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Abstract
Edge Artificial Intelligence (AI) incorporates a network of interconnected systems and devices that receive, cache, process,

and analyse data in close communication with the location where the data is captured with AI technology. Recent

advancements in AI efficiency, the widespread use of Internet of Things (IoT) devices, and the emergence of edge

computing have unlocked the enormous scope of Edge AI. The goal of Edge AI is to optimize data processing efficiency

and velocity while ensuring data confidentiality and integrity. Despite being a relatively new field of research, spanning

from 2014 to the present, it has shown significant and rapid development over the last five years. In this article, we present

a systematic literature review for Edge AI to discuss the existing research, recent advancements, and future research

directions. We created a collaborative edge AI learning system for cloud and edge computing analysis, including an in-

depth study of the architectures that facilitate this mechanism. The taxonomy for Edge AI facilitates the classification and

configuration of Edge AI systems while also examining its potential influence across many fields through compassing

infrastructure, cloud computing, fog computing, services, use cases, ML and deep learning, and resource management. This

study highlights the significance of Edge AI in processing real-time data at the edge of the network. Additionally, it

emphasizes the research challenges encountered by Edge AI systems, including constraints on resources, vulnerabilities to

security threats, and problems with scalability. Finally, this study highlights the potential future research directions that aim

to address the current limitations of Edge AI by providing innovative solutions.
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1 Introduction

Recent advancements in Artificial Intelligence (AI), the

growing adoption of Internet of Things (IoT) devices, and

the rise of edge computing are converging to unleash the

full potential of edge AI [1]. Numerous analysts and

businesses are conversing about and executing edge com-

puting, which delineates its origins to the 1990 s when

edge servers positioned near customers were used to serve

web and video content over content delivery networks [2].

Edge computing is a paradigm transformation in this edge

AI that brings data storage and processing closer to the data

source, improving response times and reducing bandwidth

usage. Unlike traditional cloud computing, where central-

ized data centers process data, edge computing processes

data at the network’s edge [3]. This proximity reduces

latency, enhances real-time data processing capabilities,

and supports the expansion of IoT devices and services [4].

The primary advantages of edge computing include

improved agility of services, low latency, enhanced

coherence, and the elimination of a single point of failure,

making it highly relevant for applications in smart cities,

self-sufficient vehicles, and industrial automation [5]. By

distributing resources geographically, edge computing

ensures that data processing occurs near the data source,

satisfying the need for analytics and decision-making in

real-time.

On the other hand, AI includes a wide array of tech-

nologies and methodologies that enable machines to carry

out tasks that generally require human intelligence, such as

learning, reasoning, and self-correction [6]. AI’s
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applications span various domains, including healthcare,

finance, transportation, etc, where it is used to analyze

large datasets, automate tasks, and provide predictive

insights [7]. Integrating AI into different sectors has rev-

olutionized processes by enhancing efficiency, improving

decision-making, and creating new opportunities for

innovation. With betterment in Machine Learning (ML) or

Deep Learning (DL), AI approaches have become

increasingly competent in performing complex tasks that

require human-like cognitive functions [8]. AI algorithms,

specifically those involving neural networks, have shown

remarkable success in areas like image and speech recog-

nition, autonomous driving, and predictive maintenance.

1.1 Edge AI

The fusion of edge computing and AI involves processing

AI algorithms on users’ devices, offering benefits like

reduced latency, energy efficiency, and real-time applica-

tions. This integration allows for real-time data processing

and decision-making at the source, significantly declining

latency and bandwidth use [9]. The combination of edge

computing and AI enables the development of smarter and

more responsive applications, such as autonomous vehi-

cles, industrial IoT, smart home systems, etc. By leverag-

ing edge AI, organizations can achieve greater efficiency,

enhanced privacy, and faster insights, driving innovation

across various sectors [10]. Edge AI refers to integrating AI

capabilities at the network edge, enabling distributed

intelligence with edge devices. It intends to improve net-

work connectivity, enable deployment of AI pipelines with

defined quality targets, and allow adaption for data-driven

applications. [11]. Embedding AI functionalities at the

edge addresses the limitations of cloud-based processing

for IoT, such as privacy concerns and network connectivity

issues. The deployment of AI at the edge enhances latency-

sensitive tasks and reduces network congestion, improving

efficiency and security in wireless networks.

Furthermore, AI-based technologies play a vital role in

addressing Quality of Service (QoS)-aware scheduling and

resource allocation challenges in edge environments,

ensuring QoS and user experience. Edge AI enables the

deployment of AI as a Service (AIaaS) with configurable

model complexity and data quality, enhancing performance

and reducing costs [12, 13]. This innovative approach

supports smart security applications by leveraging AI

capabilities at the edge and enhancing security measures

for distributed systems. Edge intelligence, a promising

technology, empowers real-time applications by moving

computing from cloud servers to IoT edge devices, creating

intelligent enterprises with vast possibilities [14]. The uti-

lization of AI at the edge, instead of centralized locations,

unlocks the potential of AI with IoT devices and edge

computing, deploying AI algorithms on resource-con-

strained edge devices for various applications like auton-

omous vehicles, healthcare, and surveillance.

Edge AI’s significance is underscored by its ability to

provide immediate insights and actions without sending

significant amounts of data to several centralized locations

[15]. This capability is particularly critical in scenarios

where latency and bandwidth are significant constraints,

such as in autonomous driving, where decisions must be

made in real time, or in healthcare, where patient data must

be processed quickly to provide timely interventions [16].

The rise of edge AI is also fueled by advancements in

hardware, such as more powerful and energy-efficient

processors, which make it feasible to run sophisticated AI

models on devices like smartphones and IoT sensors [17].

1.2 Need of Edge AI

The motivation for integrating edge computing with AI is

multifaceted, primarily driven by the imperative need for

processing data in real time and navigating the inherent

limitations of centralized cloud computing systems [18].

As we witness an exponential rise in the number of con-

nected devices and a corresponding surge in data volume,

traditional cloud-centric models increasingly grapple with

issues such as latency, bandwidth constraints, and signifi-

cant data privacy concerns. Edge AI emerges as a pivotal

solution to these challenges, advocating for localized data

processing [19]. This shift not only diminishes the reliance

on distant cloud infrastructures, thereby slashing latency,

but also significantly bolsters the responsiveness of appli-

cations to real-time data inputs. This paradigm shift is

particularly pivotal for fueling the development of next-gen

technologies that necessitate instantaneous data analysis

and decision-making, encompassing sectors like autono-

mous vehicles, smart city infrastructures, and cutting-edge

healthcare systems.

Moreover, Edge AI empowers applications to operate

remarkably efficiently, even in scenarios characterized by

sparse connectivity, by facilitating data processing directly

at the source. This capability is indispensable in remote or

highly mobile environments where consistent and reliable

internet access is only sometimes assured [20]. By pro-

cessing data onsite, edge AI considerably amplifies data

privacy and security measures, mitigating the need to

transmit sensitive information over vast distances to central

servers. This feature is exceptionally critical in domains

such as healthcare and finance, where the confidentiality

and integrity of data are of utmost concern.

Additionally, Edge AI champions bandwidth efficiency

by mitigating the volume of data that needs to be trans-

mitted over networks, making it an economical choice for

data-intensive applications [21]. This efficiency not only
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reduces operational costs but also relieves network con-

gestion, facilitating smoother and more reliable data flows.

Scalability is another significant advantage offered by edge

AI [6]. As the network of devices expands, edge computing

allows for seamless scalability without the bottleneck of

centralized processing power, enabling businesses and

technologies to grow without being hampered by infras-

tructure limitations.

Essentially, the combined use of edge computing and AI

is not just a technical progression but also a tactical

imperative to fulfill the dynamic requirements of contem-

porary applications. By championing lowered latency,

enhanced privacy and security, bandwidth efficiency, and

scalability, edge AI is set to revolutionize how data-driven

decisions are made, ushering in a new era of intelligence

that is both efficient and privacy-centric.

1.3 Article organization

Section 2 offer present situation of Edge AI. Section 4

details the methodology adopted for the review. Section 3

discusses a related surveys and studies focusing on dif-

ferent applications in terms of algorithms, optimization

techniques, security, and privacy concerns integrated with

Edge AI. Section 5 outlines a taxonomy encompassing

infrastructure, cloud computing, fog computing, services,

use cases, machine learning and deep learning, and

resource management. Section 6 compares existing Edge

AI implementations based on taxonomy. Section 7 presents

an analysis and the results obtained, and the future research

directions are discussed in Sect. 8. Finally, Sect. 9 sum-

marizes the survey.

2 Edge AI: background and current status

This section explains some concepts related to background

and current status in Edge AI. Subsection 2.1 explains edge

computing and its historical emergence. Subsection 2.2

provides information on the integration of AI and edge

technologies. This section is completed by explaining Edge

AI applications and challenges in subsection 2.3 and sub-

section 2.4, respectively.

2.1 Historical emergence of Edge computing

The concept of edge computing is a paradigm that brings

computing resources closer to the data source, unlike the

cloud, which provides services through a remote server

[22]. In this way, it is aimed to reduce problems such as

unnecessary bandwidth occupation and latency in today’s

world where huge amounts of data that need to be pro-

cessed are produced [23]. To understand the emergence of

edge computing, it will be more useful to examine previous

paradigms such as cloud and fog computing. Figure 1

shows the advantages of cloud, fog, and edge computing

over each other and their layer arrangement. These con-

cepts are discussed briefly below:

• Cloud Computing: It is a paradigm that dates back to

the 1970 s and refers to the use of common computing

resources by users on a server via the Internet [24].

Today, it is offered to users with various service

models, especially by large companies such as Micro-

soft Azure, Google Cloud Platform and IBM Cloud.

The advantages of cloud computing are as follows [25]:

– High processing power and central storage, so users

can easily access resources from anywhere there is

the Internet. This reduces the user’s risk of data loss

and provides the user with the freedom to work from

any location with Internet access.

– Scalability, in case the need for computing resources

increases (demand fluctuations), cloud computing

provides services such as more processing power

and storage by scaling the resources. In this way,

performance measures such as service-level agree-

ment (SLA) and QoS are ensured.

– Pay as you go, with the serverless (Function as a

Service (FaaS) ? Backend as a service (BaaS))

service model provided by cloud computing, users

are charged only for the amount they use their

computing resources. In this way, an economical

model is provided and appealed to more users.

• Fog Computing: The concept of fog computing was

introduced by Cisco in 2012 [26]. This paradigm

recommends moving computing resources closer to the

endpoints of the network (such as routers and gateways)

to reduce the latency and bandwidth problems that

occur in cloud computing. When Fig. 1 is examined,

fog computing acts as a layer between the cloud and the

edge. The advantages of fog computing are as follows

[27]:

– Fog computing has lower latency than cloud

because it brings computing resources closer to the

edge of the network.

– By acting as a layer between the cloud and end

devices, it reduces unnecessary bandwidth usage by

processing some of the huge amounts of data to be

sent to the cloud.

• Edge Computing The development of IoT and sensor

technologies has increased the amount of data that

needs to be processed to enormous levels. Processing

all this data on cloud computing resources may cause

unnecessary bandwidth occupation and latency
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problems. For this reason, the concept of edge com-

puting has emerged as a paradigm that aims to optimize

latency and bandwidth usage by processing data close

to the data source [28]. Additionally, edge computing is

a good solution to address the complexity, security, and

management challenges posed by fog computing, an

extra layer [29]. The advantages of edge computing are

as follows [30]:

– Reduces latency and bandwidth usage by moving

data processing to the edge of the network,

– Compared to fog computing, it offers advantages

such as less complexity and better security.

2.2 Integration of AI with Edge technology

Developing AI applications have begun to show them-

selves in many areas. One of these areas is EdgeAI, which

is the combination of AI and Edge concepts [29]. EdgeAI is

based on the principle of processing data on edge nodes

such as mobile devices and IoT instead of processing it on

cloud servers [31]. This is achieved by distributing AI

algorithms to edge nodes close to the data source, as shown

in Fig. 2, which shows how data is processed in the EdgeAI

concept and how it performs fast and efficient computation.

The advantages offered by these two technologies can be

listed as follows [6]:

• Low Latency: In delay-sensitive scenarios such as

e-health and autonomous vehicle applications where

patients are monitored instantly, millisecond delays are

critical [32]. In traditional cloud-based systems, data

must be sent between the user and the cloud to be

processed in the AI model deployed in the cloud. This

process will cause serious delay and unnecessary

bandwidth usage [23]. With Edge and AI integration,

this problem can be overcome by processing data in real

time. Because the data will be processed on the edge

node closest to the source where it was produced, it will

respond much faster than cloud-based systems.

• Increased Security and Privacy: In cloud systems, data

is sent from the source where it is produced to central

servers. This expands the attack surface for hackers in

the communication channels and storage areas of

sensitive data such as biometric and health data [32].

In EdgeAI systems, since the data is processed and

stored locally compared to cloud systems, it can be said

that the overall security of the system is higher.

Similarly, privacy issues that may occur in the event

of theft of sensitive data such as biometric data are

reduced [22].

• Resource Optimization and Scalability: EdgeAI sys-

tems consist of heterogeneous devices such as laptops,

network routers, mobile devices with different process-

ing power and storage capabilities. This means that

EdgeAI can share the resources of devices in the edge

network if external processing power and resources are

needed. In addition, balanced load distribution can be

achieved by using advanced resource allocation algo-

rithms to optimize resources.

Future Directions and Limitations: Despite the above-

mentioned advantages and high potential, EdgeAI also

brings with it challenges such as (i) limited processing

power of devices in the edge network, (ii) management

difficulties due to the heterogeneous structure of the edge

network, and (iii) energy constraints due to resource limi-

tations. If future researchers solve these challenges, it is

expected that the areas of use of EdgeAI will expand.

Fig. 1 Computing Paradigms

and their Objectives
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2.3 Edge AI applications

Edge AI applications, created by combining the concepts of

Edge and AI, provide lower latency and higher security

than Cloud-based AI applications. Figure 3 shows popular

applications of Edge AI, which are discussed briefly below:

• Healthcare: Edge AI applications are based on the

processing of data collected from wearable devices in

distributed AI models at the edge of the network.

Additionally, early diagnosis studies using

portable medical imaging techniques can be given as

examples [25].

• Smart Parking: With the increase in means of trans-

portation, parking has become a big problem, especially

in big cities. Edge AI-based solutions with the help of

sensors and IoT devices can be used to solve these

problems [33].

• Smart Home: Solutions used in modern homes such as

home lighting systems and smart refrigerators can be

given as examples of these applications. In this way,

energy consumption can be optimized by preventing

excess electricity consumption in cities [27].

• Computer Vision: Edge AI can identify people using

methods such as biometric authentication [22]. Addi-

tionally, Edge AI provides great advantages in Industry

applications that require real-time decisions [29].

Fig. 2 Architecture of Edge AI

Fig. 3 The Edge AI

Applications

Cluster Computing           (2025) 28:18 Page 5 of 53    18 

123



• Cyber Security: Unauthorized access, suspicious

objects, and armed individuals can be detected with

Edge AI-based security applications. Additionally,

anomaly detection can be made by detecting suspicious

traffic on a network to prevent cyber attacks [34].

• Transportation: Edge AI-based solutions can be used

for today’s complex traffic light operations [35].

2.4 Edge AI implementation challenges

EdgeAI, which emerges by combining Edge and AI, brings

with it the advantages it offers, but also challenges that are

still waiting to be solved. These challenges are shown in

Fig. 4. These challenges are discussed briefly below:

• Energy Efficiency: Edge devices generally consist of

homogeneous and heterogeneous devices with low

processing and storage capacity. Applications that

require Natural Language Processing (NLP) and inten-

sive image processing will cause excessive resource

consumption on edge devices [36]. For this reason, new

solutions such as special AI chips or task engineering

are needed. Therefore, new solutions have emerged,

such as dedicated AI chips or task engineering.

Examples include Google’s TPU and NVIDIA’s Jet-

sonAI chips, which use low-power algorithms to

achieve energy efficiency [37]. Another energy-efficient

method is quantization and pruning techniques. These

techniques reduce energy consumption by reducing the

size of models in neural networks.

• Maintenance and Updates: Since edge devices consist

of devices distributed in different locations, this means

more attack targets for hackers [38]. In addition, not all

devices in the edge nodes have a homogeneous

structure, which means separate system maintenance

and updates for each node [39]. Measures such as

automatic updating can be taken to solve these prob-

lems. In automatic update solutions, system incompat-

ibilities may occur due to the heterogeneous structure of

the devices. For this reason, containerization and

orchestration solutions come to the fore in terms of

service isolation and ease of management [40].

• Scalability: Since edge devices generally consist of

heterogeneous devices, the distribution of a single

application to different devices is still a challenge (task

scheduling, etc.) [41]. Additionally, it is difficult to

synchronize data across all devices. Effective microser-

vice architectures and load-balancing algorithms that

prevent a node from being overloaded can be used to

solve this problem. Examples include Kubernetes and

Istio tools [42]. These tools can easily overcome load

balancing and automating service discovery issues,

while performance optimization should be considered

for scenarios that require low latency.

3 Related studies and surveys

In this section, we discuss related studies and surveys, as

well as our main contributions.

3.1 Related studies

Here, we discuss various studies, which are about the dif-

ferent applications consisting of smart cities, smart manu-

facturing, autonomous vehicles, the Internet of Vehicles

(IoV), industrial automation, and healthcare monitoring

systems. These are highlighted when edge computing

meets AI and AI for edge computing. There are also con-

siderations of traditional ML, computation offloading

optimization, and concerns related to privacy and security,

reflecting a comprehensive analysis of the challenges and

strategies integrating AI and edge computing.

3.1.1 Smart cities

In the case of innovative city applications, the intersection

of AI and edge computing in smart cities emphasizes the

importance of optimizing computation offloading and fos-

tering a Federation between edge, cloud, and fog comput-

ing for efficient operations, which have been discussed in

the following articles. In 2020, authors [43] presented an

intelligent offloading method (IOM) that preserves privacy,

boosts edge utility, and improves offloading efficiency for

smart cities. The mechanism of information entropy is

utilized in conjunction with edge computing to achieve an

equilibrium between the maintenance of privacy and the

facilitation of collaborative services. Further, authors [44]

employed a cooperative compute offloading method to

obtain the aforementioned trade-off in the cooperation of

three ends: IoT device, cloudlet, and cloud. Offloading, on

the other hand, can significantly reduce the processing

strain on IoT devices; yet, it may incur high transmission

costs and cloudlet resource use. Furthermore, authors [45]
Fig. 4 Edge AI Implementation Challenges
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outlined the introduction of a cyclic branch network, a DL-

based intelligent offloading scheme that makes full use of

network edge computing power and data traffic to reduce

overall energy consumption in dual connectivity and

nonorthogonal multiple access computation offloading

systems. Moreover, authors [46] suggested Robust Neural

Networks From Coded Classification (CoDNN), a unique

compute offloading method for multi-device collaborative

pipelining processing of deep neural network (DNN) tasks.

In [47], authors focused on an approximation technique

called Accuracy Maximization using LP-Relaxation and

Rounding (AMR2), which is suggested and shown to

produce a makespan of no more than 2T and a total

accuracy that is less than the optimal total accuracy by a

small constant. Another work [48] presents a revolutionary

deep neural network-based energy-efficient offloading

strategy that trains a smart decision-making model to select

a reliable pool of application components. Finally,

researchers [49] suggested method for the heterogeneous

scenario is consistently effective in identifying a superior

offloading scheme than the chosen existing algorithms,

according to empirical findings. On the other hand, for the

homogeneous scenario, the suggested solution can effec-

tively accomplish the ideal approach.

3.1.2 Smart manufacturing

In intelligent manufacturing, combining AI with Edge

Computing significantly enhances efficiency, decision-

making, and security, effectively addresses challenges, and

improves data utilization. This integration streamlines

operations, enables predictive maintenance, and supports

autonomous decisions. The following papers are discussed

to describe these advancements and subsequent challenges:

In 2022, authors [50] explored the scope of AI and its

application in India’s intelligent manufacturing industry,

concentrating on the technology’s current state, constraints,

and recommendations for resolving issues. In [51], authors

have discussed how ML and AI may boost productivity,

sustainability, and manufacturing efficiency. However,

there are several difficulties with implementing AI in

manufacturing, including problems with infrastructure and

human resources, security threats, trust, and data manage-

ment and acquisition. Further, the authors [52] suggested a

new mode called ‘‘AI-Mfg-Ops’’ (AI-enabled Manufac-

turing Operations) with a supporting software-defined

framework proposed as part of an open evolutionary

architecture of the intelligent cloud manufacturing system.

This mode can facilitate quick operation and upgrades of

cloud manufacturing systems with intelligent assessment,

analysis, planning, and execution in a closed loop. In 2021,

authors [53] addressed the job shop scheduling challenge in

the intelligent factory process while using a Deep

Q-network (DQN). The suggested framework is contrasted

and examined with other frameworks from the standpoint

of offering an intelligent factory service. Furthermore, the

authors [54] look at how it tends to integrate several pro-

ductivity factors, such as big data analytics, Automation,

and Operations Information, which connect machines via

open platforms, resulting in real-time reactions to boost

efficiency across the supply chain. Moreover, the authors

[55] developed a service-oriented information model to

standardized describe the functional characteristics and

related operational data of heterogeneous manufacturing

resources; additionally, a message middleware-based real-

time transmission and integration method for high-volume

operational field and sensor data is suggested to achieve the

efficient distribution of related data and remote monitoring

of distributed manufacturing resources. Finally, the authors

[56] discuss the possible advantages and difficulties of a

federated learning architecture based on data gathered from

5 G MSPs to enable predictive maintenance (PM) in

industrial settings.

3.1.3 Autonomous vehicles and the internet of vehicles
(IoV)

In the context of autonomous and IoT-enabled vehicles,

advancements in control and task optimization are pro-

pelled by AI integration and Edge Computing (EC). This

synergy supports real-time decision-making, highlighting

the importance of AI and EC in addressing challenges like

real-time processing and security and optimizing commu-

nication and privacy within the IoV. The application of DL

and Reinforcement Learning with Multiple Agents

(MARL) Underscores the need for efficient solutions in

autonomous driving technologies. In these scenarios, the

following papers are described: In 2023, authors [57] offer

a thorough technical overview of the most recent studies

conducted in the areas of lateral, longitudinal, and inte-

grated control strategies for self-driving cars. They also

examine a variety of strategies and tactics used to attain

accurate steering control while taking longitudinal factors

into account. [58] discusses key technologies, applications,

solutions, and problems related to integrating Mobile Edge

Computing (MEC) and ML in the Internet of UAVs and are

covered in-depth by the author’s thorough review. Further,

authors [59] examined the most recent research on vehic-

ular data offloading from the standpoint of communication,

focusing on vehicle-to-vehicle (V2V), vehicle-to-roadside

infrastructure (V2I), and vehicle-to-everything (V2X). The

study also identified unresolved research issues in this area

and forecasted future directions in the field. Furthermore,

the authors [60] suggested a multi-access edge computing

(MEC) framework to facilitate the cooperation of digital

twins (DTs) into wireless networks and connected cars
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(CVs) to reduce the unreliability of long-distance com-

munication between edge servers and CVs. Moreover,

researchers [61] outline a DL and edge computing-based

vehicle intelligent control system that encourages the broad

advancement of automation and intelligent technology.

The findings show that the distance between the target and

experimental vehicles is extremely close to the anticipated

safe space. In [62], authors suggested a safe edge intelli-

gence that combined the advantages of blockchain, local

differential privacy (LDP), and federated learning (FL) for

automotive networks. The authors in [63] focus on a fast

task execution technique in heterogeneous IoT applications

that are powered by AI. This technique reduces decision

latency by considering various system parameters, includ-

ing the task’s execution deadline, the device’s battery level,

the channel conditions between mobile devices and edge

servers, and the capacity of the edge servers. Finally, the

authors [64] combined edge computing and the Web of

Things, compared their functions, and showed how edge

computing improves the efficiency of real-time IoT appli-

cations by focusing on transmission, storage, and compu-

tation elements.

3.1.4 Industrial automation

In industrial automation, several papers discuss revolu-

tionary approaches to enhancing productivity by integrat-

ing AI, edge computing, robotics, and data analytics. The

relevant papers look over the utilization of the Industrial

Cyber Intelligent Control Operating System (ICICICOS), a

cloud-edge computing-based system, for AI and industrial

automation. It focuses on proposing AI with industrial

processes at the edge. It emphasizes strategies for opti-

mizing ML methods, deploying AI models on resource-

constrained devices, and addressing security concerns

through secure AI microservices at the edge. The relevant

papers are described as follows: In 2022, the authors [11]

presented a flexible working mechanism by permitting the

combined design of data quality ratios (DQRs) and model

complexity ratios (MCRs) for the AI tasks and suggested a

configurable model deployment architecture for edge

AIaaS. Furthermore, the authors [12] provide a systematic

overview of methods for addressing the paucity of training

data for different kinds of data, and a methodology for

addressing data scarcity in cellular networks is suggested.

In [14], the authors explore the privacy-enhancing solu-

tions that are now in position, including the technologies,

specifications, and process solutions to mitigate these risks.

It also looks at privacy threats at various stages of the AI

life cycle. Further, the authors [16] offer a thorough

overview of edge intelligence and lightweight ML support

for upcoming services and applications. The researchers

have supplied a thorough analysis of cutting-edge

intelligence applications, lightweight ML techniques, and

their support for upcoming services and applications. In

[65], authors provide a thorough review of AI/ML-based

IDS/MDSs and set baseline measurements pertinent to

networked autonomous systems, emphasizing the gaps and

assessment metrics in the existing research. In [6], the

authors wrapped up a thorough analysis of edge computing,

covering both the shift to edge AI and related paradigms.

Additionally, the history of every alternative put out for

edge computing implementation, as well as the Edge AI

strategy for putting AI models and algorithms on edge

devices, were investigated.

3.1.5 Smart healthcare

Intelligent healthcare systems focus on integrating AI and

edge computing and the challenges related to privacy and

security, decision-making, and optimization. These sys-

tems make use of technologies, including genetic-based

encryption for data security, federated learning in the

Internet of Medical Things, and nanosensor-equipped sys-

tems to improve efficiency and security. Mobile computing

has played a vital role in healthcare, particularly during the

COVID-19 pandemic, enabling telemedicine and contact

tracing, emphasizing the significance of technology in

tackling healthcare challenges. The following research

papers delve deeper into the intersection of technology,

healthcare, and privacy. In 2018, the authors [66] proposed

an intelligent home monitoring system based on edge-fog

computing with AI capabilities. Latency issues and relia-

bility are the main concerns for the authors in developing

smart home real-time applications. Further, the authors

[67] provide a comprehensive overview of the key ele-

ments of the MCPS from multiple perspectives, covering

design, methodology, and significant supporting technolo-

gies such as cloud computing, edge computing, IoT, sensor

networks, and systems with multiple agents. In [68],

authors provided a distinctive and specialized route

resource recommendation (R3) protocol to handle resource

management and connection problems in autonomous,

connected ambulances (ACA) for route optimization.

Furthermore, the authors [69] provide a condition-aware

analytical framework that may be used to recommend

health conditions in IoT-based mobile healthcare systems.

This framework corresponds to IoT devices that have

limited resources, such as those with a memory utilization

rate of 6.6%. Moreover, the authors [11] Present a flexible

working mechanism that allows the combined configura-

tion of data quality ratios (DQRs) and model complexity

ratios (MCRs) for AI tasks and addresses a flexible model

deployment architecture for edge AIaaS. In [70],

researchers suggest using an edge-of-things (EoT) frame-

work to implement centralized and federated transfer
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Table 1 Comparison of our survey with existing related surveys

Work Research domain [2] [4] [6] [7] [8] [9] [10] [11] [12] [14] [16] Proposed

work

Year 2022 2023 2023 2020 2022 2024 2020 2023 2024 2023 2023 2024

Edge AI U(*) U(*) U(*) U(*) U

Taxonomy U(*) U(*) U

Cloud U U U U U

Infrastructure Fog U U

Edge U(*) U U U U U U U U U U

Application Monolithic U(*) U U

Architecture Microservice U(*) U

IoT Static U(*) U U U U U

Use Cases Mobile U U U U U U(*) U

Heuristic U

Meta-Heuristic U U

Methods Machine

Learning

U U U U U U U U(*) U(*) U

Deep

Reinforcement

Learning

U U U(*) U U

Provisioning U U U(*) U U

Resource Resource Allocation U U(*) U

Management Application Placement U(*) U(*) U U

Workload Distribution and

Prediction

U U U U

ML Model

Sizing

Reduced U U U U

Full U U

U

U U

Computational U(*) U(*) U(*) U U

Heterogeneity Hardware U

Platform U

Platform U

Security Host U

Network U U(*) U

Container U(*) U(*) U

Scheduling Task U

Pod U

Service U U

Stateful vs Stateless

containers

U U

Container

Migration

Inter versus Intra cluster

migrations

U

Migrations at cloud/

Edge/fog

U(*) U(*) U(*) U

Simulations versus real-

world testbed migrations

U(*) U

Container

Scaling

Proactive versus reactive

scaling decisions

U U

Horizontal, Vertical and

Hybrid scaling

U(*) U

U := method supports the property, *:= just an Overview/Visionary
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learning (CMTL) for cyberattack detection systems in the

healthcare industry. Finally, the authors [71] presents a

new approach called CoDoC, which stands for comple-

mentary-driven deferral-to-clinical workflow. Its purpose is

to decide when to rely on a diagnostic AI model and when

to hand it off to a clinician.

3.2 Related surveys and our contributions

Table 1 shows the comparison of our systematic review

with related surveys by focusing on the advancement of AI

at the edge, optimizing algorithms in constrained envi-

ronments, solving training data scarcity with AI tech-

niques, and using AI/ML for resource management in fog

and edge computing settings. There, the different columns

are set on the basis of various applications, their methods

of optimization, and fruitful utilization. This survey covers

several edge computing concepts and emphasises the

application of AI on edge devices with constrained

resources. The survey examines the optimisation of ML

algorithms for such restricted environments and covers

current IoT applications across several sectors, including

industrial automation, smart homes, and autonomous

vehicles. It also highlights the difficulties and possible

paths for edge computing and edge AI research, offering a

strong basis for further investigation in the field.

3.2.1 Related surveys

Considering the dynamic, diversified, and resource-con-

strained character of fog and edge computing settings [2],

this research emphasises the potential of AI/ML, particu-

larly reinforcement learning techniques [4], in addressing

resource management challenges in these systems [6]. A

thorough analysis of the literature was done to look at how

AI/ML applications may be used to effectively manage

resources in these kinds of situations [11]. A taxonomy was

established to categorise and contrast different approaches

[7]. Enhancing explainability, reducing variance, and

boosting online training of AI/ML algorithms are high-

lighted as critical future research directions to adapt to the

constantly changing fog/edge computing landscapes [16].

The study emphasises the significance and changing chal-

lenges of resource management [8], whereas a presentation

framework is described that addresses the issue of sparse

training data in emerging radio access networks by utiliz-

ing a range of methods, such as interpolation, domain-

knowledge techniques, generative adversarial networks

(GANs), transfer learning, autoencoders, few-shot learning,

simulators, and testbeds [12]. The challenges are high-

lighted and presented by insufficient training data, and the

crucial role that Automation powered by AI plays in the

operation, optimisation, and troubleshooting of cellular

networks is described [14]. The technique suggests an

integrated strategy to improve data availability in cellular

networks and includes a survey and taxonomy of current

approaches to lessen this scarcity. In addition, the study

emphasises the necessity for scalable, reliable solutions

that take conditional contexts into account for generating

high-dimensional data in radio access network applications

also [9, 10]. Table 1 reveals a dearth of reviews on Edge

AI, with most existing surveys and review papers

[2, 4, 6–12, 14, 16] presenting an overview or vision of the

technology rather than a comprehensive survey, systematic

review, and detailed taxonomy. To the best of the author’s

knowledge, this is the first survey paper on edge AI that

provides a thorough taxonomy and a systematic review and

highlights future research topics.

Fig. 5 Road-map for Research Methodology
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3.2.2 Our contributions

The main contributions of this paper are:

• We offer a thorough introduction to Edge AI, covering

its history, challenges, and prospects.

• We conduct a systematic review that provided a

thorough examination of edge AI research based on

many applications, highlighting current trends and

possible directions for the future.

• We propose a taxonomy for edge AI, which aids in the

classification and arrangement of edge AI systems, and

explore its potential impact across disciplines through

various applications.

• We emphasize how important edge AI is for processing

data in real time at the network’s edge. It also highlights

the challenges faced by edge AI systems, such as

resource limitations, security risks, and scaling issues.

• We propose promising future directions that aim to

address the current shortcomings of Edge AI by

Table 2 Research questions, motivation, category, and mapping

Sr.

no.

Research question Motivation Category Mapping

section

RQ1 What are the fundamental techniques and

strategies in Edge AI, and how do they impact

data processing efficiency for different

applications?

This research question aims to explain the effect

of various approaches on the efficacy of Edge

AI in real-world applications.

Methodologies

and Strategies

Sects. 5.1,

5.2, and

5.4

RQ2 What strategies can be used to optimise heuristic

and meta-heuristic algorithms for enhanced

performance and resource management in Edge

AI applications?

The question evaluates the efficacy of heuristic

and meta-heuristic approaches in improving

performance and resource management inside

Edge AI systems.

Heuristic and

Meta-Heuristic

Methods

Sects. 5.4.1

and 5.4.2

RQ3 What are the challenges and solutions for using

machine learning methodologies in Edge AI for

real-time data processing?

The research question emphasises addressing the

challenges encountered in the integration of

machine learning techniques into Edge AI and

possible solutions.

Machine

Learning

Techniques

Sect. 5.4.3

RQ4 How can edge AI applications, especially those

that use dynamic environments, implement

deep reinforcement learning to improve

decision-making?

This question examines the function of deep

reinforcement learning in enhancing real-time

decision-making inside Edge AI environments.

Deep

Reinforcement

Learning

Sect. 5.4.4

RQ5 How can Edge AI increase scalability and

resource efficiency with less computational

power and storage size?

This question addresses the need for effective

techniques for managing scalability and

resources in Edge AI environments.

Resource

Management

and

Heterogeneity

Sects. 5.7

and 5.11.2

RQ6 What are the principal issues in resource

allocation and task distribution for Edge AI

applications, and how can they be mitigated?

This question tries to determine challenges in the

deployment of Edge AI and provide methods

for efficient resource management.

Resource

Provisioning

and Workload

Distribution

Sects. 5.5.1

and 5.5.4

RQ7 What effects do architectural choices have on the

scalability and performance of AI applications

running on the edge?

This question evaluates the efficacy of various

architectural methodologies in Edge AI

systems.

Architectural

Comparisons

Sect. 6.2

RQ8 How does Edge AI resource management,

including application placement and workload

prediction, depend on important factors?

This question explores essential components that

enhance efficient resource management

techniques in Edge AI.

Resource

Management

Sect. 5.5

and 6.5

RQ9 What are the main challenges to federated

learning and how might it enhance data sharing

and communication among distributed Edge AI

devices?

Federated learning is potential for distributed

Edge AI applications, but data synchronization

is addressed in this question.

Federated

Learning, Data

sharing

Sect. 8.2

RQ10 What are the most important factors to consider

when deciding between cloud, fog, and edge AI

infrastructure, and how do these factors impact

application performance?

This question examines factors impacting

infrastructure decisions in Edge AI and its

effects on performance.

Infrastructure

Selection

Sect. 5.1

and 6.1

RQ11 When it comes to real-time applications, how can

edge AI provide data privacy and security,

especially in vulnerable domains ?

The significance and possible solutions for data

privacy and security in Edge AI applications

are the primary aim of this question.

Security and

Privacy

Sects. 5.4

and 5.5
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providing innovative solutions and opportunities for

future research.

4 Review methodology

This article does a systematic review to categorize studies

that are pertinent to this study domain or discuss specific

research questions on ‘‘Edge AI’’. In this article, we used

the guidelines established by Kitchenham et al. [72–74] to

provide a comprehensive review of Edge AI. The review is

the optimal and reliable approach to documenting and

analyse current research works. The systematic approach

enables researchers to carefully analyse the positive and

negative aspects of recent studies, conduct a thorough

examination to identify potential gaps in research and

future trends and difficulties, and provide a solid founda-

tion and context for establishing a new study field. Fur-

thermore, the complete research approach is presented in

Fig. 5, which represents the structure of the process that

was used in the systematic review research.

4.1 Design and plan of review

The review procedure illustrates the methodologies applied

to conduct a systematic review to minimize the potential

for biased research. Therefore, possessing a pre-established

process is crucial. In the absence of a systematic method-

ology, researchers’ predispositions can influence the pro-

cess of selecting and analyzing studies. This may result in

the omission of crucial inquiries essential for a thorough

analysis and comprehension of the subject matter. The

review process encompasses the research inquiries, explo-

ration approach, criteria for selecting studies, procedures

for assessing quality, and techniques for extracting and

synthesizing data [75].

4.2 Research questions

Determining the research queries is crucial in the method

of planning to develop a strong systematic review. The

design of the research problem requires a thorough exam-

ination of existing literature studies. The primary aim of

the present systematic review is to thoroughly examine and

evaluate the various methods and strategies being

employed for edge intelligence or edge AI. Furthermore, in

order to emphasise the research findings and effectively

showcase the useful consequences, the research questions

that follow have been defined in Table 2.

4.3 Search strategy

4.3.1 Database selection

The database selection includes conducting searches on

various digital databases, such as IEEE Xplore, ACM

Digital Library, Wiley, Taylor and Francis, Springer Link,

Google Scholar, and Science Direct. These databases

contain a wide range of impact factor journals, magazines,

and significant conference proceedings, making them

suitable for this systematic review.

4.3.2 Search query

A comprehensive search was conducted utilising Logical

OR/AND operators to connect the keywords, concepts,

synonyms, and abbreviations. The initial phase entails

conducting an automated search using predetermined

keywords that align with the study topics of this systematic

Table 3 Overview of the criteria for determining inclusion and exclusion

S.

no.

Inclusion Exclusion

1 English articles issued at conferences, journals, and book chapters Non-English articles

2 Articles that are included in a database source and are available in their

entirety

Articles that are not available in their whole

3 Articles that specifically examine the process of choosing Edge AI

infrastructure, such as Cloud, Fog, and Edge computing, and their

effects on application efficiency and consumed resources

Articles that explore diverse domains such as federated

learning, IoT-based approaches, and other classic methods

4 Articles published till 2024 Articles that were not published during the designated search

timeframe

5 Relevant articles pertaining to the investigation queries Articles that fail to meet the research requirements or receive a

score of 3.5 or lower in the quality assessment standards

6 Systematic reviews often prioritise publications containing experimental

or empirical research

Articles that do not contain such research
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literature review (SLR). The keywords used are [(((‘‘Edge

AI’’ OR ‘‘Edge Intelligence’’ OR ‘‘Edge Computing’’)

AND (‘‘Machine Learning’’ OR ‘‘Deep Learning’’ OR

‘‘Reinforcement Learning’’)) AND (‘‘Resource

Management’’ OR ‘‘Resource Allocation’’)) OR (‘‘Cloud

Computing’’ OR ‘‘Fog Computing’’) OR (‘‘Application

Placement’’ OR ‘‘Security’’ OR ‘‘Scheduling’’ OR ‘‘Sim-

ulation’’)]. The search terms are obtained from the

Fig. 6 Research Methodology Protocol
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specified research topics and the framework of this sys-

tematic review in order to encompass the most significant

and interrelated publications.

4.4 Inclusion and exclusion criterion

The systematic review needs to establish clear guidelines

for inclusion and exclusion to guarantee that the chosen

papers are relevant to the research topic and address the

specific research objectives. The primary purpose of

establishing the criteria is to guarantee that the studies

featured are appropriate and connected to AI-based

methodologies in Edge computing. Hence, the chosen

research must satisfy all the predetermined criteria. Table 3

presents the specific phrases used to determine which cri-

teria were included and excluded in this systematic review.

Furthermore, a method of screening is carried out to

identify the appropriate research studies that are relevant to

the context of this study shown in Fig. 6. The screening

process consists of three distinct stages:

a. Title and abstract Phase: During this stage, papers

that were deemed irrelevant were excluded based on

their title and abstract. Subsequently, the studies that

satisfy at least some of the criteria listed in Table 3 are

chosen and advanced to the subsequent step for

additional analysis.

b. Full-text screening Phase: During this step, studies

were excluded while they failed to fulfill the criteria

specified in Table 3, based on a thorough reading of the

full-text or partial reading.

c. Final selection Phase: The next phase utilises the

criteria terms outlined in Fig. 6 to make the final

selection and eliminates studies that do not meet any of

the specified criteria.

i. The topic of the study must be pertinent and

directly connected to the research topics.

ii. The user did not provide any text. The research

study examines the comprehensive solution for

research advancements in edge intelligence and

identifies four key components: monolithic and

microservices architectures differ in terms of

flexibility, performance, and resource utilisation

in Edge AI for addressing practical challenges,

finding solutions, and achieving optimisation

goals.

iii. The research paper presents essential factors to

consider for managing resources in Edge AI,

such as resource provisioning, allocation,

deployment, and scheduling of workloads.

iv. The user did not provide any text. The research

study examines the factors that influence the

choice of Edge AI infrastructure, such as Cloud,

Fog, and Edge computing, and investigates their

effects on application reliability and resource

utilisation.

v. The user did not provide any text. How do Edge

AI systems maintain reliable and intelligent tasks

in dynamic and ambiguous instances?

4.5 Quality assessment

In order to gather the most comprehensive and reliable

information on this subject, we employed a systematic

review methodology, following the standards outlined [76].

Furthermore, a plethora of research papers and conference

papers exist on the topic of AI applied to edge computing.

Once we applied the criteria for inclusion/exclusion,

researchers conducted a thorough evaluation of the articles

that met the standards to identify the ones that were most

worthy of further examination. Employed the standards

established by the methodology to evaluate the overall

quality of the research, taking into account its impartiality,

internal consistency, and objectivity.

4.6 Extraction and synthesis

This phase emphasises the process of extracting and

combining data by thoroughly examining all 78 chosen

studies and summarising and storing the relevant infor-

mation. This stage involves the creation of a mechanism

for extracting data items and compiling comprehensive

reports that include all the information gathered from pri-

mary research studies [75].

Furthermore, this study specifically chose items that

relate to the research objectives as well as research ques-

tions. The data was taken from primary studies and

meticulously recorded to determine the ultimate findings of

the systematic review. The analysis step involved

employing descriptive synthesis. The subsequent section

discusses the results obtained from the synthesis.

5 A taxonomy of Edge AI

In this taxonomy, we identify and categorize the current

studies for Edge AI. To create a new taxonomy, the first

three authors carefully examine the contents of the 60

papers available and then obtain the research summary as

explained in Sect. 4. We classify the obtained solutions

under the necessary headings. Based on the current

advancements and existing literature on edge AI, we have

proposed a taxonomy, as shown in Fig. 7. Leveraging edge

AI-driven edge computing systems can be optimized. The

best example of this is the EdgeAI-based latency-reducing
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studies found in the literature. We generally examine lit-

erature studies under 11 subheadings: infrastructure,

application architecture, IoT use cases, methods, resource

management, ML model sizing, heterogeneity, security,

scheduling, container migration, and container scaling.

Ed
ge
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I T
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on

om
y

IoT Use Cases

Application
Architecture

Methods

Infrastructure

Resource
Management

ML Model Sizing

Heterogeneity

Security

Scheduling

Container
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Cloud

Monolithic

Fog

Edge

Microservice

Static

Mobile

Heuristic

Meta-Heuristic

Machine Learning

Deep Reinforcement Learning

Provisioning

Resource Allocation

Application Placement

Workload Distribution and Prediction

Reduced

Full

Computational

Network

Platform

Host

Hardware

Platform

Container

Task

Service

Pod

Stateful vs Stateless Containers

Inter versus Intra Cluster Migrations

Migrations at Cloud/Edge/Fog

Simulations versus Real World Testbed Migrations

Proactive versus Reactive Scaling Decisions

 Horizontal, Vertical and Hybrid Scaling

Fig. 7 The Taxonomy of

EdgeAI
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5.1 Infrastructure

AI models and applications can be deployed in different

infrastructures based on their target scenarios. The three

most common infrastructures widely used are Cloud, Fog,

and Edge.

5.1.1 Cloud

The essence of cloud computing is to pool resources with

virtualization technology. Virtualization technology trans-

forms a physical machine into several virtual machines,

greatly changing the mode of application operation and

deployment. The term ’cloud’ here refers to remote data

centers [21]. Users usually connect to the servers in the

data center through the network to use the computing

resources here. The essence of cloud computing is to pool

resources, allowing users to purchase resources according

to their own requirements, greatly reducing resource waste.

Therefore, through cloud computing, the performance of

AI applications has also been significantly improved. We

transmit local AI models to remote servers through the

network. We can more efficiently utilize some computing

resources in the cloud, such as CPUs, GPUs, and memory,

and flexibly scale according to our business needs,

improving resource utilization and reducing the cost of

model training and prediction.

5.1.2 Fog

As is well known, fog is closer to the ground than cloud,

and the ground here refers to the user’s local device. Fog

computing technology adopts distributed computing tech-

nology, which arranges computing resources on the side

closer to the user than cloud computing [6]. It can be said

that fog computing has broadened the network computing

mode of cloud computing, widening computing capacity

from the network center to the network edge, and thus

more widely applied to numerous services. Fog computing

is more widely distributed geographically and has greater

mobility, making it suitable for an increasing number of

intelligent devices that do not require extensive computa-

tion. For some time delay-sensitive applications such as

real-time interaction system, fog computing also has

greater advantages.

Image, video and natural language processing (NLP) are

the recently emerging applications of fog computing. The

placement and processing of images in fog computing is

one of the most widely used fields of AI in research and

industry. Its goal is to distinguish objects and people from

each other and classify and distinguish photos based on

image processing algorithms. Using fog computing in

image processing-based applications can shorten response

delay and improve service quality. In medical applications

that require image processing accuracy and fast processing

of medical data, deploying effective scheduling algorithms

in foggy environments may be beneficial. According to

other works, DL algorithms such as Generative Adversarial

Networks (GAN) and Convolutional Neural Networks

(CNN) can commonly be used in the field of image pro-

cessing in fog.

5.1.3 Edge

The concept of edge computing is relative to cloud com-

puting. The processing method of cloud computing is to

upload all data to the cloud data center or server in the

computing resource set for processing. Any request to

access this information must be submitted to the cloud for

processing [35]. Edge computing is a computing model that

moves resources and provides edge intelligent services at

the network edge near objects or data sources, by which

improve service quality and information security. In brief,

edge computing analyzes the data produced by the terminal

directly in the local device or network near the data gen-

eration, without transmitting the data to the cloud data

processing center [68]. Compared with cloud computing,

edge computing has shorter network latency, less resource

consumption, and higher security of the data to the cloud

data processing center.

The so-called edge AI combines two emerging tech-

nologies: edge computing and AI. However, the imple-

mentation of edge computing is based on the same basic

premise, that is, generating, collecting, storing, processing

and managing data locally rather than in remote data

centers. Edge AI improves this concept to the device level,

using ML to imitate human reasoning to reach user inter-

action points, such as computers, edge servers or IoT

devices [69]. Typically, these devices can operate without

an Internet connection and make decisions independently.

Well-known examples of edge AI technologies include

virtual assistants, such as GPT-4o, Apple’s Siri, or Amazon

Alexa. When the user says ‘‘hey’’, these tools will recog-

nize and learn what the user is saying (i.e. ML), interact

with cloud-based application programming interfaces

(APIs), and store the learned knowledge locally.

5.2 Application architecture

Monolithic and microservice, as the two main application

architecture patterns [77], each has unique advantages and

application scenarios that can support AI applications and

models.
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5.2.1 Monolithic

Monolithic Architecture, was the traditional model for

software development and deployment, used in the past by

large companies. And its functionality is encapsulated into

one single application. The advantage of this architectural

pattern is that it is much easier to develop, deploy, debug

and monitor [78]. Because the interaction between com-

ponents is directly completed via memory, the performance

is better. For some simple and initial AI systems, or

applications with small business scales and infrequent

changes in requirements, monolithic architecture may be a

suitable choice.

However, with the arising of the business scale and

demand, MA has encountered many challenges and shown

obvious shortcomings. Due to its inherent tight integration,

this design pattern has limitations in scalability, adapt-

ability, and ease of maintenance. Whenever specific mod-

ules need to be extended, the entire application needs to be

recompiled and deployed, which can lead to low resource

efficiency and waste [20]. In addition, as the code reposi-

tory grows, the complexity of development, testing, and

deployment also increases, thereby increasing maintenance

costs and the risk of errors. Therefore, in large and complex

applications, developers are seeking more flexible and

scalable architectural patterns, such as microservices

architecture, as introduced in the next section.

5.2.2 Microservice

Microservice, as an emerging distributed system architec-

ture model, is gradually changing the landscape of software

development. The core idea is, unlike monolithic, to

decompose complex large-scale applications into small and

independent service units, each focusing on specific busi-

ness functions or integration domains. Considering the fact

that microservices architecture is composed of multiple

small components, iterative upgrades of applications are

more flexible and efficient [20]. Especially for large and

complex AI systems, such as e-commerce platforms, social

media platforms, etc., microservice architecture is a more

suitable choice. These applications typically consist of

multiple subsystems, each of which can be independently

developed. For example, Taobao has dozens of indepen-

dent systems, all of which are typical microservice archi-

tectures that can support rapid business development and

iteration.

Even so, with the widespread application of microser-

vice architecture, it also faces challenges such as service

governance, network transmission efficiency, service

expansion, and version iteration. Nevertheless, microser-

vice architecture remains an important development

direction for enterprise IT architecture, and its potential

and advantages cannot be ignored [79]. Future research

will require an in-depth exploration of how to overcome

these challenges and further promote the development and

application of microservice architectures.

5.3 IoT use cases

IoT is truly revolutionary, presenting an extensive array of

diverse and impactful use cases that are reshaping numer-

ous aspects of our modern world. We can classify IoT use

cases into two main categories: static and mobile. As the

name suggests, static use cases are like agricultural moni-

tors, which are fixed and usually do not need to be moved,

while mobile use cases such as in-car telemetries and

wearable devices may frequently move [80].

5.3.1 Static

Static IoT user cases based on edge AI technology are

gradually becoming a key driving force for digital trans-

formation. In these cases, data collected by static IoT

devices (such as cameras, sensors, etc.) is directly analyzed

in real-time on edge devices, and rapid decision-making

and response are achieved through edge AI [79]. In the

field of agricultural ecological environment monitoring, the

agricultural IoT predominantly employs high-tech approa-

ches to establish sophisticated agricultural ecological

environment monitoring networks, and uses wireless sensor

technology, information fusion transmission technology,

and intelligent analysis technology to perceive changes in

the ecological environment [4]. In 2002, researchers at the

University of California, Berkeley conducted a 9-month

periodic environmental monitoring of the habitat of the

Shanghai Swallow on Duck Island using wireless sensor

networks. Regional static MICA sensor nodes were

deployed to achieve unmanned and non-destructive moni-

toring of sensitive wildlife and their habitats. Some coun-

tries, including the United States, France, and Japan, have

primarily focused on integrating the establishment of

agricultural information platforms covering the whole

country to achieve automatic surveillance of the agricul-

tural ecological environment and ensure its sustainable

development of the agricultural ecological environment.

5.3.2 Mobile

The emergence of emerging AI such as DL has brought

new innovations to mobile animal networking. In the field

of mobile IoT, edge AI achieves real-time and efficient

data processing by deploying the computing power of AI at

the edge of devices. For example, in smart health moni-

toring applications, edge AI enables wearable devices to

analyze user physiological data in real-time, providing
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real-time health feedback to users without uploading data

to the ‘‘cloud’’ for processing [81]. These devices harness

DL technologies to scrutinize user health metrics and fur-

nish guidance for subsequent lifestyle modifications,

yielding substantial benefits, particularly for infants, young

children, and the elderly. Due to data not being uploaded to

the cloud, it can effectively protect user privacy and

security. In addition, in the field of intelligent transporta-

tion, AI technology provides timely guidance for vehicle

operation by analyzing local data. Similarly, many frame-

works utilize DL techniques to predict parking occupancy

rates, reduce the time required for vehicles to search for

parking spaces, and improve urban traffic management [6].

These user cases demonstrate the enormous potential of

edge AI technology in improving the performance of

mobile IoT applications and enhancing user experience.

5.4 Methods

In this part, we discuss the dominant methods employed in

edge AI which include heuristic algorithm, meta-heuristic

algorithm, ML and Deep Reinforcement Learning (DRL).

These four types of algorithms have their own character-

istics and application scenarios, aiming to optimize the

accuracy and performance of AI models and applications.

5.4.1 Heuristic

People often refer to methods inspired by the laws of nature

or the experiences and rules of specific problems as

heuristic algorithms. The current heuristic algorithms are

not entirely based on natural laws, but also come from

human accumulated work experience. They supply a

practical solution for each instance of the combinatorial

problem to be solved and maintain an acceptable cost in

terms of computation time and space, and the degree of

deviation between the practical solution and the optimal

solution may not be ascertainable before the implementa-

tion in advance [31]. Heuristic algorithms are a technique

that enables the search for the best possible solution within

an acceptable computational cost, but may not necessarily

guarantee that the obtained solution is the best scheme. In

most cases, it is impossible to describe the degree of

approximation between the obtained solution and the

optimal solution.

In the field of edge AI, heuristic algorithms have been

widely used because they conform to the characteristics of

human cognitive thinking. Usually, edge devices have

limited computing resources [82], so reasonable resource

scheduling is particularly important. Heuristic algorithms

can find satisfactory solutions in a relatively large search

space within a short amount of time, so they can help our

applications deploy to suitable nodes. In addition, heuristic

algorithms can perform efficient data analysis on edge

devices, greatly reducing dependence on cloud computing

resources and lowering network response latency [83].

5.4.2 Meta-Heuristic

Meta heuristic is a computational intelligence-based

mechanism used to solve complex optimization problems

for optimal or satisfactory solutions. The meta heuristic

algorithm obtains a sufficiently good solution by searching

the space [69]. Meta heuristic algorithms can be seen as an

algorithmic framework that can be applied to different

optimization problems with slight modifications. In edge

AI, the application of meta heuristic mainly focuses on two

aspects:

Model optimization: The reasonable deployment of AI

applications in edge devices has always been a headache

inducing issue. AI applications are computationally inten-

sive services that require high computing resources, while

computing resources in edge devices are usually limited

[38]. The fully heuristic algorithm can help find the optimal

parameter configuration for AI models, so that these AI

applications can maintain high performance while occu-

pying as few resources as possible.

Resource management: In edge AI systems, multiple

tasks may need to run at the same time and they need to

share limited resources [84]. The meta-heuristic algorithm

can optimize the allocation of these resources, ensuring

that each task receives sufficient resources to run efficiently

without depleting the entire system’s resources.

5.4.3 Machine learning

As is well known, the ML technique forms the foundation

of AI and plays a pivotal role in many applications, such as

recommendation systems, text generation, and so on. As

edge AI gains prominence, ML is increasingly finding its

way onto devices located on the fringes of the network.

These edge devices prioritize data processing close to its

source, aiming to minimize transmission delays, accelerate

response times, and alleviate the reliance on centralized

servers [6]. Consequently, edge AI systems are often tasked

with handling vast volumes of data in real-time scenarios.

Following certain ML algorithms, such as sophisticated DL

models, these systems can swiftly analyze and process data

at the edge, extract crucial insights, and empower a diverse

array of real-time applications encompassing autonomous

vehicle operations, intelligent manufacturing processes,

and robust security systems. In addition, ML techniques

can be employed to detect anomalies in real-time on edge

devices, such as detecting product quality issues during the

manufacturing process, or detecting changes in patient

health status in the medical field [85].

   18 Page 18 of 53 Cluster Computing           (2025) 28:18 

123



5.4.4 Deep reinforcement learning (DRL)

Many application problems in AI require algorithms to

make decisions and execute actions at every moment. For

Go, each step requires determining where to place the

pieces on the chessboard in order to defeat the opponent as

much as possible; For autonomous driving algorithms, it is

necessary to determine the current driving strategy based

on road conditions to ensure safe driving to the destination;

This type of problem has a common characteristic: to make

decisions and actions according to current conditions in

order to achieve a certain expected goal [86]. The ML

algorithm used to solve such problems is called rein-

forcement learning (RL). Although traditional reinforce-

ment learning theories have been continuously improved in

the past few decades, they are still difficult to solve com-

plex problems in the real world.

DRL is a type of DL with reinforcement learning

methods, which enables models to have stronger learning

abilities, indicating that machines can autonomously

understand and learn the human visual world. Simply put,

just like humans, this means inputting visual and other

perceptual information, and then directly outputting actions

through deep neural networks without the need for manual

production. As introduced before, DRL can solve specific

problems in edge devices, such as in car systems where the

device perceives the surrounding environment and road

conditions on its own without the need for human inter-

vention, and selects the appropriate driving route [87]. In

addition, DRL has also driven the development of other

fields, such as smart homes [4].

5.5 Resource management

Edge computing, which deploys computing, storage, net-

work, and other resources at the network’s edge, can

drastically minimize data transmission delay, enhance data

processing efficiency, and relieve bandwidth demand on

the core network [4]. However, with the growing number

of edge devices and the complexity of applications, how to

efficiently manage these resources has become an urgent

problem that must be addressed. This section will review

how to make resource management in an edge environment

from the aspects of resource provisioning, resource allo-

cation, application placement, and workload distribution

and prediction.

5.5.1 Provisioning

As the name suggests, resource provision is the way of

provision of resources by resource suppliers based on the

users’ pre-established needs and supply strategies. This

type of strategy is usually divided into two types: dynamic

and static strategies. Static strategies are determined based

on user resource needs and constraints, such as QoS and

SLAs [4, 88, 89]. Static strategies are more suitable for

stable workloads. For applications with large fluctuations

in resource demand, we usually use heuristic algorithms

and ML algorithms to predict in advance, which are called

dynamic strategies.

5.5.2 Resource allocation

Edge AI is an offline service during model training, dif-

ferent from traditional online services such as microser-

vices, web applications, and API services. Sometimes, it is

not sensitive to latency, but usually requires higher

resources such as GPU and memory. The computing power

of edge devices is often limited by their limited resources,

which are often unable to support or complete computa-

tionally intensive tasks, such as model training, within an

acceptable deadline. This approach at this point is to off-

load these offline tasks and transfer them to edge servers

for completion [1]. Edge devices are used for services that

need to meet low latency, such as web services and human-

computer interaction. Of course, we can also combine

some DL techniques to achieve more reasonable resource

allocation. This approach aims to minimize resource waste

and enhance application performance.

5.5.3 Application placement

Application placement is also an indispensable factor to

consider in edge computing resource management, which

means formulating an assignment of applications to servers

that maximize the QoS for all users in order to optimize the

performance for some components that are sensitive to

latency such as interactive online games, face recognition,

etc. Through reasonable application placement, such as

some AI-based approaches [90], the computing and storage

resources of edge nodes can be fully utilized, improving

resource utilization and efficiency.

5.5.4 Workload distribution and prediction

Generally, the infrastructure architecture where our appli-

cation can be described as three separate layers: cloud

layer, edge layer, and IoT layer. The workload of the

application will have its own characteristics distributed in

these three layers [91]. The cloud layer is located at the top

level of the architecture and The cloud layer, situated at the

top of the architecture, is a robust cluster comprising

thousands of virtual machines. Deploying large-scale AI

models on the cloud layer is a good choice. The edge layer

is located between the cloud layer and the IoT layer

composed of a set of nodes that deploy several devices like
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routers or switches, and it is responsible for load-balancing

traffic from the cloud layer and aggregating and analyzing

data from the IoT layer. We can deploy some web servers

and small-scale AI applications on this layer. The IoT layer

is the source of data in this architecture, mainly composed

of sensors and wireless devices, such as temperature sen-

sors, cameras, and Bluetooth [82]. These devices need to

have high sensitivity and feedback very quickly to user

instructions.

Furthermore, accurate predictions can lead to more

rational resource management. This is beneficial for both

users and service providers. Previous research and tech-

nologies such as ARIMA [92] and Holt Winter [93] were

based on linear temporal prediction. However, these tech-

nologies often exhibit poor prediction accuracy. With the

rise of DL, technologies such as neural networks have been

widely applied in data prediction, such as weather, trans-

portation, and finance systems. Especially for recurrent

neural networks (RNNs), their inputs not only focus on

current data, but also contain information from a period of

time in the past. Therefore, it is often used to predict time-

series related data. Using RNNs to predict workload in

edge computing is a promising approach worthy of

consideration.

5.6 ML model sizing

In the edge computing scenario, the size of the model

becomes the key factor to determine whether it can be

successfully deployed and applied. Especially in intelligent

camera monitoring systems, due to the limitations of edge

devices in computing power, storage space, and energy

supply, using a full model size DL model is often

impractical [94]. To overcome these limitations, we usually

adopt a strategy of reducing model size. In this section, we

analyze and compare the two different strategies of model

sizing.

5.6.1 Reduced

The training cost and efficiency of AI models are important

metrics to assess the quality of the model. Nowadays, many

AI giants are progressively increasing the size of model

parameters and the volume of training data. The model

parameters of GPT�3.5 have reached 175 billion [95].

While this approach significantly enhances model accu-

racy, it also markedly escalates training costs and hardware

requirements, necessitating a trade-off between accuracy

and cost. In this way, we need to strike a balance between

accuracy and cost. In recent years, there have been

numerous studies in this area, such as DenseNet [96],

EfficientNet [97] and EfficientNetV2 [98]. The goal of

these works is to train models to achieve satisfactory

accuracy with fewer model parameters. In the field of edge

computing, where hardware resources are limited, the

reduced-size model will certainly become an important

trend of edge AI in the future.

Model pruning and model quantization are well-estab-

lished methodologies for achieving model size reduction.

However, nowadays, how to design a lightweight and high-

precision neural network has become a focal point of

research in the field of AI, such as MobileNet [99] and

ShuffleNet [100]. These models have small parameters and

high computational complexity, making them very suit-

able for running on edge devices.

5.6.2 Full

Unlike MobileNet and ShuffleNet, GPT-3 is a full model

with 175 billion parameters, which is hundreds of times the

number of GPT-2 parameters (3 billion). Tom Brown [101]

demonstrated that GPT-3 has completed various NLP

tasks, such as translation, question answering, etc., with

minimal sample training. Due to its outstanding perfor-

mance in the domain of NLP, this model has greatly pro-

moted the development of large language models.

Currently, many edge computing frameworks, such as

KubeEdge [102], have integrated plugins that support the

deployment of these extensive language models, thereby

extending their applicability and utility in edge

environments.

5.7 Heterogeneity

Heterogenous environments in edge devices are employed

to run various IoT applications. Their diversities are

embodied in three aspects: computational heterogeneity,

hardware heterogeneity and platform heterogeneity.

5.7.1 Computational

Computational heterogeneity in edge computing empha-

sizes the variability in application behavior during com-

putational operations. For AI applications, there is a large

amount of vector operation logic in the model code, which

determines that such applications are suitable for parallel

computing rather than serial computing. For web services,

universal computing is the main approach [103]. This

distinction manifests in hardware requirements, where AI

applications rely on GPU acceleration, whereas web ser-

vices operate efficiently with CPU resources alone.

For many microservices, such as the web services

mentioned earlier, their performance bottleneck often is not

in CPU but in disk read and write speed, as most of the

time is spent accessing databases. In other words, they are

IO-intensive services rather than computationally
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intensive. In order to reduce network latency, microser-

vices are usually deployed in edge nodes. How to reduce

the performance loss caused by slow disk read and write

speeds is a problem we need to consider.

5.7.2 Hardware

Edge devices have many differences in processor and

hardware architecture due to the computing characteristics

of the applications deployed on them. The instruction set of

CPU can be divided into two categories: ARM and AMD,

and software running on different instruction sets may have

differences in performance. Some infrastructure deployed

on edge nodes, such as routers and switches, are respon-

sible for tasks such as data forwarding and protocol con-

version, and therefore require CPU support. The

application of image generation and virtual reality requires

high-performance graphics rendering and environment

recognition. In addition to processing CPUs, GPUs and

other chips are also necessary. Nowadays, many container

frameworks have support for CPU and GPU hardware

resource isolation, such as Docker and Container, which

can eliminate the impact of service instability caused by

hardware resource competition.

In 2018, Google launched Edge TPUs [104], specially

designed for inference and training of neural networks on

edge devices with limited resources. Edge TPUs demon-

strate strong capabilities in computer vision [105]. Some

IoT applications for autonomous driving and facial recog-

nition can benefit greatly.

5.7.3 Platform

Due to the rise of edge computing, the world’s major

technology giants have also launched their own edge

computing platforms. For example, Amazon’s AWS IoT

Greengrass, Microsoft’s Azure IoT Edge, and Google’s

Cloud IoT Edge. They all support the effective operation of

AI models on edge devices, providing service management

and data analysis capabilities. Other open source platforms

also deserve attention, such as KubeEdge and OpenYurt,

which are extensions of Kubernetes in the field of edge

computing and provide container management, automatic

operation and maintenance and other functions.

5.8 Security

With the rapid development of edge computing techniques,

an increasing number of enterprises and organizations are

deploying edge computing solutions to meet high demands

for real-time capabilities, security, and privacy protection.

However, simultaneously, the edge computing environ-

ment also faces numerous security challenges [6, 106]. To

ensure the stable operation of edge computing systems and

data security, we need to consider and ensure security

comprehensively from three aspects: Platform, Host, and

Network.

5.8.1 Platform

Blockchain is a distributed, decentralized, and tamper

proof database. It is often used to build a secure and trusted

intelligent platform, which can solve the security problems

in edge computing. Zhang et al. [107] utilized blockchain

technology to construct a highly secure trusted edge plat-

form, providing a secure environment for AI applications

on edge nodes. Wang et al. [108] proposed an integrated

trust evaluation mechanism based on cloud and edge

computing, along with a new architecture of service tem-

plates and balanced dynamics, to address security chal-

lenges. In this architecture, the design of edge networks

and edge platforms is aimed at reducing resource con-

sumption and ensuring the scalability of trust evaluation

mechanisms, respectively. Other security technologies such

as Role Based Access Control (RBAC) have also been

widely applied to some distributed platforms, such as

Kubernetes.

5.8.2 Host

Host security is defined as the security of all hardware and

software deployed on a single edge server or device. Due to

the proximity of edge devices to the human body, such as

healthcare systems and intelligent driving systems. Imagine

that if a car is using intelligent driving and its intelligent

driving system is hacked, it will pose a serious threat to the

safety of passengers and other vehicles on the road [109].

We can take many measures to defend against external

attacks on the host. Firewall rules can be configured to

block access from unauthorized IP addresses. Moreover, by

installing antivirus software and regularly updating pat-

ches, the security factor can also be improved.

5.8.3 Network

Distributed Denial of Service (DDoS) attack, which causes

significant economic losses to society every year, is one of

the most common attack methods in computer networks,

and it also has strong destructive power on IoT devices.

From the time of the 2016 botnet Mirai attack on

KrebsOnSecurity [110] and Dyn [111], it can be seen that

DDoS attacks are seriously threatening the security of IoT

applications. With the development of edge computing, the

threat of such attacks to large-scale IoT devices is growing,

which may lead to incalculable economic losses. For

example, in the field of automation, AI technology is
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widely used to make decisions and adjust plans. If edge AI

is subjected to network attacks, it can lead to AI models

making incorrect decisions, resulting in product quality

issues.

Although edge nodes exhibit the potential to isolate

most of the IoT data at the network edge and detect and

intercept attacks near the source in the first place, they

encounter significant challenges in practical applications.

The main reason is that edge nodes are unable to capture

the aggregated network traffic required for IoT DDoS

detection, nor can they scale and provide the necessary

resources like elastic clouds [112]. Therefore, directly

deploying existing cloud based defense solutions on edge

nodes is far from achieving ideal results. We need to

redesign the DDoS defense scheme based on edge com-

puting to solve the special and severe security problems in

the edge environment.

5.9 Scheduling

Resource scheduling is the process of efficiently allocating

and managing system resources, ensuring optimal utiliza-

tion of resources according to demand and priority. In edge

environments, resource scheduling is exceedingly crucial

for achieving real-time, low-latency services. Especially in

AI scenarios that have high demands for computing and

network resources, only by allocating edge device resour-

ces reasonably can we support the rapid response and

efficient operation of AI applications, and improve overall

system performance and user experience. Resource

scheduling is also a hot research direction, and there has

been a lot of work in this area before [4, 6, 106]. In this

section, we discuss scheduling from the following four

granularities, because the four constitute the core unit for

application deployment and management in container

orchestration systems such as Kubernetes and KubeEdge.

5.9.1 Container

Containers are a software virtualization technology that

laid the foundation for the development of microservices.

Nowadays, containers are also widely used in the field of

edge computing. There is also much research on containers

in edge computing, which stems from the growing demand

of users for millisecond delay computing. In [113], the

authors elucidate the concepts of container placement and

migration between edge servers, and propose a container

scheduling framework grounded in multi-objective opti-

mization models or graph network models.

In addition, some open-source container orchestration

and scheduling frameworks are worth paying attention to,

such as KubeEdge. KubeEdge can extend its powerful

cloud computing capabilities to edge devices. Especially

suitable for some AI applications, model training can be

completed in the cloud and then deployed to edge devices.

In addition, KubeEdge can optimize scheduling perfor-

mance based on different AI application business scenarios

by configuring the algorithm and parameters of the kube-

scheduler.

5.9.2 Task

In the scheduling task of edge computing, there are usually

two problems to be solved: scheduling time and resource

allocation. Most previous research [114–116] on task

scheduling has focused on these two aspects. With the

advancement of AI technology, ML technology has shown

unique advantages in task scheduling. Markov Decision

Process (MDP) is a robust and effective method for mod-

eling temporal data and providing high-precision predic-

tions. The problem of resource allocation in edge devices

can be described as MDP, and the deep Q network (DQN)

algorithm uses multiple replay memories to minimize the

total delay and resource utilization. the study in [117]

addresses the intricate issue of joint task offloading and

resource allocation problems for computationally intensive

tasks in fog computing. This intricate problem is formu-

lated as a partially observable MDP, and the Deep

Recursive Q-Network (DRQN) algorithm is adopted to

approximate the optimal value function.

5.9.3 Pod

In container orchestration systems such as Kubernetes, Pod

is the smallest unit of work composed of several containers.

Pod scheduling is the process of assigning Pods to a node

based on a certain algorithm strategy, which is of great

significance for ensuring high availability, resource uti-

lization, and performance of the system. Pod scheduling is

mainly controlled by kube-scheduler, and its process

includes two stages: screening and scoring [118]. During

the filtering phase, the scheduler checks all nodes to

determine which ones have the resources (such as CPU and

memory) and other requirements (such as node selector

labels) needed to run Pod. Then, the selected node will

enter the scoring stage, and the scheduler will rate each

node based on a series of criteria such as node affinity,

resource utilization, etc. The node scoring the highest will

be designated as the running location for Pod. kube-

scheduler supports custom scheduling plugins, and users

can develop some extension plugins based on the business

characteristics of the enterprise.
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5.9.4 Service

Service refers to software or system components deployed

at the edge of a network that provides specific functions or

resources to meet the real-time, low latency, and high

bandwidth needs of users or devices. Service can be a

computing service, data processing service, storage service,

or any form of network service that optimizes resource

utilization and reduces data transmission latency, bringing

better service quality and experience to users.

Service scheduling is the deployment, allocation, and

scheduling process for these services [59]. In the edge

computing environment, Service Scheduling is responsible

for arranging and scheduling the execution sequence and

location of services reasonably based on application

requirements, resource conditions, and network conditions.

Effective service scheduling can ensure that the service can

efficiently use limited edge computing resources, achieve

load balancing, reduce service latency, and improve the

performance and reliability of the entire system.

5.10 Container migration

In distributed and cloud computing environments, con-

tainers need to be migrated from one node to another due to

node failures, load imbalance, resource upgrades, and other

reasons. At this point, container migration technology is

needed to achieve rapid migration and recovery of

containers.

5.10.1 Stateful vs stateless containers

Stateful containers and stateless containers are two major

classifications of containers, which are important criteria

for container expansion, contraction, and migration.

(i) Stateful containers: The so-called state essentially

refers to the data in the running container. When migrating

such containers, it is usually necessary to migrate their data

together, such as a database. Due to the involvement of

data replication, such containers need to consider issues

such as data loss and data integrity. Specific migration

tools or strategies may be needed to ensure accurate

migration and recovery of data [119]. All containers

managed by a StatefulSet controller in Kubernetes are

considered stateful.

(ii) Stateless containers: These containers are contain-

ers that do not save any state during runtime. For example,

a web server that provides services for static pages, treats

each request as independent, and the container does not

need to remember previous interactions. The migration

process is very simple, just pull up the container on other

nodes and delete the container from the original node. All

Pods under a Deployment in Kubernetes are stateless.

5.10.2 Inter versus Intra cluster migrations

Inter-cluster and intra-cluster migration are discussed

briefly below:

(i) Inter-cluster migration: When a company or orga-

nization needs to migrate its data center from one geo-

graphic location to another, inter-cluster migration is an

indispensable step. Inter-cluster migrations involve node

migration between different clusters, typically requiring

consideration of cross-cluster communication factors such

as network latency and bandwidth limitations [120]. Due to

the collaborative work of multiple clusters and nodes

involved in cross-cluster migration, the migration process

is relatively complex and requires ensuring data consis-

tency and service continuity.

(ii) Intra-cluster migration: In a cluster, migration

within the cluster can take effect when a node experiences

performance degradation or longer response time due to

excessive workload. Administrators or automation tools

can migrate a portion of the workload (such as containers,

virtual machines, or services) on that node to other nodes in

the cluster to balance the load and optimize performance

[63]. Compared to inter-cluster migrations, The complexity

of intra-cluster migrations is relatively low because it only

involves nodes and data migration within the same cluster.

5.10.3 Migrations at cloud/edge/fog

Migration at cloud is the process of migrating applications,

data, and other business processes from traditional local

devices or servers to cloud platforms, including the

migration to IaaS, PaaS, and SaaS [121]. IaaS migration is

the most ideal and applicable cloud migration solution.

Because we can entrust all programs and data to cloud

vendors such as Alibaba Cloud and AWS. Users do not

need to consider all operational and deployment issues.

Edge computing has become an important technical

support for the development of IoT [122]. A thorny prob-

lem in edge computing is service migration, especially in

the mobile IoT device environment. Due to the limited

coverage of a single edge server network, the migration of

mobile services between servers is likely to reduce the QoS

of the services. State preservation of services (such as

stateful services), data loss, and cost control have become

challenges in the migration of edge computing services.

Migration at fog is the process of migrating applications,

services, or data from traditional centralized data centers or

cloud environments to a fog computing environments. The

purpose of this migration is to achieve low latency, band-

width optimization, enhanced security, improved scalabil-

ity, and fault tolerance. Fog migration involves redesigning

applications to adapt to the distributed architecture of fog

computing, including modular design and the ability to
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handle network dynamics [66, 123]. Fog migration can

provide more effective support for IoT devices, mobile

devices and other applications that need rapid response,

and achieve the goal of intelligent edge computing.

5.10.4 Simulations versus real-world testbed migrations

When discussing container migration, two different testing

and validation methods are usually involved: simulations

and real-world testbed migrations. Here is a comparison

between these two methods:

(i) Simulations: It uses models to replace actual or

conceptual systems for training, analysis, argumentation,

experimentation, experimentation, and planning methods,

techniques, and activities [4]. Simulations can predict

system performance and efficiency, validate and iterate

modeling and simulation through real experimental data,

support, optimize and expand experimental identification,

accelerate development and reduce risk costs [31].

(ii) Real world testbed migrations: Its definition is the

process of testing and validating a system or application in

a real physical environment, involving the migration of the

system or application from one environment to another.

Since it is conducted in a real-world environment, it can

directly evaluate the performance, reliability, and safety of

the system or application under actual operating conditions

to ensure that it meets practical needs [1].

When conducting container migration testing and vali-

dation, simulations and real-world testing platforms are

usually combined. Simulation can quickly validate con-

cepts and strategies in the early stages, while real-world

testing platforms are used to test and optimize migration

strategies under conditions close to actual operational

environments. This combination of methods can balance

the cost, time, and accuracy of results, providing a com-

prehensive evaluation for fog migration.

5.11 Container scaling

With the continuous development of cloud computing and

container technology, container scaling has become an

important means to ensure application performance, high

availability, and resource optimization. This section will

explore the strategies and practices of container scaling

from two key perspectives: firstly, the scaling decisions of

proactive and reactive, which exhibit different character-

istics and advantages in dealing with load changes; next

horizontal vertical and hybrid scaling strategies represent

how effectively container resources are in different

scenarios.

5.11.1 Proactive versus reactive scaling decisions

The scaling decisions of Proactive and Reactive reflect two

different strategies, which have a significant impact on the

performance and resource allocation of container applica-

tions. The following are specific explanations of these two

strategies:

(i) Proactive scaling decision: This method will use

historical data of container load to train a specific AI

model, through which future changes in container resource

load can be perceived and predicted in advance [124]. It

allows administrators or systems to automatically adjust

resources to maintain optimal performance and efficiency.

For example, this strategy can predict based on historical

data that as long as it reaches 7 pm or 8 pm, the QPS of AI

applications will significantly increase because everyone is

off work, which is the entertainment time at night.

(ii) Reactive scaling decision: This is a strategy that

utilizes third-party resource monitoring tools, such as

Promethues [125], to make real-time decisions on the

number of replicas and resource allocation in containers.

The container orchestration tool determines whether to

expand or dissolve based on the resource change data of the

relevant containers in the monitoring tool. When the load

increases, reactive scaling will start adding containers;

When the load decreases, it will decrease the number of

containers [126]. The decision-making of reactive scaling

is based on real-time load data. When training the model,

the utilization of GPU and GPU memory inside the con-

tainer may reach 80%-90%. At this time, the system will

immediately detect the high utilization rate and scale up the

capacity promptly.

5.11.2 Horizontal, vertical and hybrid scaling

Three types of scaling techniques are described below:

(i) Horizontal scaling: It is a way to cope with load

changes by increasing or decreasing the number of con-

tainer instances [127, 128] (such as Pods, container groups,

etc.). It can respond very quickly to load changes and

adjust overall processing power by adding or removing

container instances. Each container instance is independent

and has good fault isolation, a fault in one instance will not

affect other instances. Horizontal scaling is very suit-

able for scenarios with stateless services and the need to

handle a large number of concurrent requests.

When AI applications need to handle a large number of

concurrent requests and each request has a relatively short

processing time, horizontal scaling is a good choice. For

example, online recommendation systems, real-time

advertising delivery systems, etc. In some application

scenarios that require a large amount of computing

resources (such as CPU, GPU, memory, etc.), horizontal
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scaling can provide sufficient resources by adding more

machines. For example, DL model training, large-scale

image recognition, etc.

(ii) Vertical scaling: It is adjusting the processing

power of a single container instance by increasing or

decreasing its resource allocation (such as CPU, memory,

storage, etc.). It does not require managing multiple con-

tainer instances, only adjusting the resource allocation of a

single instance and can accurately adjust resource alloca-

tion based on actual load conditions, avoiding resource

waste. Vertical scaling is suitable for stateful services

[129]. However, this scaling strategy also has its draw-

backs, as it poses a challenge to the computing and storage

capabilities of individual machines.

When AI applications encounter performance bottle-

necks stemming from the capabilities of individual nodes,

vertical scaling offers an effective solution by enhancing

hardware capabilities, such as deploying faster CPUs,

increasing memory capacity, or leveraging more efficient

GPUs. For AI applications that do not necessitate extensive

concurrent processing or substantial computing resources,

vertical scaling can serve as a more cost-effective and

straightforward approach, minimizing complexity while

maximizing performance within the confines of a single

node.

(iii) Hybrid scaling: Hybrid scaling is a scaling strategy

that combines both horizontal scaling and vertical scaling

[88]. Based on the load characteristics and requirements of

the application, use both horizontal and vertical scaling

methods to optimize resource allocation and performance.

Being able to flexibly choose scaling methods based on

different scenarios and needs, and combining horizontal

and vertical methods can more effectively utilize resources,

and improve application performance and stability.

For AI applications where demand often changes or is

difficult to predict, hybrid expansion can dynamically

adjust the ratio of horizontal and vertical expansion based

on actual demand.

6 Comparisons of existing Edge AI
approaches based on taxonomy

In this section, we compare the existing edge AI approa-

ches based on the proposed taxonomy.

6.1 Infrastructure

Cloud computing, fog computing, and edge computing

play different roles in realizing offline, low-latency, pri-

vacy-preserving AI services [130]. Among them, cloud

computing provides powerful computing and storage

resources for training large-scale DL or other algorithm

models, and processing massive amounts of data, which are

usually used in Edge AI to handle time-insensitive tasks,

such as large model training, multi-data analysis and model

optimization, and finally, cloud computing distributes well-

trained models to various user devices;

Fig. 8 Advantages, disadvantages and emphases of the three computational paradigms
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Fog computing moves computing resources to the edge

of the network, reduces data transmission latency,

improves response speed, and is typically used in Edge AI

to handle tasks that require high real-time responses, such

as speech recognition.

Edge computing deploys computing resources directly

near terminal devices to further reduce data transmission

latency, which is usually used for real-time reasoning and

decision-making in Edge AI, such as intelligent

monitoring, smart home, etc., edge computing can realize

real-time processing of data on user devices, maximize the

protection of users’ data privacy, and at the same time

reduce the dependence on network bandwidth and reduce

the pressure on the core network.

In summary, cloud computing, fog computing, and edge

computing have their own focus on Edge AI, and these

three together build a complete edge intelligence ecosys-

tem. Cloud computing provides powerful computing and

Fig. 9 Comparison of different IoT Use Cases

Fig. 10 Comparison of different models
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storage resources, fog computing emphasizes real-time and

low latency at the edge of the network, and edge computing

enables real-time data processing and decision-making

closest to the end device. These three work together to

provide comprehensive support for the development of AI

at the edge.

As shown in Fig. 8, we compare the emphasis, advan-

tages and disadvantages of cloud computing, fog comput-

ing, and edge computing under different indicators:

6.2 Application

Monolithic and microservices have their own advantages

and disadvantages in edge AI, and we will compare the

advantages and disadvantages of these two in terms of

flexibility, performance and resource utilization, as well as

deployment and scalability.

(i) Flexibility: Since all functional modules of the

monolithic architecture run inside the same application, if

we need to modify a module, we may have to recompile

and deploy the entire application, so the monolithic

architecture is not conducive to modularity and indepen-

dent development, that is, it is less flexible; Each

microservice in the corresponding microservices architec-

ture can be deployed, scaled, and updated independently,

making it easy to develop and maintain independently, thus

increasing the flexibility of the overall application.

(ii) Performance and resource utilization: Monolithic

architectures may have resource contention and perfor-

mance bottlenecks because all modules share the same

process and resources, but from a resource utilization

perspective, monolithic architectures may make more

efficient use of resources because they do not require

additional communication and management overhead; The

microservices architecture, on the other hand, can inde-

pendently deploy and scale the corresponding microser-

vices according to the needs, thereby improving the

performance of the application. From the perspective of

resource utilization, services in a microservice fabric need

to communicate with each other, which may increase the

latency and bandwidth consumption of the system, and the

microservice system may require more resources to man-

age and run due to the need to maintain multiple services.

(iii) Deployment and scalability: Monolithic architec-

tures are typically simple and easy to implement and

deploy, but they often lack scalability to cope with fre-

quently changing requirements; The corresponding

microservices architecture, while more complex to deploy

and often requires additional development and manage-

ment efforts, scales flexibly and allows services to be added

or removed quickly as needed.

In summary, the monolithic architecture focuses on

simple deployment and performance optimization, which is

suitable for simple, relatively fixed edge AI scenarios,

while the microservice architecture focuses on flexible

scaling and maintainability, and is suitable for complex

edge AI application scenarios that need to be dynamically

adjusted.

6.3 IoT use cases

IoT use cases can be divided into static and dynamic in

terms of user mobility. As shown in Fig. 9 2, we will show

the role of edge AI in two different IoT use cases from

different perspectives.

6.4 Methods

For the four main AI methods, heuristics [131], meta-

heuristics [78], machine learning [132], and deep rein-

forcement learning [133], we will compare them from the

perspectives of applicable scenarios and problem com-

plexity, data scale and training cost, real-time requirements

and resource consumption, and generalization. Figure 10

shows the specific comparison.

In summary, choosing the right algorithm depends on

the specific edge AI application scenario, data scale, data

type, real-time requirements, and resource consumption.

Heuristics and meta-heuristics are generally suitable for

simple to medium-complexity problems, and the require-

ments for data and resources are generally not very high.

ML and DRL are more suitable for dealing with some

complex and nonlinear problems, and have high require-

ments on data volume, data quality, and computing

resources.

6.5 Resource management

With respect to the methods of resource provisioning,

resource allocation, application placement, and workload

distribution and prediction in edge AI resource manage-

ment [134], we will further describe the relationship

between these methods in detail, as shown in Fig. 11.

Fig. 11 Process of Resource Management
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As shown in Fig. 11, when deploying edge AI, we first

need to ensure that the edge devices have sufficient com-

puting, storage, and network resources, and once they have

sufficient resource provision, we also need to allocate these

resources to different applications or computing tasks.

Resource allocation ensures that each application or com-

pute task gets the resources it needs to meet its perfor-

mance requirements. Once the resources are allocated, the

application needs to be placed on the appropriate edge

device. Application placement needs to take into account

the characteristics and needs of each application, as well as

the state information of the edge device to achieve the best

placement strategy. Once the application is placed, we can

send compute tasks and compute workloads to various edge

devices, and the workload distribution enables parallel

processing tasks and load balancing, thereby improving the

performance and efficiency of the system. Finally, we can

predict future resource demand and workload changes

through ML models, for example, so that we can make

adjustments and optimizations in advance.

6.6 ML model sizing

Regarding the deployment of AI models on edge devices,

we generally have two deployment methods: reduced

model [135, 136] and full model [137], and we compare

these two methods from five aspects: model size, inference

speed, accuracy, training and deployment cost, and appli-

cation scenario, as shown in Table 4.

6.7 Heterogeneity

The different types of heterogeneity [138] involved in edge

AI deployment mainly include computing heterogeneity,

hardware heterogeneity, and platform heterogeneity, as

shown in Table 5.

Table 4 Comparison of different deployment methods

Model Full model Reduced model

Model size Large Small

Inference speed Slow Fast

Accuracy High Slightly lower

Training and deployment cost High Low

Application scenario Resource-rich equipment Resource-constrained devices

Table 5 Comparison of different types of heterogeneity

Heterogeneity Computing heterogeneity Hardware heterogeneity Platform heterogeneity

Definition Different types of computing tasks Different kinds of hardware Devices with different functions

Example Image recognition; NLP CPU, GPU, FPGA, ASIC Cloud server; Edge device

Difference Differences in demand Diversification of hardware Differences between devices

Fig. 12 Comparison of different

types of security
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6.8 Security

Starting from the security of deploying edge devices, we

mainly consider platform security, host security, and

network security [139]. As shown in Fig. 12, we will

compare the roles of the three in detail.

Fig. 13 Different types of resource scheduling methods

Fig. 14 Different types of migrations
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6.9 Scheduling

For the resource scheduling categories in edge AI, there are

mainly container scheduling, task scheduling, pod

scheduling, and service scheduling [115], and we will

compare these four different scheduling types from the

aspects of emphasis, scheduling measures, and scheduling

tools, as shown in Fig. 13.

6.10 Container migration

There are four main types of container migration

[140, 141] in edge AI: stateful migration and stateless

migration, intra-cluster migration and inter-cluster migra-

tion, cloud/fog/edge migration, virtual migration and real-

world testbed migration. We have made a detailed com-

parison of the different migration methods, as shown in

Fig. 14.

6.11 Container scaling

Regarding container scaling [129] in edge AI, there are two

main ways to actively scale and passively scale from the

perspective of system response. From the expansion mode,

there are mainly horizontal expansion, vertical expansion

and hybrid expansion. As shown in Fig. 15, we make a

detailed comparison of these two categories.

Fig. 15 Different types of

container scaling

Fig. 16 Year wise Publication

Fig. 17 Publication Statistics

Fig. 18 Categorization of Articles
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7 Analysis and result outcomes

The survey enriches various prospects associated with

Edge-empowered AI such as infrastructure support, IoT

use cases, resource management strategies, security con-

cerns and many more in the form of various state-of-the-art

studies. The authors have systematically reviewed numer-

ous articles in order to understand the prevailing status of

Edge AI in distinctive domains along with intelligent

paradigms like ML and DL. There are lots of works going

in this direction to improve the lifestyle of people and solve

real-time problems. Hence, this section signifies the

importance of our work referred to in the form of year-wise

papers, publication count, type of implementation (Simu-

lation or experimental-based) and nevertheless QoS

parameters addressed. Figure 16 presents the year-wise

analysis of related work carried out in the form of a number

of papers referred from each year. The taxonomy of our

study has been proposed with reference to articles from

year 2015 to 2024. As depicted in Fig. 16, it is concluded

that a major chunk of the referred articles is recent and are

from the year 2023. This clearly illustrates the fact that our

survey includes the latest work done by the researchers.

Apart from that, we rigorously reviewed the publication-

based statistics for the extensive study conducted highlighting

its importance in real-time data processing. In total 1253

articles were collected during the data collection phase from

various sources such as IEEE, ACM, Wiley, Science Direct,

Taylor & Francis and Springer. Afterwards, the filtering stage

excluded collected articles based on redundancy and inclusion

and Exclusion criteria. The final stage comprises articles that

the authors believe contributed the most towards shaping up

the survey as depicted in Fig. 17. Furthermore, the articles

have been thoroughly reviewed and divided into 4 categories:

review, Systematic Literature Review (SLR), implementation

(simulation-based), implementation (Real/Testbed-based)

and book. Figure 18 illustrates that the major portion of the

articles referred, based on implementation (simulation-

based), which signifies the fact that the implication of edge-

empowered AI is yet to be tested on real-life IoT-based use

cases. Several real time works have been proposed by the

researchers in recent years to improve the IoT applications-

based architecture using intelligent paradigms like ML, DL

and reinforcement learning. This highlights a potential

research direction for future studies to explore and validate

edge-empowered AI in practical, real-world IoT environ-

ments. In addition, this article will motivate the researchers to

propose novel solutions to improve society 5.0.

8 Future research directions

Edge AI is continuously evolving and showing potential

across various domains, offering numerous opportunities

for innovation and improvement. This section examines

critical future research directions that promise to enhance

the capabilities and applications of Edge AI as summarized

in Fig. 19. These directions include optimizing energy use,

Fig. 19 Summary of Future Research Directions
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strengthening security, and integrating with next-genera-

tion networks like 6 G, highlighting the transformative

impact of Edge AI across multiple sectors.

8.1 AI-driven Edge data

AI-equipped edge devices process data locally, enabling

real-time decision-making without the latency caused by

cloud transmission. This is essential for latency-sensitive

applications such as predictive maintenance, real-time

video analytics, and autonomous systems. In predictive

maintenance, for instance, AI models deployed at the edge

process sensor data from machines to predict failures and

schedule repairs before breakdowns occur. These systems

often rely on time-series forecasting models, such as Long

Short-Term Memory (LSTM) networks, which are opti-

mized for real-time edge inference through techniques like

pruning and quantization [142].

Using video, audio, and sensor data for anomaly

detection, edge AI enhances security in smart cities by

identifying threats in real-time [143]. Anomaly detection

often employs CNNs or RNNs to detect irregularities in

sensor streams. CNNs, such as MobileNet, use depthwise

separable convolutions to reduce the number of operations

while preserving spatial hierarchies, making them suit-

able for resource-constrained edge devices. To further

optimize performance, techniques like model compression

and pruning are used to reduce the model size without

significantly compromising accuracy [142]. RNN-based

architectures, including Gated Recurrent Units (GRUs), are

also deployed at the edge for detecting anomalies in

sequential data, such as traffic patterns or environmental

sensors.

Reinforcement learning algorithms are widely used to

manage energy consumption at the edge, particularly for

dynamic resource allocation. In HVAC systems, RL

models learn optimal policies to balance energy con-

sumption and occupant comfort by interacting with the

environment and receiving feedback in the form of rewards

[144]. In these systems, deep Q-learning (DQN) is used to

handle large state-action spaces efficiently. Edge devices

also deploy on-policy methods like Proximal Policy Opti-

mization (PPO), which allow continuous adjustments based

on real-time data. These models are further optimized

through techniques like experience replay, which reduces

memory usage and computation load, critical for edge

deployments.

Edge AI plays a pivotal role in smart vehicles and

drones, where real-time sensor data processing is crucial

for navigation and decision-making [145]. Autonomous

vehicles rely on edge AI to process data from LIDAR,

RADAR, and cameras using sensor fusion techniques,

which combine multiple sensor inputs to improve accuracy

and robustness [146]. For instance, Kalman filtering is

employed to integrate noisy sensor measurements, while

CNNs perform object detection and classification. Edge AI

uses these techniques to make split-second decisions, such

as obstacle avoidance, without cloud dependencies. Pri-

vacy-preserving models like federated learning are also

crucial in this context, enabling local data processing on

vehicles while sharing only model updates, ensuring that

sensitive location data remains private. Advanced tech-

niques such as differential privacy and homomorphic

encryption are integrated into FL to protect against data

leakage during model updates.

However, deploying AI at the edge presents significant

challenges, particularly in terms of computational limita-

tions and energy constraints. Techniques like model

quantization, where neural network weights are reduced

from 32-bit floating point to 8-bit integers, help decrease

the model size and improve inference speed [142]. More-

over, hardware-specific optimizations, such as leveraging

the parallelism of Tensor Processing Units (TPUs) or

Graphics Processing Units (GPUs), play a crucial role. For

example, Google’s Edge TPU accelerates inferencing tasks

with high energy efficiency, while Nvidia’s Jetson platform

provides scalable computing power for more complex

tasks.

In edge computing, the communication paradigm plays

a critical role in system performance, especially in dis-

tributed learning models like Federated Learning [145]. FL

enables devices to compute local updates on their own

datasets and only transmit model gradients, thereby

reducing communication overhead. Challenges such as

non-IID (non-independent, identically distributed) data

among edge nodes, which can lead to model biases, are

addressed through methods like FedProx, which adds a

regularization term to prevent drastic divergence from the

global model. Additionally, communication-efficient tech-

niques such as gradient sparsification, where only signifi-

cant gradients are transmitted, and asynchronous updates

ensure that edge nodes can update models independently

without waiting for synchronization, thus improving effi-

ciency in bandwidth-constrained environments Figure 19.

The convergence of edge AI and advanced hardware

solutions continues to drive innovations in AI deployments.

Custom AI accelerators, such as Google’s Edge TPU, are

optimized for low-power inference tasks, supporting

applications that require high-speed processing, such as

object detection in real-time video feeds [146]. NVIDIA’s

Jetson platform, on the other hand, provides a scalable

solution for more compute-intensive tasks, such as deep

learning-based robotics or autonomous navigation. These

platforms support parallelized inference operations, maxi-

mizing throughput while minimizing energy consumption,

making them ideal for edge environments. Future research
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directions include developing neuromorphic hardware,

which mimics biological neural networks, offering signif-

icant reductions in energy consumption while maintaining

high processing speeds.

8.2 Energy

Optimizing energy use in AIoT systems through intelligent

edge computing requires focusing on sophisticated algo-

rithms for dynamic energy distribution, task scheduling,

ML for workload management, and the design of low-

power hardware [147]. For example, dynamic energy dis-

tribution can be handled using RL-based approaches where

the system continuously learns and adapts to energy usage

patterns. Techniques such as DQN and Multi-agent Rein-

forcement Learning (MARL) are effective for decentral-

ized energy optimization, allowing edge devices to work

autonomously while coordinating with other nodes in the

network to maximize efficiency. MARL models allow each

device to act as an independent agent, optimizing energy at

both local and global levels by sharing information across

the network [148]. Furthermore, task scheduling in AIoT

systems can benefit from heuristic algorithms like Genetic

Algorithms (GA) and Particle Swarm Optimization (PSO),

which provide near-optimal solutions for task allocation in

energy-constrained environments. These methods are

computationally efficient, making them well-suited for

edge devices with limited resources [149, 150].

Improvements in communication protocols and inte-

gration of renewable energy sources will further enhance

system efficiency and scalability. Protocols such as Low-

Power Wide Area Networks (LPWANs), including LoR-

aWAN and NB-IoT, are particularly useful for AIoT sys-

tems as they allow for long-range communication with

minimal power consumption. These protocols, when

combined with AI models running at the edge, enable real-

time data exchange between devices while conserving

energy. Additionally, optimizing the scheduling of data

transmissions based on energy availability or demand-re-

sponse signals can significantly reduce communication

overhead in energy-constrained environments [151].

Literature [152, 153] reported that AI techniques for

managing renewable energy sources have been investi-

gated, emphasizing advanced ML models for accurate

forecasting and optimizing energy storage and grid inte-

gration. For instance, LSTM networks and Autoregressive

Integrated Moving Average (ARIMA) models have been

widely applied in energy forecasting tasks. LSTMs are

especially effective in capturing the temporal dependencies

in renewable energy generation data (e.g., solar and wind),

allowing for more accurate predictions of energy avail-

ability. These forecasts can then be used to optimize the

allocation of tasks across the grid, improving the balance

between energy demand and supply. In energy storage, AI

models like Gradient Boosting Machines (GBM) and

Support Vector Machines (SVM) have been applied to

optimize the charge–discharge cycles of batteries, maxi-

mizing the longevity and efficiency of storage systems

[154]. Integrating these AI models with grid control sys-

tems enables real-time decision-making to manage fluctu-

ations in energy generation and consumption effectively.

Implementing edge AI will reduce latency and enable

real-time decision-making, increasing system responsive-

ness and resilience [155]. In edge computing environments,

AI models can be used to make decisions locally without

needing to transmit large amounts of data to a central

cloud, which reduces the overall latency and bandwidth

usage. This is especially beneficial in scenarios where

immediate action is required, such as energy demand-re-

sponse events or real-time fault detection in smart grids.

Edge AI, combined with lightweight models such as

MobileNet or TinyML, can process sensor data in real

time, detecting anomalies or optimizing energy usage

without draining significant computational resources. This

local processing not only reduces decision latency but also

enhances the system’s resilience to network disruptions.

It has been identified that incorporating edge AI in the

Internet of Energy (IoE) presents unique opportunities,

particularly in areas like secure edge computing, block-

chain for data security, lightweight AI algorithms, stan-

dardization for interoperability, and 5 G networks for low-

latency communication [32, 79, 156]. Blockchain tech-

nology offers decentralized solutions for secure energy

trading and data management within IoE networks. The

integration of blockchain with edge AI can ensure the

transparency and immutability of energy transaction data

while minimizing the energy overhead typically associated

with blockchain’s consensus mechanisms. By using

energy-efficient consensus protocols like Proof of Stake

(PoS) or Proof of Authority (PoA), IoE systems can

maintain security without incurring significant computa-

tional costs. Additionally, 5 G and the upcoming 6 G

networks offer ultra-low latency and high-speed connec-

tivity, enabling real-time energy optimization by allowing

AI models to dynamically offload tasks between the edge

and cloud based on energy constraints. Network slicing

within 5 G/6 G networks ensures that energy-critical tasks

receive prioritized resources, improving the overall per-

formance and responsiveness of the IoE system.

Advances in federated edge AI and DRL will optimize

energy distribution, enhancing the efficiency and resilience

of IoE systems [157]. Federated Learning allows edge

devices to collaboratively train a global model without

exchanging raw data, thereby preserving privacy and

reducing communication overhead. In energy management,

FL can be adapted to enable energy-aware federated
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updates, where devices with limited energy resources

reduce their participation in the model training process

[154]. This approach ensures that the overall system

remains efficient, even when certain devices operate under

low-power conditions. DRL further improves energy opti-

mization by learning policies for real-time control of

energy resources, such as dynamically adjusting the oper-

ation of energy storage systems or scheduling energy-

consuming tasks during periods of high renewable energy

generation. These algorithms, when combined with edge

AI, enable IoE systems to respond to changes in energy

supply and demand with minimal delay.

8.3 Manufacturing

AI meets rising customer expectations for customization

and high-value production by integrating capabilities at the

network edges. The integration of edge AI in manufac-

turing introduces opportunities for decentralized, low-la-

tency processing, which is crucial for real-time operations

in smart factories. Edge AI enables data-driven decision-

making directly on the factory floor, minimizing delays due

to communication with centralized cloud servers [158].

This shift towards distributed intelligence allows manu-

facturers to rapidly adapt to changing production demands,

offering more customized products and services. Further-

more, AI-driven automation helps reduce manual labor,

improving both productivity and safety in industrial

environments.

It has been identified that integrating AI in manufac-

turing enhances collaboration with experts through tools

like Google VisionAI for data science applications [159].

Vision-based AI tools, such as Google VisionAI, enable

real-time monitoring and analysis of production lines by

processing images and video streams at the edge. These

tools can be integrated with machine vision systems to

automatically inspect product quality, detect defects, and

identify anomalies in manufacturing processes. By

deploying AI models at the edge, manufacturers benefit

from low-latency responses, which are critical for high-

speed production environments where defects need to be

detected and corrected in real time. This significantly

reduces the waste associated with defective products,

leading to increased production efficiency and cost savings

[160].

Key research areas include manufacturing scheduling

and planning due to abundant data and productivity

improvement opportunities. In the context of scheduling

and planning, AI can optimize the allocation of resources

and machinery to minimize downtime and maximize

throughput. Traditional scheduling algorithms, such as job

shop scheduling, have limitations in handling the com-

plexity and variability of modern manufacturing

environments. AI techniques, such as RL and constraint

satisfaction algorithms, are being applied to dynamically

adjust production schedules in response to real-time data

[161]. For example, RL can be used to model complex

environments with multiple variables, learning optimal

policies to allocate resources efficiently while adapting to

unforeseen disruptions, such as machine failures or supply

chain delays. Additionally, advanced optimization algo-

rithms like GA and PSO can be integrated into manufac-

turing planning systems to solve multi-objective

optimization problems, balancing factors like energy con-

sumption, production speed, and quality [162].

There is a need to investigate edge AI’s real-time

analysis for predictive maintenance, quality control, and

fault diagnosis in manufacturing, improving efficiency,

reducing waste, and optimizing resources [163]. Predictive

maintenance is a key area where edge AI can significantly

enhance manufacturing operations. Using AI models like

RNNs and LSTM networks, edge devices can analyze data

from sensors embedded in machinery to predict when a

machine is likely to fail. This allows manufacturers to

perform maintenance only when necessary, reducing

downtime and extending the life of equipment. In addition,

real-time fault detection models deployed at the edge can

immediately identify deviations from normal operating

conditions, allowing for immediate corrective actions.

Techniques such as CNNs can be employed for real-time

image and video analysis in quality control, detecting

surface defects, dimensional inaccuracies, and assembly

errors with high accuracy [164]. Implementing AI for fault

diagnosis can also leverage unsupervised learning methods,

such as autoencoders and clustering algorithms, to identify

abnormal patterns in sensor data without needing labeled

fault data.

Implementing ML models at the edge allows continuous

monitoring, early fault detection, and immediate corrective

actions, enhancing intelligent manufacturing. The real-time

processing capabilities of edge AI offer a significant

advantage for continuous monitoring in manufacturing

environments. By running ML models at the edge, data

from production lines can be processed in real time,

enabling early detection of equipment malfunctions and

process anomalies. For example, edge devices can run

anomaly detection algorithms using principal component

analysis (PCA) or one-class SVMs to flag deviations from

normal production patterns. This early detection helps

prevent costly downtime and reduces the risk of producing

defective products, enhancing overall manufacturing effi-

ciency [165].

Additionally, edge devices can optimize power genera-

tion and consumption by analyzing real-time data, pro-

moting renewable energy use and cost savings. Energy

efficiency is becoming a critical aspect of modern
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manufacturing systems, especially as manufacturers strive

to reduce their carbon footprint. Edge AI can be integrated

with energy management systems to monitor power usage

in real time, allowing for dynamic optimization of energy

consumption across various production processes. Machine

learning algorithms, such as reinforcement learning and

Bayesian optimization, can be employed to balance power

consumption with production goals. For example, RL-

based systems can learn optimal policies for turning

machines on or off based on current energy prices,

renewable energy availability, and production schedules.

This integration of edge AI with energy optimization not

only reduces operational costs but also aligns with sus-

tainable manufacturing practices [166].

8.4 Smart cities

The future of Edge AI in smart cities holds the promise of

several significant advancements [167]. Edge AI enables

real-time data processing, allowing cities to respond to

dynamic situations instantly without relying on cloud

processing. By deploying AI models at the edge, data from

sensors (e.g., air quality monitors, traffic cameras, and IoT

waste bins) can be analyzed locally, reducing the need for

constant data transmission to centralized servers. This not

only lowers the load on cloud infrastructure but also

enhances the responsiveness of city services. For example,

in traffic management, edge AI can detect congestion or

accidents in real time using computer vision models such

as CNNs applied to video feeds. These systems can

dynamically adjust traffic signals or reroute vehicles based

on real-time conditions, reducing congestion and improv-

ing urban mobility. [165]

First, enhancing data processing capabilities at the edge

reduces cloud load and latency, enabling real-time deci-

sion-making for applications like air and water quality

monitoring, traffic management, and waste management. In

air and water quality monitoring, edge AI can analyze

sensor data from distributed nodes throughout a city to

detect harmful pollutants or water contamination. Machine

learning models such as random forests, SVMs, or deep

learning models like LSTMs can be employed at the edge

to predict air quality trends based on historical data and

real-time inputs. These models can continuously adjust

ventilation systems in buildings or trigger alarms in high-

risk areas, ensuring a more responsive and automated

environmental management system. Similarly, edge devi-

ces in smart waste management systems can monitor bin

levels using IoT sensors, and AI models can optimize waste

collection routes by predicting when and where waste

accumulation is likely to occur, thus reducing operational

costs and environmental impact [168].

Integration with AI algorithms will facilitate more

intelligent decision-making by analyzing sensor data from

various city domains. For example, AI-driven edge systems

can aggregate and process data from traffic lights, parking

sensors, public transport, and emergency services to opti-

mize city-wide mobility. RL models can be used to manage

traffic lights dynamically, learning from past traffic flow

patterns to minimize delays and congestion. [169] RL

algorithms such as DQN or PPO can be applied in such

environments, where the model learns to optimize traffic

signals based on real-time sensor data, improving traffic

flow efficiency over time. Additionally, AI-based predic-

tive models like LSTMs can forecast urban energy demand

by analyzing sensor data from smart meters across the city.

This allows utility companies to balance energy generation

and distribution in real time, reducing the risk of blackouts

and improving energy sustainability [170].

Innovations in low-power hardware and efficient com-

munication protocols are crucial to ensure scalability and

energy efficiency. Edge AI systems in smart cities must be

designed with energy efficiency in mind, particularly given

the large number of distributed edge devices required.

Specialized hardware accelerators, such as Google’s Edge

TPU or Nvidia’s Jetson Nano [171], are designed to per-

form AI inference with minimal energy consumption,

making them ideal for edge deployments in smart cities.

These hardware solutions are typically paired with light-

weight AI models like MobileNet or TinyML to further

reduce power consumption while maintaining high accu-

racy. Additionally, communication protocols such as

LoRaWAN and Narrowband IoT (NB-IoT) [172] are

optimized for low-power, wide-area networks, ensuring

that edge devices can communicate over long distances

without significant energy overhead. Integrating these

protocols with AI-driven edge systems ensures that smart

cities can scale without overwhelming energy resources.

Developing secure edge computing and blockchain

technologies will also address data security and privacy

concerns [109]. One of the key challenges in deploying AI

at the edge is ensuring data security and privacy. Edge

devices often handle sensitive information, such as per-

sonal location data or surveillance footage, making them

attractive targets for cyberattacks. To address this, block-

chain technology can be integrated with edge AI to create a

decentralized and secure method of data management

[173]. Smart contracts can automate the verification and

exchange of data between devices, ensuring that only

authorized entities can access or modify the data. Fur-

thermore, blockchain-based systems can offer tamper-

proof audit trails, ensuring transparency and accountability

in data usage. Privacy-preserving AI techniques, such as

federated learning and differential privacy [174], can also

be implemented at the edge to allow AI models to be
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trained on decentralized data without exposing sensitive

information. Federated learning allows edge devices to

collaboratively train a global model without sharing raw

data, while differential privacy ensures that individual data

points cannot be reverse-engineered from model outputs.

Finally, advancements in 5 G networks will provide the

necessary infrastructure for high-speed, low-latency com-

munication, further enhancing the responsiveness and

resilience of intelligent city systems. The deployment of

5 G technology in smart cities enables real-time, high-

bandwidth communication between millions of connected

devices. 5 G’s ultra-reliable low-latency communication

(URLLC) [175] can significantly enhance applications that

require instantaneous responses, such as autonomous

vehicles, real-time traffic management, and emergency

response systems. Additionally, network slicing [176]

within 5 G allows different services to have dedicated

virtual networks with tailored resources, ensuring that

critical services like emergency response or traffic control

always receive the necessary bandwidth and priority. As

smart cities evolve, the combination of edge AI and 5 G

will be crucial for enabling real-time decision-making,

where AI models deployed at the edge can interact with

central cloud systems when needed, without suffering from

communication delays. Future advancements in 6 G net-

works [177] will likely take these capabilities further by

offering even higher data transfer speeds and supporting

more complex AI models in real-time applications.

8.5 Smart transport

Applying DRL, specifically DQN, to mobile edge com-

puting in smart transportation systems plays a crucial role

in balancing computing capability and traffic state. DQN,

as a value-based reinforcement learning algorithm, oper-

ates by learning a Q-function that maps states (such as

traffic conditions) to the expected rewards of taking certain

actions (like adjusting traffic lights or rerouting vehicles).

In smart transport, DQN-based models [178] are deployed

at the edge to optimize local decision-making in real time,

minimizing the delays caused by communication with

centralized cloud servers. For instance, in an urban envi-

ronment, a DQN-based system can learn to adjust traffic

signals based on current traffic flow, historical patterns, and

predicted congestion, thus improving traffic efficiency

[179] and reducing fuel consumption. The use of edge

computing here ensures low-latency decision-making,

which is critical in dynamically evolving traffic situations

where even minor delays can significantly impact traffic

flow.

This approach highlights the need for further research on

trade-offs and optimization techniques to enhance effi-

ciency and performance in edge AI applications [180]. In

the context of smart transport, there are several trade-offs

to consider, particularly in the computational complexity of

DRL models versus the energy and processing limitations

of edge devices. DRL models like DQN, while effective,

can be computationally intensive due to the large state-

action space that must be explored. To address this, tech-

niques such as Double DQN and Dueling DQN [181] have

been introduced to improve the stability and efficiency of

Q-learning by reducing overestimation biases and learning

more granular value functions. These variants reduce the

number of updates required for the Q-function to converge,

which is critical in resource-constrained edge

environments.

In addition to improving algorithmic efficiency, opti-

mizing resource allocation in mobile edge computing

environments is an ongoing area of research. Traffic state

optimization is a multi-objective problem that involves

balancing computational load, energy consumption, and

communication latency. Techniques such as multi-agent

DRL (MADRL) [182] can be applied, where each vehicle

or edge device is treated as an independent agent learning

to optimize its local performance while contributing to the

global traffic management system. MADRL [183] allows

for decentralized decision-making, where agents can

communicate with each other or a central node to share

state information (such as traffic density or road condi-

tions), thus improving the coordination of traffic signals

and vehicle routing across a city. The challenge lies in

managing the communication overhead, which increases

with the number of agents, while maintaining real-time

performance.

Further research is also needed to explore hierarchical

reinforcement learning (HRL) [184], which can decompose

complex traffic control tasks into a hierarchy of simpler

sub-tasks. HRL enables smart transport systems to break

down large-scale optimization problems (e.g., optimizing

city-wide traffic flow) into smaller, manageable sub-prob-

lems (e.g., optimizing traffic flow at individual intersec-

tions). This reduces computational overhead and makes the

learning process more scalable, particularly when applied

at the edge. Additionally, PPO [185], a popular policy-

based DRL algorithm, could be explored for continuous

control in smart transport applications. PPO is known for

its robustness in high-dimensional environments and could

improve the real-time adaptability of transport systems to

unpredictable traffic conditions or sudden changes in road

infrastructure.

To further optimize the integration of DRL in smart

transportation, future research should focus on energy-ef-

ficient hardware accelerators such as Google’s Edge TPU

or Nvidia’s Jetson [186], which are designed to handle AI

workloads with minimal power consumption. These devi-

ces can run DRL models locally, allowing edge nodes (e.g.,
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traffic lights or smart vehicles) to process large volumes of

data in real time without overburdening the power infras-

tructure. Furthermore, low-power communication proto-

cols, such as Vehicular Ad-hoc Networks (VANETs)

[187], can be integrated with edge AI systems to ensure

efficient data sharing among vehicles and infrastructure

while minimizing energy usage. VANETs allow vehicles to

communicate with roadside units (RSUs) and other vehi-

cles in real time, enabling cooperative decision-making for

optimized traffic control.

Finally, with the advancement of 5 G networks, mobile

edge computing in smart transportation will benefit from

ultra-low-latency communication, enabling more efficient

interaction between vehicles, infrastructure, and edge

devices. The use of network slicing in 5 G networks can

provide dedicated virtual network resources for traffic

management, ensuring that time-sensitive tasks, such as

emergency vehicle routing or accident detection, are han-

dled with priority. This integration of 5 G [176] with edge

AI will allow transport systems to scale effectively, han-

dling large volumes of data with minimal delay while

maintaining energy efficiency. Future research may also

explore the potential of 6 G networks, which are expected

to provide even faster data transfer speeds and greater

network capacity, allowing for the deployment of more

sophisticated AI models at the edge in smart transport

systems [177].

Applying DRL to mobile edge computing in smart

transport offers numerous opportunities for optimizing

traffic management and improving transportation effi-

ciency. However, ongoing research is required to address

the trade-offs between model complexity, computational

resources, and energy consumption in edge devices, while

leveraging the latest advancements in communication

protocols and network technologies.

8.6 Serverless Edge AI

Leveraging the flexibility and scalability of serverless

architectures will significantly enhance the deployment of

ML models in healthcare [120, 188]. Serverless computing

offers a key advantage by abstracting the underlying

infrastructure, allowing developers to focus solely on

deploying and scaling machine learning (ML) models

without needing to manage servers. This architecture also

allows for automatic scaling based on demand, meaning

ML models can be deployed in a cost-efficient manner.

Specifically in healthcare, real-time diagnostics and mon-

itoring are vital for patient care, and serverless edge AI

[189] enables low-latency data processing at the edge

without needing continuous cloud connectivity. For

instance, ML models can be used to process patient data

directly from IoT devices such as wearable sensors,

providing immediate alerts for abnormal health conditions

like arrhythmias or glucose fluctuations.

This approach will enable real-time, cost-effective

diagnostics without managing backend infrastructure. One

of the key challenges in serverless environments, however,

is managing the ‘‘cold start’’ problem [190], where there is

a delay in invoking a function due to the time it takes to

spin up resources when a function is first triggered. In

healthcare, where every second matters, reducing cold start

latency is critical. Future research could explore techniques

such as pre-warming serverless functions by maintaining a

pool of ready-to-go containers or employing just-in-time

compilation (JIT) to reduce function invocation time.

Additionally, lightweight neural network architectures such

as TinyML or MobileNet can be optimized for serverless

environments, minimizing the computation load while

maintaining high accuracy in diagnostics tasks.

Future research will optimize neural network models for

serverless environments, reduce cold start latencies, and

enhance model performance through adaptive learning

techniques [191]. Adaptive learning techniques can further

improve the efficiency of ML models deployed in server-

less architectures. For instance, on-demand model loading

could allow serverless functions to dynamically load

specific portions of a neural network based on the current

task, thus reducing memory and processing requirements.

This concept, known as model partitioning, divides a

model into smaller, callable sections, enabling efficient

utilization of serverless resources. Furthermore, the use of

quantization and model pruning techniques can reduce

the model size, ensuring faster execution times and lower

computational overhead, which is crucial for real-time

diagnostics in healthcare settings. These optimizations not

only reduce latency but also lower the costs associated with

serverless computing by minimizing the resources con-

sumed during function execution.

Integrating serverless edge AI with IoT frameworks will

facilitate continuous monitoring and rapid response in

medical applications [192]. In healthcare, IoT devices such

as smartwatches, biosensors, and connected medical devi-

ces generate a constant stream of health data that requires

real-time analysis. By integrating serverless edge AI with

these IoT frameworks, the data can be processed locally on

the device or at nearby edge servers, reducing latency and

ensuring real-time feedback to both patients and healthcare

providers. This continuous monitoring can be critical in

managing chronic conditions like diabetes or cardiovas-

cular disease, where immediate response to changes in vital

signs is essential. In the case of federated learning, ML

models can be collaboratively trained across multiple edge

devices without sharing sensitive health data, further

enhancing patient privacy and complying with healthcare

regulations like HIPAA, GDPR etc.
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Additionally, improving interoperability and security

protocols will ensure the safe and efficient handling of

sensitive healthcare data in serverless architectures, paving

the way for the next generation of intelligent, responsive,

and secure healthcare systems. One of the major challenges

in serverless edge AI for healthcare is ensuring the security

and privacy of sensitive patient data. The distributed nature

of serverless architectures, combined with the use of IoT

devices, increases the attack surface for cyber threats.

Future research should focus on developing secure execu-

tion environments such as trusted execution environ-

ments (TEEs), which provide hardware-based security

features that isolate sensitive data during function execu-

tion. TEEs can be integrated with differential privacy and

homomorphic encryption [193] to allow secure data

processing and model training without exposing raw data.

Moreover, ensuring interoperability across different

healthcare systems and IoT devices is crucial to enable

seamless data sharing and processing. Standardization

efforts in APIs, data formats (such as HL7 or FHIR for

healthcare data) [194], and communication protocols will

be vital to ensuring compatibility across platforms, reduc-

ing the complexity of integrating serverless edge AI into

existing healthcare infrastructure. These advancements will

make it possible to deploy scalable, secure, and efficient

healthcare systems that leverage the full potential of

serverless computing.

8.7 Quantum machine learning (QML)

Integrating Quantum Machine Learning (QML) with edge

AI technologies, such as large, intelligent surfaces and

visible light communications, will significantly reduce

latency and enhance performance [195]. QML leverages

the principles of quantum computing, such as quantum

superposition and entanglement [196], to process data more

efficiently than classical computing methods. By integrat-

ing QML with edge AI, it becomes possible to execute

complex machine learning algorithms in parallel, drasti-

cally reducing computation time. For example, quantum

algorithms such as the Quantum Approximate Opti-

mization Algorithm (QAOA) [197] and Variational

Quantum Eigensolver (VQE) [198] can solve optimiza-

tion problems faster than their classical counterparts,

enabling real-time decision-making in edge AI systems.

These quantum algorithms are particularly well-suited for

tasks like traffic flow optimization, supply chain manage-

ment, and resource allocation in smart cities, where tradi-

tional algorithms struggle with computational complexity.

This combination enables efficient processing and

decision-making at the network edge, which is crucial for

managing the vast data generated by IoT devices and other

edge sources [199]. As the number of connected IoT

devices grows exponentially, classical edge AI systems

face significant challenges in processing large volumes of

data in real time. By incorporating quantum-enhanced

models, edge AI can offload more complex computations

to quantum processors, allowing for faster and more effi-

cient data analysis. For instance, Quantum SVMs

(QSVMs) [200] can be used to classify high-dimensional

data generated by IoT sensors more efficiently than clas-

sical SVMs, leading to faster and more accurate decision-

making at the edge. Additionally, Quantum Neural Net-

works (QNNs) [201] have the potential to significantly

reduce the training time for deep learning models, allowing

edge AI systems to adapt more quickly to changing envi-

ronments. This is especially important in autonomous

systems, such as self-driving cars or drones, where real-

time responsiveness is critical.

Leveraging quantum computing capabilities in edge AI

applications will achieve unprecedented network perfor-

mance, leading to more responsive and adaptive AI sys-

tems [17]. Quantum edge AI systems can utilize quantum

parallelism to explore multiple solutions simultaneously,

which significantly enhances the performance of opti-

mization and search tasks. For example, in a smart trans-

portation system, quantum-enhanced algorithms could

simultaneously evaluate multiple traffic routes to find the

most efficient path, significantly reducing computation

time compared to classical algorithms. Furthermore,

quantum annealing can be used to solve combinatorial

optimization problems in real time, which is highly bene-

ficial for applications like dynamic resource allocation in

5 G networks.

The convergence of QML and edge AI in 6 G networks

will drive innovative solutions for real-time analytics and

intelligent automation, meeting the increasing demands for

low-latency and high-efficiency edge computing environ-

ments [202]. 6 G networks are expected to provide ultra-

reliable low-latency communication (URLLC), which is

essential for supporting the high-speed data exchange

required by quantum-enhanced edge AI systems. By inte-

grating QML with 6 G networks, edge devices can harness

the power of quantum communication protocols, such as

quantum key distribution (QKD), to ensure secure data

transmission between devices and the cloud. QKD offers

provably secure communication, which is particularly

important for applications like autonomous vehicles and

smart grid management, where data integrity is critical.

Additionally, the high bandwidth offered by 6 G will

enable edge devices to offload quantum computations to

nearby quantum processors with minimal delay, further

enhancing the system’s overall responsiveness [17].

Another area of research is the use of quantum

machine learning for federated learning (QFL) in edge

AI environments. In traditional federated learning, edge
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devices collaboratively train a global model without shar-

ing their local data, which minimizes privacy risks. How-

ever, with the increasing complexity of AI models, the

communication overhead in FL can become a bottleneck.

By using QFL, edge devices can leverage quantum algo-

rithms to reduce the amount of data that needs to be shared,

as quantum communication enables the transmission of

compressed information with higher efficiency. This can

lead to faster convergence times in federated learning

models while maintaining the privacy of sensitive data,

which is crucial in sectors like healthcare and finance.

Moreover, future research should focus on developing

quantum-classical hybrid algorithms [203] that can

efficiently combine the strengths of both quantum and

classical computing. In scenarios where quantum hardware

is limited, hybrid approaches can offload specific sub-tasks

(such as optimization or matrix inversion) to quantum

processors while performing other parts of the computation

on classical hardware. These hybrid systems are particu-

larly well-suited for edge AI, where devices may not have

direct access to quantum hardware but can offload tasks to

quantum cloud services. This will enable a more scalable

and flexible approach to integrating QML in edge AI

applications.

As 6 G networks and quantum hardware continue to

evolve, the convergence of these technologies will drive

new innovations in areas like intelligent automation, secure

communications, and resource optimization across smart

cities and autonomous systems. The combination of

quantum computing and AI at the edge will address critical

challenges in real-time processing, allowing for the han-

dling of vast data streams with minimal latency and max-

imizing the use of network and computational resources

[17].

8.8 Hardware

The physical boundaries for AI systems are set by the

hardware of edge nodes, which drives significant efforts in

designing specialized edge AI hardware. Edge AI hardware

must balance several constraints, including computational

performance, power efficiency, size, and cost. This has led

to the development of specialized hardware like Nvidia’s

Jetson TX2, which is designed for power-efficient

embedded AI computing, and Google’s Edge TPU, opti-

mized for high-speed inference at the edge [20]. The Jet-

son TX2 integrates GPU-based architectures with AI

acceleration cores to handle tasks requiring significant

parallel processing power, such as deep learning model

inference. It is particularly well-suited for applications like

autonomous robots, drones, and intelligent surveillance

systems, where real-time processing of sensor data is crit-

ical. On the other hand, Google’s Edge TPU focuses on

accelerating machine learning models in a cost-effective

and energy-efficient manner, often used in IoT devices,

smart cameras, and wearable technology for lightweight,

high-speed AI tasks. These hardware platforms allow AI

models to run at the edge with reduced latency and power

consumption compared to traditional cloud-based AI

systems.

However, these devices mainly concentrate on handling

entire tasks, especially local edge inference. Moving for-

ward, edge AI hardware design will evolve to address the

diverse requirements of various AI workloads. For exam-

ple, high-performance tasks such as 3D object recognition,

complex signal processing, and multi-modal data fusion

require more powerful hardware accelerators that can

manage large-scale computations at the edge. This is where

Field Programmable Gate Arrays (FPGAs) [204] and

Application-Specific Integrated Circuits (ASICs) come

into play. FPGAs offer reconfigurable hardware that can be

customized for specific AI tasks, such as accelerating

CNNs or RNNs. The flexibility of FPGAs makes them

ideal for environments where the AI workload can change

dynamically, such as in autonomous vehicles or industrial

automation. ASICs [205], on the other hand, provide

dedicated hardware that is optimized for specific AI algo-

rithms, offering superior performance and energy effi-

ciency for large-scale deployment in fixed-function

systems like smart grids and edge data centers.

To further enhance energy efficiency, neuromorphic

processors [206] are being explored as a promising solu-

tion. These processors mimic the structure and operation of

the human brain, using spiking neural networks (SNNs)

that only consume power when active. This event-driven

computation model is highly advantageous for edge

applications such as continuous sensor monitoring, where

devices need to remain energy-efficient while processing

intermittent data streams. For example, neuromorphic

chips can be integrated into wearable devices for health

monitoring or in environmental sensors for smart city

applications, reducing overall power consumption without

compromising performance. Research in neuromorphic

computing is focusing on increasing the scalability and

accuracy of these processors for more complex AI tasks at

the edge.

Moving forward, we’ll see a variety of edge AI hard-

ware designed specifically for different AI system archi-

tectures and applications [145]. Future advancements in

edge AI hardware will likely focus on co-designing hard-

ware and software to optimize the performance of AI

models. This includes developing domain-specific archi-

tectures (DSAs) that are tailored for specific AI workloads,

such as natural language processing (NLP), computer

vision, and reinforcement learning. DSAs will allow

hardware to process AI algorithms more efficiently by
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exploiting the characteristics of the models they are run-

ning, such as sparsity in neural networks or the locality of

reference in data. Additionally, heterogeneous computing

architectures, which combine different types of process-

ing units (e.g., CPUs, GPUs, TPUs, and FPGAs) in a single

system, will become more prevalent in edge AI deploy-

ments. These architectures enable systems to allocate tasks

to the most appropriate processing unit based on the

computational and energy requirements of each AI model,

optimizing overall system performance.

As the demand for edge AI grows, there will also be a

focus on improving hardware for secure AI processing.

This includes developing trusted execution environments

(TEEs) that protect sensitive data and AI model integrity in

edge devices. TEEs create isolated environments where AI

computations can be executed securely, preventing unau-

thorized access or tampering with data. TEE [207] will be

particularly important in industries such as healthcare,

finance, and autonomous driving, where security and pri-

vacy are paramount. Hardware support for privacy-pre-

serving AI, such as homomorphic encryption and secure

multi-party computation, will also be integrated into edge

devices to enable secure, decentralized AI processing

without exposing raw data to external threats.

Edge AI hardware is evolving rapidly to support the

increasing complexity and diversity of AI workloads at the

edge. This evolution will be driven by advances in spe-

cialized hardware accelerators, energy-efficient processing

architectures, and secure computation technologies,

ensuring that edge AI systems can meet the performance,

energy, and security requirements of modern applications.

8.9 Heterogeneity

In edge AI environments, heterogeneity refers to the

diverse nature of data, devices, and communication net-

works across edge nodes. This diversity introduces chal-

lenges in federated learning, where edge devices typically

possess non-identically distributed (non-IID) data, varied

computational capacities, and inconsistent communication

bandwidths. As traditional FL approaches often rely on a

single global model, they may struggle to capture the

diverse patterns and distributions present across different

edge devices. To address these challenges, multi-proto-

type-based federated learning [208] has emerged as a

promising approach for enhancing model inference by

leveraging multiple weighted prototypes rather than relying

on a single prototype, which can be incomplete and

ambiguous [94].

A key aspect of this approach involves calculating local

prototypes at each edge device, ensuring that the diverse

distributions of client data are effectively represented.

These prototypes capture the unique characteristics of each

client’s data distribution, enabling a more nuanced aggre-

gation process during global model updates. Clustering

algorithms like k-means [208] can be employed locally at

each edge device to generate multiple prototypes that

correspond to different data clusters within the client’s

dataset. By calculating prototypes that reflect the underly-

ing structure of local data, this approach enhances the

model’s ability to generalize across heterogeneous client

distributions. Furthermore, these multiple weighted proto-

types provide a richer representation of client data com-

pared to traditional single-prototype methods, which often

oversimplify local data distributions.

Once local prototypes are calculated, these prototypes

are aggregated across devices during the global model

update process. Rather than averaging model updates from

each device, as in traditional FL approaches, multi-proto-

type-based FL aggregates the prototypes in a weighted

manner, where each prototype’s contribution is propor-

tional to the importance of the corresponding data cluster.

This approach improves robustness against non-IID [209]

data distributions by ensuring that the global model is not

overly influenced by outliers or overrepresented data

points. Instead, the weighted aggregation process captures

the full diversity of data across the edge devices, leading to

higher test accuracy and better generalization across all

devices.

An important challenge in this approach is ensuring

communication efficiency, especially in bandwidth-con-

strained edge environments. By reducing the need to

transmit the entire local model or large datasets, multi-

prototype-based FL [210] minimizes communication

overhead. Instead of sharing raw data or full model

updates, devices only transmit the prototypes and their

associated weights. This reduces the amount of information

exchanged between the server and the devices, while still

enabling effective global model updates. Quantization

techniques can also be applied to further reduce the size of

transmitted prototypes, allowing for more efficient com-

munication without compromising model performance.

In addition to improving communication efficiency,

multi-prototype-based FL demonstrates significant

improvements in both accuracy and convergence rates.

The ability to capture more representative patterns from

local data allows the global model [210] to converge faster,

particularly in heterogeneous environments where tradi-

tional FL methods tend to suffer from slow convergence

due to non-IID data. The richer and more representative

model built through multi-prototype aggregation helps the

system achieve higher accuracy in a shorter period,

reducing the number of communication rounds required to

achieve an optimal model.

This approach demonstrates significant improvements in

accuracy and convergence rates, making it a promising
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direction for handling heterogeneity in edge AI. The multi-

prototype strategy opens new avenues for edge AI appli-

cations where data heterogeneity is a major bottleneck,

such as in personalized healthcare, where patient data

varies significantly across different locations, or in smart

city infrastructures, where sensor data may differ drasti-

cally based on environmental conditions. As future

research progresses, integrating other advanced clustering

techniques like Gaussian Mixture Models (GMMs) [211]

or spectral clustering could further enhance the capability

of multi-prototype FL systems, enabling even better han-

dling of non-IID data and improving performance in highly

heterogeneous environments.

8.10 Security

As edge AI becomes more prevalent, the security of edge

devices, data, and communications becomes a critical

concern, particularly with the growing threat of quantum

computing, which can break classical encryption methods.

One of the primary directions for securing edge AI systems

is the integration of AI-based quantum-safe cybersecu-

rity automation. Quantum-safe cryptographic techniques

are essential for protecting sensitive data from the com-

putational power of quantum computers, which could

easily break traditional public-key encryption systems.

Algorithms such as lattice-based cryptography, hash-

based signatures, and code-based cryptography are

being researched as quantum-resistant alternatives that can

secure edge AI devices and communications against

quantum attacks [212]. These quantum-safe solutions

ensure that even as quantum computing capabilities

advance, edge AI systems remain resilient against crypto-

graphic threats.

Improving device and sensor security is another critical

focus area. Edge devices, by their nature, are distributed

and often deployed in insecure environments, making them

vulnerable to physical tampering and cyberattacks. Inte-

grating AI-based security mechanisms that can detect

abnormal behavior at the device level is essential for

enhancing the security of edge networks. For example,

deep learning-based intrusion detection systems (IDS)

can be implemented at the edge to monitor incoming traffic

for potential threats, such as denial-of-service (DoS)

attacks or unauthorized access attempts. These IDS sys-

tems can utilize anomaly detection algorithms, such as

autoencoders or generative adversarial networks (GANs),

to identify deviations from normal traffic patterns and flag

potential security breaches in real time. Such AI-driven

systems can adapt over time, learning from new attack

vectors and updating their detection models to address

emerging threats. Additionally, lightweight blockchain-

based solutions can be integrated to ensure the secure

exchange of data between edge devices by creating

immutable records of transactions, further reducing the risk

of tampering [213].

In the context of quantum-safe solutions, edge AI sys-

tems must also adopt post-quantum cryptographic algo-

rithms to ensure long-term data security. Post-quantum

cryptography (PQC) focuses on developing encryption

algorithms that are resistant to both classical and quantum

attacks. Integrating PQC into edge AI devices ensures that

secure communications are maintained even when quan-

tum computers become widely available. Furthermore,

using AI to optimize the implementation of PQC algo-

rithms [214], such as by reducing their computational

overhead, can make these solutions more practical for

deployment in resource-constrained edge environments.

Research is also focusing on quantum key distribution

(QKD) [215], a technique that leverages quantum

mechanics to generate provably secure cryptographic keys.

QKD can be used to secure communication between edge

devices and central servers, ensuring that keys cannot be

intercepted or tampered with, even by quantum

adversaries.

The research will focus on developing scalable and

efficient cybersecurity systems, including AI-driven

automation for threat detection and mitigation and using

blockchain for secure communications [213]. A key chal-

lenge in securing edge AI is the need for scalability. As the

number of connected devices in edge networks increases,

cybersecurity solutions must be able to scale to protect

millions of devices without introducing significant latency

or computational overhead. AI-driven security systems can

help address this challenge by automating threat detection

and response processes. For example, machine learning

models can be trained to detect anomalies in device

behavior or network traffic, identifying potential cyberat-

tacks before they can cause damage. In addition to intru-

sion detection, AI can also automate patch management

by identifying vulnerabilities in edge devices and applying

security updates in real time, ensuring that devices remain

protected against known threats.

Additionally, creating robust test environments for

cybersecurity validation will ensure the effectiveness of

these solutions in diverse operational scenarios [216]. Test

environments, such as digital twins of edge networks, can

be used to simulate cyberattacks and validate the effec-

tiveness of AI-driven security solutions. By replicating

real-world conditions, these environments enable

researchers to fine-tune their algorithms and improve the

resilience of edge AI systems. For example, by simulating

distributed denial-of-service (DDoS) attacks on a digital

twin of an edge network [217], AI-based security systems

can be stress-tested and adjusted to ensure their ability to

respond to large-scale cyber threats in real time.
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Furthermore, AI-based systems can be used to predict

potential vulnerabilities in edge networks by analyzing

historical data and identifying patterns that could lead to

future security breaches. This proactive approach to secu-

rity helps to mitigate risks before they can be exploited by

attackers.

These developments aim to provide a comprehensive

security framework for future edge AI systems, ensuring

resilience against evolving cyber threats. The future of

edge AI security lies in the combination of quantum-safe

cryptography [218], AI-driven threat detection, and

automation. These technologies will allow edge AI systems

to remain secure in the face of both classical and quantum-

based cyber threats, ensuring that they can operate reliably

in increasingly complex and hostile environments. As the

number of connected devices in smart cities, autonomous

vehicles, and industrial IoT grows, maintaining robust

security at the edge will be critical to safeguarding sensi-

tive data and ensuring the integrity of AI-driven processes.

8.11 Privacy

Privacy enhancement in early health prediction through

federated learning would be another interesting area to

investigate [219]. Future directions in this field involve

developing more advanced privacy-preserving techniques

within federated learning frameworks to keep patient data

secure during model training. Improvements in differential

privacy and homomorphic encryption are essential for

protecting sensitive health information [80]. Additionally,

optimizing the communication efficiency between edge

devices and central servers will mitigate privacy risks

associated with data transmission. Integrating privacy-

conscious AI models with real-time health monitoring

systems, like wearable devices, can deliver immediate and

secure health insights. Collaboration among healthcare

providers, AI researchers, and policymakers is vital to

creating standardized privacy protocols. Future research

should also focus on scalable and adaptive federated

learning methods capable of handling diverse and large-

scale health data while maintaining high privacy standards.

8.12 6 G and beyond

In the context of 6 G and beyond, Edge AI is set to make

several significant advancements; utilizing the ultra-low

latency and high bandwidth of 6 G networks will improve

the deployment of AI models at the edge, facilitating real-

time applications such as autonomous vehicles and smart

cities [5]. The research will prioritize optimizing AI algo-

rithms to meet the requirements of 6 G, including dynamic

resource allocation and energy efficiency. Combining

quantum ML with 6 G will enable more complex

computations at the edge, enhancing predictive accuracy

and decision-making processes. Additionally, improve-

ments in secure edge computing and blockchain technol-

ogy will address data privacy and security issues, ensuring

robust and reliable edge AI systems. These advancements

will collectively enhance the performance, scalability, and

security of edge AI applications in a 6 G environment [21].

9 Summary and conclusions

The systematic review analysis of Edge AI provides a

comprehensive overview of the present status of research

in edge intelligence and its applications. The significance

of these findings lies in the need for Edge AI systems to

consider infrastructure, resource management, and the

scale of ML models. According to the findings of the study,

it is essential to conduct a thorough examination of both the

positive and negative aspects of prior research to identify

any potential research gaps and to estimate prospective

developments and concerns.

The study emphasises the importance of using a sys-

tematic approach to record and evaluates the existing

research in the field of Edge AI. Moreover, it highlights the

importance of implementing a standardized procedure to

reduce the possible impact of discrepancies in the study.

The results of this review have the capacity to ignite a new

field of investigation in Edge AI and offer direction for

prospective research in this field. The exhaustive exami-

nation of Edge AI offers profound insight into the most

current study on edge intelligence and its realistic imple-

mentations. Moreover, this emphasises the importance of

gaining additional understanding about the key factors that

govern the choice of Edge AI infrastructure, as well as the

effect of the scale of the model used for ML on efficiency

and resource allocation.

To summarize, the comprehensive study on Edge AI is

to fully evaluate the various AI methodologies. This study

integrates all the feasible methodologies incorporated in

edge intelligence or AI at the edge. This review is to

examine the crucial factors that impact the choice of Edge

AI infrastructure, such as Cloud, Fog, and Edge computing,

and assess their impact on application efficacy and resource

utilization. Furthermore, it investigates the influence of the

size of an ML model on the efficacy and resource usage of

an Edge AI application. A total of 78 studies have been

chosen for this evaluation due to their specific focus on the

application of AI in edge computing. In order to enhance

our comprehension in the context of AI applied to edge

computing, these studies were categorized into multiple

domains, including infrastructure, resource management,

and ML model sizing, among others. Resource supply,
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allocation, scheduling, and job deployment are crucial

considerations in the field of Edge AI.

9.1 Open challenges

Following facts can be further concluded to improve this

survey:

• EdgeAI Infrastructure Optimization: Future studies can

examine Edge, Fog and Cloud systems that can be

integrated into EdgeAI to create a hybrid model. In this

way, scalable infrastructure solutions for EdgeAI sys-

tems can be discussed in detail. The research can focus

on optimization techniques for resource allocation and

latency in systems with varying workloads.

• Security and Privacy in EdgeAI: Considering the

heterogeneous structure of the nodes that make up

EdgeAI systems, security and privacy issues arise for

sensitive data (biometric data). Future research can

examine the measures and technical methods taken to

ensure the security and privacy of data.

• EdgeAI Applications: Future studies can examine real-

world EdgeAI applications such as smart cities and IoT-

based healthcare systems. In this way, application

challenges and solutions can be provided for

researchers.
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