Their approach resulted in a decrease of latency toward QoS require-
ments of the applications. Similarly, Desikan et al. [28] explored latency-aware data
processing in the fog-cloud environment. They could reduce the response time and
increase the performance of gateways with buffer occupancy efficiencies.

Taneja and Davy [12] proposed an algorithm named Module Mapping, which is
meant for deployingmodules of IoT application appropriately in fog-cloud resources.
As the storage and computation are distributed dynamically, the algorithmwas able to
reduce latency and improve the capabilities of the cloud-fog environment towithstand
SLAs. Skarlat et al. [29] investigated QoS-aware provisioning of services of IoT, on
fog resources and found a considerable 35% less cost in terms of execution timewhile
compared with the cloud-based approach. On the other hand, Mahmud et al. [30]
considered Quality of Everything (QoE)-aware placement of services or applications
in a fog computing environment. They proposed an application policy that is QoE-
aware and prioritizes application placement requests as per the expectations of users.

Souza et al. [13] studied theQoS-aware service allocation problem.They proposed
fog-cloud architecture with four tiers. The bottom layer composed of end-user
devices, the layer above is called the fog layer 1, fog layer 2 is on top of fog layer 1
and the top most layer is the cloud. The cloud has high reach ability but causes high
access delay with respect to IoT applications. Fog layer 2 exhibits medium reach
ability and medium access delay, while fog layer 1 causes low reach ability and low
delay. This scenario is to be exploited by QoS-aware service allocation. FogTorch

28 M. Sriraghavendra et al.

is a java tool which is proposed by Brogi and Forti [14]. The tool is a latency and
bandwidth-aware while deploying the IoT applications in the fog. Brogi et al. [31]
have reviewed the existing policies to solve the problem of how to dynamically
deploy the application modules in the computational components with qualitative
attributes. Abbasi et al. [32] address the problem of placement of workloads. The
purpose of their study is to minimize the energy consumption and propagation delay
of the cloud while processing. In this work, the placement problem is solved by using
the NSGA-II algorithm. The work does not focus on the application deadline and
the propagation delay among the fog nodes.

3.4 A Qualitative Comparison

Table 2 identifies and compares key elements of related works with DoSP. The
comparison attributes are the target system, application type, resource utilization,
minimization of response time, application priority and deadline constraint. The
insights found in the literature reveal that the existing approaches are good to realize
fog-cloud environments with increased performance. However, it is understood that
a comprehensive framework that not only takes care of service placement but also
QoS enhancement in the presence of the highly heterogeneous environment.

4 System Model

The system model considered for the proposed research provides the layered archi-
tecture (Fig 2), in which proposed workplaces the multiple sequential IoT applica-
tions with a sense-process-actuate model are executed. In the context of this system
model service placement, QoS-aware service placement approach is explored in this
research work.

FN ismeant for storing arbitrary data required byworkflow-based IoT applications
and also supports computations. It is said to be the local node or the node that is closer
to the deployed IoT application. Thus, fog computing is an enhanced version of cloud
computing which is especially meant for rendering efficient services to workflow-
based IoT applications. As per the facts found in the literature, FCN > FN > CN
> NFCN is the thumb rule with respect to the speed of the deployed services of
IoT applications. In this context, this system model is used to investigate service
placement with QoS awareness strategies in place. The proposed mechanism for
service placement has two different phases, i.e., application prioritizing phase and
node selection phase. In the prioritizing phase, the services of IoT applications are
assigned priorities. In the node selection phase, the suitable node in the fog or cloud
is selected for the placement of given services. Based on the objective function, the
node selection is carried out (Fig. 2).

DoSP: A Deadline-Aware Dynamic Service Placement Algorithm … 29

Ta
bl

e
2

C
om

pa
ri
so
n
of

D
oS

P
w
ith

ex
is
tin

g
w
or
ks

W
or
k

Ta
rg
et
sy
st
em

A
pp

(a
pp
lic
at
io
n)

ty
pe

R
es
ou

rc
e

ut
ili
za
tio

n
(s
am

e
cl
us
te
r/
ne
ig
hb
or

cl
us
te
r)

M
in
im

iz
e

re
sp
on
se

tim
e

A
pp

(a
pp
lic
at
io
n)

pr
io
ri
ty

D
ea
dl
in
e

co
ns
tr
ai
nt

A
pp
ro
ac
h

K
oc
ho
vs
ki

et
al
.

[1
]

E
dg
e

W
or
kfl

ow
Sa

m
e
cl
us
te
r

N
o

N
o

N
o

Te
st
be
d

G
ia
ng

et
al
.[
19
]

Fo
g

W
or
kfl

ow
Sa

m
e
cl
us
te
r

N
o

N
o

N
o

V
is
ua
lp

ro
gr
am

m
in
g

to
ol

Ta
ne
ja
et
al
.[
12
]

Fo
g

W
or
kfl

ow
Sa

m
e
cl
us
te
r

N
o

N
o

N
o

H
eu
ri
st
ic
al
go

ri
th
m

A
bb

as
ie
ta
l.
[3
2]

Fo
g

W
or
kfl

ow
Sa

m
e
cl
us
te
r

N
o

N
o

N
o

H
eu
ri
st
ic
al
go

ri
th
m

Sk
ar
la
te
ta
l.
[6
]

Fo
g

W
or
kfl

ow
Sa

m
e
cl
us
te
r

Y
es

N
o

N
o

L
in
ea
r

pr
og
ra
m
m
in
g

Ph
am

et
al
.[
18
]

Fo
g

W
or
kfl

ow
Sa

m
e
cl
us
te
r

Y
es

N
o

N
o

H
eu
ri
st
ic
al
go

ri
th
m

A
ls
af
fa
r
et
al
.[
23
]

Fo
g

W
or
kfl

ow
Sa

m
e
cl
us
te
r

Y
es

N
o

N
o

H
eu
ri
st
ic
al
go

ri
th
m

G
up

ta
et
al
.[
33
]

Fo
g

W
or
kfl

ow
Sa

m
e
cl
us
te
r

Y
es

N
o

N
o

H
eu
ri
st
ic
al
go

ri
th
m

So
uz
a
et
al
.[
13
]

Fo
g

W
or
kfl

ow
Sa

m
e
cl
us
te
r

Y
es

N
o

N
o

L
in
ea
r

pr
og
ra
m
m
in
g

Z
en
g
et
al
.[
34
]

Fo
g

B
ag
-o
f-
ta
sk
s

Sa
m
e
cl
us
te
r

Y
es

N
o

N
o

H
eu
ri
st
ic
al
go

ri
th
m

M
ah
m
ud

et
al
.

[3
0]

Fo
g

W
or
kfl

ow
Sa

m
e
cl
us
te
r

Y
es

Y
es

N
o

Fu
zz
y
lo
gi
c

G
ou
da
rj
ie
ta
l.

[1
7]

Fo
g

W
or
kfl

ow
Sa

m
e
cl
us
te
r

Y
es

N
o

N
o

H
eu
ri
st
ic
al
go

ri
th
m

Ph
am

et
al
.[
3]

Fo
g

W
or
kfl

ow
Sa

m
e
cl
us
te
r

Y
es

N
o

Y
es

H
eu
ri
st
ic
al
go

ri
th
m

(c
on
tin

ue
d)

30 M. Sriraghavendra et al.

Ta
bl

e
2

(c
on
tin

ue
d)

W
or
k

Ta
rg
et
sy
st
em

A
pp

(a
pp
lic
at
io
n)

ty
pe

R
es
ou

rc
e

ut
ili
za
tio

n
(s
am

e
cl
us
te
r/
ne
ig
hb
or

cl
us
te
r)

M
in
im

iz
e

re
sp
on
se

tim
e

A
pp

(a
pp
lic
at
io
n)

pr
io
ri
ty

D
ea
dl
in
e

co
ns
tr
ai
nt

A
pp
ro
ac
h

M
ah
m
ud

et
al
.[
2]

Fo
g

W
or
kfl

ow
Sa

m
e
cl
us
te
r

Y
es

Y
es

Y
es

H
eu
ri
st
ic
al
go

ri
th
m

Sk
ar
la
te
ta
l.
[4
]

Fo
g

W
or
kfl

ow
Sa
m
e
an
d
ne
ig
hb
or

C
lu
st
er

Y
es

Y
es

Y
es

L
in
ea
r

pr
og
ra
m
m
in
g

D
oS

P
(t
hi
s
w
or
k)

Fo
g

W
or
kfl

ow
Sa
m
e
an
d
ne
ig
hb
or

cl
us
te
r

Y
es

Y
es

Y
es

H
eu
ri
st
ic
al
go

ri
th
m

DoSP: A Deadline-Aware Dynamic Service Placement Algorithm … 31

Fig. 2 System model

4.1 Application Prioritizing Phase

In this phase, the requests coming from different applications for service placement
are subjected to prioritization. Toward this end, based on the distance between the
deadline of an application and the deployment time of an application we prioritize
the applications, which is defined as follows:

Prioritization = DeadlineAppi
− DeptimeAppi

(1)

where DeadlineAppi
represents application deadline, and DeptimeAppi

represents
waiting time for deployment. DeptimeAppi

is associated with the time waited by
application prior to assignment of it to suitable computing resources.

It is always a better practice to initially assign the applications that have high
waiting time based on the deadline to the fog resources. As the deadline cannot be
violated, it needs to be made so. Allocating the shortest computation applications
first to fog resources may lead to starvation, hence it is not desirable.

32 M. Sriraghavendra et al.

4.2 Node Selection Phase

In order to deploy services of an application, it is essential to have certain constraints
that can help to achieve optimal performance.

Constraint 1: In addition to storage, this constraint is related to RAM and CPU
(important computer resources). These resources are to be considered as the fog
resources allocation should not exceed these available resources.

App∑

Appi

Appi∑

AppModi

ResAppModi
· PlacefnAppModi

≤ AvailRes
fn
, ∀fn (2)

where fn= {FN, FCN,NFCN}denotes fog node in a fog cluster, Res= {CPU,MEM,
STORAGE} denotes required resources, Place denotes service placement and Avail
denotes available resources.

Constraint 2: This condition is related to expected response time of the applications.
No application should violate its deadline, therefore:

ResptimeAppi
≤ DeadlineAppi

, ∀Appi
(3)

whereResptimeAppi
represents application response time andDeadlineAppi

represents
application deadline.

4.2.1 Estimating Application Response Time

In a deadline-aware approach, it is important to estimate application response time.
Therefore, the response time can be estimated by:

ResptimeAppi
= TotDeptimeAppi

+ ExectimeAppi
(4)

ExectimeAppi
= MakespanAppi

+ CommAppi
(5)

where TotDeptimeAppi
denotes deployment time, ExectimeAppi

denotes execution
time, MakespanAppi

denotes makespan time, and CommAppi
denotes communication

time.
DeptimeAppi

considers elapsed time prior to the placement of each service
correctly. The placement is done either in cloud or fog based on runtime situations.
In fact, TotDeptimeAppi

represents elapsed time and also the expected deployment
time. It is made when service AppModi ∈ Appi is actually subjected to propaga-
tion to nearest colony. The execution time denoted as AppModi ∈ Appi reflects the
time required for execution of all services of given application plus the amount of

DoSP: A Deadline-Aware Dynamic Service Placement Algorithm … 33

communication needed among services. Therefore, the total execution timeAppModi

∈Appi is computed as the communication time CommAppi
and the sum of makespan

MakespanAppi
. In the link, delays reflect communication time in the process of service

placement in different areas as illustrated in the architecture.

4.3 IoT Application Placement Flow in Fog Environment

Figure 3 shows a fog controller node receives a service placement request from the
user. Then, it identifies the required resources for the requested IoT application. It
also takes deadline associated with the service to be placed. Keeping deadline in
mind, the resources on fog nodes are analyzed. Then identify fog nodes that can
meet service deadline. Afterward, the deadline deployment time is calculated and
verified. If it is low, the service is placed in the fog node (or) fog controller node
(or) cloud. If the time is high, then it is forwarded to NFCN and checks the resource
availability and QoS expectation. If it is satisfied, the application modules are placed
in NFCN, otherwise, they are forwarded to the public cloud where the service is
placed.

Fig. 3 Flowchart of resource provisioning for IoT application in fog-based computing environment

34 M. Sriraghavendra et al.

5 Proposed Methodology

Goal of this proposed work is to develop a comprehensive framework that supports
QoS-aware service placement of IoT-based applications in a fog-based computing
environment. The significance of this methodology lies in the context of emerging
IoT applications in different domains like healthcare, military and the need for fog
computing to accommodate the same besides exploiting the technologies like cloud
computing. According to the research objectives mentioned in Sect. 4, the proposed
methodology needs to be divided into multiple sections.

5.1 Overview of the Proposed Work

This section provides an overview of the proposedwork. The framework presented in
Fig. 4, which provides QoS-aware service placement for ensuring that the placement
of services is highly optimized to improve performance. This kind of methodology
can help in placing services in a fog computing environment with efficient deci-
sion making related QoS requirements of a given IoT application. Workflow-based
IoT application(s) is given as input. Then, the proposed system is responsible for
analyzing its requirements and executing an algorithm to have an effective service
placement that considers the deadline of services. The service placement achieves
satisfying deadlines. Here in the proposed work, no service layer agreements are
considered, for simplicity.

Fig. 4 Overview of the framework showing the proposed research

DoSP: A Deadline-Aware Dynamic Service Placement Algorithm … 35

Fig. 5 Functionalities of the proposed architecture

5.2 Functional Details of the Proposed Work

The proposed architecture for deadline-aware service placement is as shown in Fig. 5,
which is elaborated with functional details. On taking one or more workflow-based
IoT applications, the proposed architecture performs a series of activities to ensure
that the service placement is done according to the requirements of the application.
From the IoT application, the modules of the application are extracted. For each
module/service, the details obtained include a number of modules to be placed, the
sequence of the modules and the deadline associated with each module. Afterward,
the requirements for each module are analyzed. This is nontrivial as each module
needs different resources such as memory, processing power, and bandwidth. More-
over, this requirement for a given service may be fulfilled in FN, FCN, NFCN or
CN. Resource availability is then verified to know the information about all nodes
and their available resources. The resource availability information is then utilized
to make a decision on node selection for a given service or module. Once node selec-
tion is made based on the latest analysis of the resource availability considering the
deadline associated with the service, the services are finally placed in a selected layer
and in selected nodes.

5.3 Deadline-oriented Service Placement Algorithm (DoSP)

Deadline-orientedServicePlacement (DoSP) algorithm is designed to analyze the fog
environment for a given deadline requirement of a workflow-based IoT application

36 M. Sriraghavendra et al.

and make well-informed decisions on the application or its modules placement in
the fog environment. The proposed DoSP algorithm is presented in Table 3.

The proposed algorithm is part of deadline-aware service placement module in
Fig. 4 and node selection module in Fig. 5. It is based on the concept of Genetic
Algorithms (GA). When using a genetic algorithm, the first thing to be considered
is how to model the solution.

Every operator inside the GA will work using that model. The size of the vector
considered is equal to the number of services that will be used in the algorithm,
i.e., the number of services requested to be executed. The vector is the placement

Table 3 Deadline-oriented Service Placement (DoSP) algorithm

Algorithm 1: Deadline-oriented Service Placement (DoSP)
Inputs: No. of applications, No. Application modules, CPU, Memory Storage, make-span time,

deployment time, population.
Output: Efficient and deadline-aware service placement

// build the first generation
Chromosome Length = total No. of applications * No. Application modules;
Number Of Placement Locations = FN or CN or NFCN or FCN;

for i = 1 to population Size do
 new Chromosome = create Chromosome(Chromosome Length, Number Of Placement

Locations);
 if(state_check(Chromosome))
 calculate fitness of new Chromosome;
 add new Chromosome to population;
 i++
end for
for i = 1 to generation Limit do
 fittest Chromosome = get Fittest Chromosome(population);
if fitness of fittest Chromosome > 0 then

 return fittest Chromosome;
 add the current population to the temporary population;
number Of Chromosomes Used For Crossover = generation Size * defined Crossover

Percentage;
number Of Crossovers = number Of Chromosomes Used For Crossover / 2;

// two chromosomes are involved in each crossover
for j = 1 to number Of Crossovers do

parent Chromosomes = select Chromosomes(population); // selection
children Chromosomes = mate Chromosomes(parent Chromosomes); // crossover

 state_check(children Chromosomes)
 state_check(mutate Chromosomes(children Chromosomes)); //mutation and state check
 calculate the fitness of the new chromosomes;
 add the new chromosomes to temporary population;

end for
 add elite chromosomes from temporary population to the new population;
 add remaining best chromosomes from temporary population to the new population;
end for

DoSP: A Deadline-Aware Dynamic Service Placement Algorithm … 37

plan which places the application modules. If the vector [i] = 2, then ith module is
placed in node 2. Hence, the ith module is placed in the computation node value. We
consider this vector (the placement plan) as the chromosome. As said before, it will
be in the form of a vector of integers. Possible integers are IDs of fog cells, cloud,
closest neighbor, fog orchestration control node. The IDs considered as follows, 0
for Cloud, 1 for FCN, 2 for NFCN, 3 to remaining as FN. The number of possible
integers is assigned to the variable “number of Placement Locations”.

After we assign values to variables “ChromosomeLength” and “Number of Place-
ment Locations”, we need to create the first generation. One of the segments of the
GA is the population size that needs to be predefined. With this number, we will go
ahead and create many chromosomes (solutions) to form the first generation. There
are a lot of different ways how we can create a chromosome, i.e., fill a vector of
integers. One way is to randomly put numbers from a set of possible integers to the
vector. A new chromosome is created at this stage. All the generated chromosomes
should satisfy the state check. A state check is an operation which checks whether
the given plan is successfully placed. A module can be successfully placed firstly,
when the requiredMIPS is less than availableMIPS secondly, the sense and actuation
modules are placed only in FN, and finally process modules are not allowed to place
in FN.

After a new chromosome has been created, we calculate its fitness to see how
good it really is, and then we add it to the population. The fitness of the chromosome
depends on how far the app is away from the deadline. If the application is closer
to the deadline then a high penalty is added or else a low penalty is added. Here
we need to minimize the fitness value. Minimum fitness chromosome is the best
possible placement plan. We assign the fittest chromosome from the population to
the variable “fittest Chromosome”. If that chromosome satisfies all the constraints,
we return it, and this is done. If that is not the case, we will need to use the rest of
the algorithm. First, we define how many crossovers will be executed. “Crossover”
is another operator inside the genetic algorithm which is used.

Another segment of the genetic algorithm is the number of generations, which
is also user-defined. In each generation, we used a GA operator “selection” to get
the best (fittest) chromosome. The fittest chromosome is, in this case, the one that
has the biggest fitness among the selected ones. So, we are not looking at the fittest
chromosome directly from the population. The selection part of the algorithm can be
implemented inmanyways. Oneway is to use the Tournament selection. Tournament
selection is the type of selection with two steps.

The first step is to round all the solutions from the population into a “circle”, and
depending on the fitness of each solution, it will occupy some part of that circle.
The better is the fitness, the greater the percentage of the circle. The second step is
to return the fittest out of the selected solutions. This selection is used to get both
parents. There are different ways of how a crossover can be implemented.

One way is the uniform crossover. In this crossover, genes (parts of the chromo-
some) are uniformly selected between both parents to form a child chromosome.
Another genetic algorithm parameter is the fixed mixing ratio inside the uniform
crossover, which tells us how much of the genes will come from each parent. We

38 M. Sriraghavendra et al.

are actually creating two child chromosomes with crossover. Those chromosomes
are completely opposite. If the first one uses the first gene from the first parent, the
second one will use the first gene from the second parent, etc. Here in the proposed
algorithm, we have used uniform crossover. The resultant chromosome is the valid
chromosome which satisfies the state check. A mutation can happen after crossover.
The mutation is another genetic algorithm operator. It is rarely used, but it is a tool
that helps a lot when we want to have a diverse population. In the mutation operation,
we select “m” number of random locations, and we stuff each location with a new
node value that satisfies the state check.

After the mutation, we calculate the fitness of the new chromosomes and store
them (chromosomes) into a temporary and constant list of population. In that tempo-
rary list, we also put the whole current population. After this, we do all the crossovers
and place all the new chromosomes to the temporary population, we perform elitism.
Elitism has a percentage, for example, 20%, which means that 20% of the best chro-
mosomes from the current population will automatically go to the next generation.
The rest will be selected from the temporary population by sorting them (chro-
mosomes) based on the fitness value and choosing the best 80% from them. This
depends on when the user-defined algorithm stops. When the number of applications
and nodes increase the time complexity will increase, this is observed while using
genetic algorithms. The asymptotical time consumption or the complexity of the
proposed algorithm is O(nlogn + IPS2), where n indicates no. of applications for
sorting, I is the no. of iterations, P indicates population size and S implies no. of sub
solutions.

6 Performance Evaluation

6.1 System Setup and Parameters

As found in [7, 11, 12, 29], simulation studies are widely used for fog computing
to evaluate resource management policies. Here, we use a fog computing simula-
tion toolkit named iFogSim [8], which is found to be a suitable framework for fog
computing research as it is used by a number of research works like [15, 23, 27, 35].

The environment is important for conducting experiments. A summary of the
environment used for the empirical study in this research work is given in Table 4.

Table 4 Simulation setup
and its configuration

Processor Intel core i5-2430 CPU, 2.40 GHz

Memory 8 GB

Simulator iFogSim

Operating system Windows 7 Professional

Topology model Hierarchy

DoSP: A Deadline-Aware Dynamic Service Placement Algorithm … 39

The simulation study has been carried out using iFogSim with JDK 1.8. Our
simulation framework has anAPI to visuallymodel the fog computing infrastructure.
It has provisions to model the cloud, fog nodes, fog controller nodes, gateways,
sensors, and actuators. The organization of the network is as follows: one “Fog
Orchestration node”, ten “Fog Nodes” controlled by a “Fog Controller Node”, one
“Neighbor Controller Node”, and a “Cloud”. The processing capability of the node
can be set with a certain capacity that is measured in Millions of Instructions per
Second (MIPS). The iFogSim supports drag and drop features that help users to have
intuition in design and understanding.

Figure 6 shows the fog infrastructure modeled for the proposed simulation study.
Each fog cell has a provision for different nodes. Once the modeling is made, the

nodes are configured appropriately. In the simulation study, each node mimics a real-
world nodewith equivalent characteristics. Therefore, it is essential to configure them
as required. How fog controller and fog nodes are configured for different parameters
is shown in Table 5. The parameters include processing rate, memory and storage
details.

As shown in Table 6, there are other parameters needed for simulation. These
parameters are configured in terms of the communication link delays (in seconds).
This makes it easier to observe andmeasure the results in the simulation study.When

Fig. 6 Fog infrastructure modeled using iFogSim for the simulation study

Table 5 Characteristics of
the fog controller node and
fog node

Parameter Fog controller node Fog node

Processing rate (MIPS) 1000 250

Memory (MB) 512 256

Storage (GB) 8 4

40 M. Sriraghavendra et al.

Table 6 Different parameters
and their corresponding
communication link delay in
seconds

Parameter Communication link delay
(sec)

Fog controller node-cloud 9

Fog controller node-neighbor
controller node

0.5

Fog controller node-fog node 0.3

the service placement scenario is simulated, observation of various parameters is
essential as those parameters are used in the real-world fog computing networks.

The communication link delay for fog controller node–fog node link is set to 0.3 s.
The communication link delay for fog controller node–neighbor controller node link
is set to 0.5. The communication link for fog controller node–cloud is configured to
have 9 s delay.

Once such configurations have been done, it is important to take care of service
modules as well. They need different resources like CPU, memory, storage, and
makespan. These configurations are listed in Table 7. These details are provided for
the well-informed simulation study. For instance, the actuate module is set to have
50 CPU (MIPS), 20 MB main memory and 10 MB storage and 0.50 makespan time
in seconds.

The parameters, deadline and deployment, configurations for different types of
applications are as shown in Table 8.

For application types associated with motion, video, sound, temp, and humidity,
the application deadline and deployment time are determined and presented. The

Table 7 Required resources for application modules

Service module CPU (MIPS) Memory (MB) Storage (MB) Makespan (sec)

Sensing module 50 30 10 0.90

Data aggregation module 200 10 30 0.10

Data analysis module 200 20 30 0.10

Decision making module 100 30 30 0.25

Actuate module 50 20 10 0.50

Table 8 Deadline and
deployment time of each
application

Application type Application deadline Deployment time

Motion 120 60

Video 300 0

Sound 300 60

Temp 360 60

Humidity 240 0

DoSP: A Deadline-Aware Dynamic Service Placement Algorithm … 41

values that were assumed here in Tables 6, 7, and 8 are based on the average of the
previous experimental run.

6.2 Experimental Results

Observations are made on application or its modules placement in fog computing
using the experimental setup described in the previous section. The proposed
deadline-aware method for service placement methodology is compared with the
contemporarymethods, e.g., EdgeWard [33] andCloudOnly. EdgeWard is a baseline
greedy optimization heuristic, hence it is chosen. EdgeWard places the application
modules in the bottom to top approach, based on the availability of resources. In all
the cases, Cloud Only places all the application modules in the cloud. Response time
is an important observation made at different deadlines. Different workflow-based
IoT applications are considered for empirical study. Simulations using iFogSim have
resulted in desired insights for the applications such as motion, video, sound, temp,
and humidity.

As depicted in Fig. 7, the deadline requirement forMotionApplication is 120 s and
Video Application is 300. The horizontal axis provides different service placement
approaches, while the vertical axis shows response time in seconds. The results
revealed that deadline violation occurred in the case of motion application. In both
cases of EdgeWard and Cloud Only methods, the deadline is violated by 184.45 and
31.85 s, respectively. TheEdgeWard, Cloud Only and DoSP approaches could ensure
that the time limit for video application is not breached.

As can be seen in Fig. 8, it is evident that the results are provided for sound
and temp applications. The response time is observed for the IoT applications with
deadlines 300 s and 360 s, respectively. The results revealed that deadline violations
occurred in the case of sound application. The EdgeWard method could not provide
service placement ideally as it violated the deadline by 4.45 s. In the case of temp
application, service placement is made by the three methods without violating the
deadline. However, EdgeWard took more response time while DoSP method took
the least response time.

Fig. 7 Performance comparison with a motion, and b video applications

42 M. Sriraghavendra et al.

Fig. 8 Performance comparison with a sound, and b temp applications

Fig. 9 Performance
comparison with humidity
application

As presented in Fig. 9, the performance of service placement approaches showed
different response times. The proposed DoSP method could honor the deadline. It
is the same with Cloud Only approach as well. In the case of EdgeWard method,
the deadline is violated by 4.45 s. This kind of performance is not acceptable as
deadlines in cloud and fog computing scenarios might be associated with SLAs.

6.2.1 Response Time Against Deadline

Response time or latency is an important metric used for evaluating the proposed
DoSP algorithm. The response time against a given deadline is an important empirical
observation. As shown in Fig. 10, the observations are made in terms of response
time against different deadlines. Results of all the applications are presented with the
communication distance between the fog controller node and the cloud is 1 s. The
deadlines from 50 to 500 s incremented by 50 s are provided on the horizontal axis.

The response time is shown on the vertical axis. When the elapsed time is 50 s,
both Humidity and Video applications started while other applications started at an
elapsed time of 100 s. The observations revealed that the response time values can
be categorized into 3 levels, namely, lower, medium and high. When services are
placed in a fog controller node, response time is less indicating higher performance.
In the same fashion, when services are placed in the cloud, the response time is said
to be medium, which is greater than that of the fog controller node. The response
time is more when services are deployed in the neighbor fog controller node due to

DoSP: A Deadline-Aware Dynamic Service Placement Algorithm … 43

Fig. 10 Performance of the DoSP method with respect to all applications

deployment delay and extra deployment time to place the service modules. These
observations provide the rationale behind the patterns found in response time. The
results revealed that the deadline has an impact on the response time. The rationale
behind this is that the purpose of the proposed DoSP algorithm is to provide service
placement which yields response time that should not violate the given deadline. The
results revealed that the proposed method is deadline-aware, and no violations are
found with respect to all applications. It does mean that based on the deadline and
the resource availability, DoSP has taken appropriate service placement decisions.

6.2.2 Resource Utilization Analysis

Resource availability is analyzed by the proposed DoSP method in order to make
service placement decisions. In the EdgeWard method, the sensing and actuating
services are placed in various fog nodes in the fog layer. Other activities are
known as data aggregation, analysis of data and decision making, are moved to
the controller node and propagated to the neighbor fog controller node. In the DoSP,
it is different. The sensing and actuationmodules are placed in the fog nodes whereas
the processing-relatedmodules are placed in either fog controller node or in the cloud
node.

As shown in Fig. 11, based on the resource analysis, 40%of the service placements
are made in fog node, which is faster than other nodes. Service placement shows 12%
in the closest neighbor node and 6% in the fog controller node.

The remaining 42% of service placements occur in the cloud. As mentioned
earlier, there is a difference in EdgeWard scenarios. It places 40% of services in
the fog nodes, 32% in the closest neighbor nodes and 28% in the fog orchestration
control nodes.

The Cloud Only approach keeps everything in the cloud. Therefore, it is not able
to exploit the fog nodes and fog controller nodes. It has a drawback as the Cloud

44 M. Sriraghavendra et al.

Fig. 11 Resource utilization for the a EdgeWard method, and b DoSP

Only service placementmay notmeet certainworkflow-based IoT applicationswhere
quick response time is desired. Cloud is relatively slower than other layers in the fog
computing architecture.

7 Conclusion and Future Work

We proposed a Deadline-Aware Dynamic Service Placement (DoSP) algorithm for
multiple sequential IoT workflow applications of the same model (sense-process-
actuate) and the same number of modules in each application. The applications
follow the DDF deployment model. Each application contains the same number of
services and each and every service has to be placed on computational nodes.

With the advent of fog computing a platform for the exploitation of available
resources at the edge of the network is emerged. The response time of different layers
can be stated as Neighbor fog controller node (NFCN) > Cloud node (CN) >

Fog node (FN) > Fog controller node (FCN). The proposition is interesting as it
can speed up IoT services deployed in fog computing. The proposed work inves-
tigates the proposition of the hypothesis aforementioned. It has architecture with
multiple layers, i.e., device layer, fog layer, and cloud layer. An evaluation of DoSP
algorithm is carried out using iFogSim simulator. The simulation results revealed
that the proposed algorithm offers better performance over the approaches like Edge-
Ward, CloudOnly. DoSP performedwell as its placement strategy differs to optimize
performance in terms of reducing response time in the presence of strict deadlines
associated with SLAs. This conclusion is made using only five workflows based IoT
applications but this may not be limited to five and can be extended. The values

DoSP: A Deadline-Aware Dynamic Service Placement Algorithm … 45

that were assumed are based on the average of the previous experimental run, which
are not extracted from any real-time dataset. In the future, we plan to work on the
real-time dataset and investigate energy efficiency for optimization of service place-
ment alongwith the deadlines considered. In further study a hyper-heuristic approach
can also be used for better optimization. Container virtualization along with device
mobility in a fog computing environment would also be considered.

References

1. Kochovski P, Stankovski V (2018) Supporting smart construction with dependable edge
computing infrastructures and applications. Autom Constr 85:182–192

2. Mahmud R, Ramamohanarao K, Buyya R (2018) Latency-aware application module manage-
ment for fog computing environments. ACM Trans Internet Technol (TOIT) 19(1):1–21

3. Pham X-Q, Man ND, Tri NDT, Thai NQ, Huh E-N (2017) A cost-and performance-effective
approach for task scheduling based on collaboration between cloud and fog computing. Int J
Distrib Sens Netw 13(11):1550147717742073

4. Skarlat O, Nardelli M, Schulte S, Dustdar S (2017) Towards QoS-aware fog service placement.
In: 1st IEEE international conference on fog and edge computing (ICFEC) IEEE,Madrid, Spain,
pp 89–96

5. Wu H, Knottenbelt WJ, Wolter K (2019) An efficient application partitioning algorithm in
mobile environments. IEEE Trans Parallel Distrib Syst 30(7):1464–1480

6. Skarlat O, Schulte S, Borkowski M, Leitner P (2016) Resource provisioning for IoT services
in the fog. In: 2016 IEEE 9th international conference on service-oriented computing and
applications (SOCA). IEEE, pp 32–39

7. AazamM, St-HilaireM, LungC-H, Lambadaris I (2016)MeFoRE:QoE based resource estima-
tion at fog to enhanceQoS in IoT. In: 201623rd International conference on telecommunications
(ICT). IEEE, pp 1–5

8. Agarwal S, Yadav S, Yadav AK (2016) An efficient architecture and algorithm for resource
provisioning in fog computing. Int J Inf Eng Electron Bus 8(1):48

9. Verma S, Yadav AK, Motwani D, Raw R, Singh HK (2016) An efficient data replication and
load balancing technique for fog computing environment. In: 2016 3rd International conference
on computing for sustainable global development (INDIACom). IEEE, pp 2888–2895

10. Shekhar S, Gokhale A (2017) Dynamic resource management across cloud-edge resources
for performance-sensitive applications. In: 2017 17th IEEE/ACM international symposium on
cluster, cloud and grid computing (CCGRID). IEEE, pp 707–710

11. Filip ID, Pop F, Serbanescu C, Choi C (2018) Micro services scheduling model over hetero-
geneous cloud-edge environments as support for IoT applications. IEEE Internet Things J
5(4):2672–2681

12. Taneja M, Davy A (2017) Resource aware placement of IoT application modules in fog-
cloud computing paradigm. In 2017 IFIP/IEEE symposium on integrated network and service
management (IM). IEEE, pp 1222–1228

13. SouzaVBC,RamírezW,Masip-BruinX,Marín-TorderaE,RenG,TashakorG (2016)Handling
service allocation in combined fog-cloud scenarios. In: 2016 IEEE international conference on
communications (ICC). IEEE, pp 1–5

14. Brogi A, Forti S (2017) QoS-aware deployment of IoT applications through the fog. IEEE
Internet Things J 4(5):1185–1192

15. Gill SS, Garraghan P, Buyya R (2019) ROUTER: fog enabled cloud based intelligent resource
management approach for smart home IoT devices. J Syst Softw 154:125–138

46 M. Sriraghavendra et al.

16. Wu H, Wolter K (2017) Stochastic analysis of delayed mobile offloading in heterogeneous
networks. IEEE Trans Mob Comput 17(2):461–474

17. Goudarzi M, Wu H, Palaniswami M, Buyya R (2020) An application placement technique
for concurrent IoT applications in edge and fog computing environments. IEEE Trans Mob
Comput (TMC)

18. Pham X-Q, Huh E-N (2016) Towards task scheduling in a cloud-fog computing system. In:
2016 18th Asia-Pacific network operations and management symposium (APNOMS). IEEE, ,
pp 1–4

19. Giang NK, Blackstock M, Lea R, Leung VC (2015) Developing IoT applications in the fog: a
distributed dataflow approach. In: 2015 5th International conference on the internet of things
(IOT). IEEE, pp 155–162

20. Yousefpour A, Patil A, Ishigaki G, Kim I, Wang X, Cankaya HC, Zhang Q, Xie W, Jue JP
(2019) FogPlan: a lightweight QoS-aware dynamic fog service provisioning framework. IEEE
Internet Things J 6(3):5080–5096

21. Aazam M, Huh E-N (2015) Dynamic resource provisioning through fog micro datacentre. In:
2015 IEEE international conference on pervasive computing and communication workshops
(PerCom workshops). IEEE, pp 105–110

22. Aazam M, Huh E-N (2015) Fog computing micro datacenter based dynamic resource esti-
mation and pricing model for IoT. In: 2015 IEEE 29th international conference on advanced
information networking and applications. IEEE, pp 687–694

23. Alsaffar AA, Pham HP, Hong C-S, Huh E-N, Aazam M (2016) An architecture of IoT service
delegation and resource allocation based on collaboration between fog and cloud computing.
Mob Inf Syst 2016

24. Tao Y, Wang X, Xu X, Chen Y (2017) Dynamic resource allocation algorithm for container-
based service computing. In: 2017 IEEE 13th International symposium on autonomous
decentralized system (ISADS). IEEE, pp 61–67

25. Ni L, Zhang J, Jiang C, Yan C, Yu K (2017) Resource allocation strategy in fog computing
based on priced timed petri nets. IEEE Internet Things J 4(5):1216–1228

26. Hoang D, Dang TD (2017) FBRC: optimization of task scheduling in fog-based region and
cloud. In: 2017 IEEE Trustcom/BigDataSE/ICESS. IEEE, pp 1109–1114

27. Zhang H, Xiao Y, Bu S, Niyato D, Yu FR, Han Z (2017) Computing resource allocation in
three-tier IoT fog networks: a joint optimization approach combining Stackelberg game and
matching. IEEE Internet Things J 4(5):1204–1215

28. Desikan KS, Srinivasan M, Murthy CSR (2017) A novel distributed latency-aware data
processing in fog computing-enabled IoT networks. In: Proceedings of the ACM workshop
on distributed information processing in wireless networks, pp 1–6

29. Skarlat O, Nardelli M, Schulte S, Dustdar S (2017) Towards QoS-aware fog service placement.
In: 2017 IEEE 1st international conference on fog and edge computing (ICFEC). IEEE, pp
89–96

30. Mahmud R, Srirama SN, Ramamohanarao K, Buyya R (2019) Quality of Experience (QoE)-
aware placement of applications in fog computing environments. J Parallel Distrib Comput
132:190–203

31. Brogi A, Forti S, Guerrero C, Lera I (2019) How to place your apps in the fog-state of the art
and open challenges. arXiv preprint arXiv:1901.05717

32. AbbasiM, Pasand EM, KhosraviMR (2020)Workload allocation in IoT-fog-cloud architecture
using a multi-objective genetic algorithm. J Grid Comput 18:43–56. https://doi.org/10.1007/
s10723-020-09507-1

33. Gupta H, Dastjerdi AV, Ghosh SK, Buyya R (2017) iFogSim: a toolkit for modeling and
simulation of resourcemanagement techniques in the internet of things, edge and fog computing
environments. Software Pract Experience 47(9):1275–1296

34. Zeng D, Gu L, Guo S, Cheng Z, Yu S (2016) Joint optimization of task scheduling and image
placement in fog computing supported software-defined embedded system. IEEETransComput
65(12):3702–3712

http://arxiv.org/abs/1901.05717
https://doi.org/10.1007/s10723-020-09507-1

DoSP: A Deadline-Aware Dynamic Service Placement Algorithm … 47

35. Lin BY, Shen H (2015) Cloud fog: towards high quality of experience in cloud gaming. In:
2015 44th International conference on parallel processing. IEEE, pp 500–509

36. Wang N, Varghese B, Matthaiou M, Nikolopoulos DS (2017) ENORM: a framework for edge
node resource management. IEEE Trans Serv Comput

	 DoSP: A Deadline-Aware Dynamic Service Placement Algorithm for Workflow-Oriented IoT Applications in Fog-Cloud Computing Environments
	1 Introduction
	2 Motivation Scenario
	2.1 Sensing Module
	2.2 Data Aggregation Module
	2.3 Data Analysis Module
	2.4 Decision Making
	2.5 Actuation Module

	3 Related Work
	3.1 Building and Deployed Fog-Based IoT Applications
	3.2 Resource Allocation for IoT Applications in Fog Environment
	3.3 Service Placement in Fog Environment
	3.4 A Qualitative Comparison

	4 System Model
	4.1 Application Prioritizing Phase
	4.2 Node Selection Phase
	4.3 IoT Application Placement Flow in Fog Environment

	5 Proposed Methodology
	5.1 Overview of the Proposed Work
	5.2 Functional Details of the Proposed Work
	5.3 Deadline-oriented Service Placement Algorithm (DoSP)

	6 Performance Evaluation
	6.1 System Setup and Parameters
	6.2 Experimental Results

	7 Conclusion and Future Work
	References

