
NETWORKS & TECHNOLOGIES

Lyapunov-Guided Optimal Service Placement in Vehicular
Edge Computing

Chaogang Tang1, Yubin Zhao2, Huaming Wu3,*

1 School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
2 School of Microelectronics Science and Technology, Sun Yat-Sen University, Zhuhai 519082, China
3 Center for Applied Mathematics, Tianjin University, Tianjin 300072, China
* The corresponding author, email: whming@tju.edu.cn

Cite as: C. Tang, Y. Zhao, et al., “Lyapunov-guided optimal service placement in vehicular edge computing,” China Communications,
vol. 20, no. 3, pp. 201-217, 2023. DOI: 10.23919/JCC.2023.03.015

Abstract: Vehicular Edge Computing (VEC) brings
the computational resources in close proximity to the
service requestors and thus supports explosive com-
puting demands from smart vehicles. However, the
limited computing capability of VEC cannot simul-
taneously respond to large amounts of offloading re-
quests, thus restricting the performance of VEC sys-
tem. Besides, a mass of traffic data can incur tremen-
dous pressure on the front-haul links between vehicles
and the edge server. To strengthen the performance
of VEC, in this paper we propose to place services
beforehand at the edge server, e.g., by deploying the
services/tasks-oriented data (e.g., related libraries and
databases) in advance at the network edge, instead of
downloading them from the remote data center or of-
floading them from vehicles during the runtime. In
this paper, we formulate the service placement prob-
lem in VEC to minimize the average response latency
for all requested services along the slotted timeline.
Specifically, the time slot spanned optimization prob-
lem is converted into per-slot optimization problems
based on the Lyapunov optimization. Then a greedy
heuristic is introduced to the drift-plus-penalty-based
algorithm for seeking the approximate solution. The
simulation results reveal its advantages over others in

Received: Jan. 12, 2022
Revised: Mar. 15, 2022
Editor: Lin Gao

terms of optimal values and our strategy can satisfy the
long-term energy constraint.
Keywords: vehicular edge computing; service place-
ment; response latency; computational resources

I. INTRODUCTION

Various advanced Information and Communication
Technologies (ICT) are applied and integrated into In-
telligent Transportation Systems (ITS) to pursue the
harmonious unification of humans, vehicles and roads.
Many benefits can be obtained from ITS, including
guaranteeing traffic safety, raising transportation ef-
ficiency, and improving the transportation environ-
ment and driving experience. In this context, a wide
variety of data can be gathered by mounted facili-
ties in smart vehicles (e.g., SIM cards, GPS, sensors,
and cameras). Furthermore, the consequent vehicular
tasks have sprung up, which require computational re-
sources and services for successful execution. Smart
vehicles are usually equipped with computing facili-
ties such as On-Board Unit (OBU) to satisfy the com-
putational demands of these tasks. However, such
“computers on wheels” can only offer limited com-
puting capabilities, due to restricted physical size and
energy supply.

To alleviate the contradiction between the skyrock-
eting demands for computational resources and the
limited computing capabilities of vehicles themselves,

© China Communications Magazine Co., Ltd. · March 2023 201

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 06,2023 at 08:26:08 UTC from IEEE Xplore. Restrictions apply.

it becomes increasingly dominant that computational
resources and services are provisioned outside the ve-
hicles. For example, Vehicular Cloud Computing
(VCC) and Vehicular Edge Computing (VEC) are two
newly emergent computing paradigms in recent years,
which are intended for addressing the above contra-
diction. The difference between VCC and VEC lies in
that VEC shifts the computational capability from the
remote data center to the network edge and provides
computing services in close proximity to the resource
requestors (i.e., vehicles). Comparatively speaking,
VEC can better cater to the delay-strict requirements
of vehicle tasks. In particular, vehicles offload their
tasks/applications to the edge server for execution in
VEC and the edge server is usually deployed at the
Road-Side Unit (RSU) in a densely populated area.
However, due to explosive growth in vehicular tasks
and applications, tremendous pressure has been im-
posed on the computing capabilities of the edge server
as well as the front-haul links between vehicles and an
accessible computational access point, e.g., RSU. This
is because the amount of computational resources in
VEC is not unlimited compared to that at the cloud
center.

Accordingly, we propose to place services in ad-
vance at the edge server. Service placement, also
termed service deployment, strives to deploy the
services/tasks-oriented data (e.g., related libraries and
databases) in advance at the network edge (e.g.,
RSUs), instead of downloading them from a remote
data center during the runtime or rush hours. When a
vehicle sends its offloading request to the edge server,
the execution result can be directly retrieved, if the
corresponding service has been placed at the edge
server. Otherwise, the corresponding service may be
offloaded from the vehicle or downloaded from the
data center, which increases both the transmission and
calculation delay. As a result, the response delay is
much longer, compared to the case when the service is
cached.

Although there is extensive literature on task of-
floading and service placement in VEC [1–4], they sel-
dom consider factors that may increase the difficulty of
service placement. Such factors usually include lim-
ited sojourn time for vehicles, limited wireless cover-
age and vehicular offloading requests featured by tem-
poral and spatial variation. In addition, most of the
current works on service caching assume that service

caching does not incur energy consumption at the edge
server, which, however, does not always hold in the
task-oriented caching scenarios [5, 6]. In contrast, this
paper does not only take into account the above fac-
tors but also the evaluation of service placement in the
long run.

In this paper, we strive to make service placement
decisions with a time effect and strategic update in a
scenario where vehicles are covered by multiple RSUs
owing to an increasing density of RSUs. Specifically,
services are placed at RSUs along the slotted timeline
such that the average response latency for all the re-
quested services can be optimized. The major contri-
butions are summarized as follows.

• A generic approach is put forward for improv-
ing the performance of VEC in terms of response
latency, with the help of strategic service place-
ment. By formulating the mathematical model,
our goal is to minimize the average response la-
tency of requested services along the slotted time-
line in this paper.

• Multiple constraints are considered in the op-
timization problem, especially the overall con-
straint of energy consumption along the in-
finite time-slotted horizon. The Lyapunov
optimization-based technology is leveraged for
converting the long-term energy constraint into
per-slot ones. Based on this, an online algorithm
is designed to search for the approximate optimal
solution in this paper.

• Extensive simulation is conducted for investigat-
ing and evaluating the performance of the pro-
posed service placement strategy. Simulation re-
sults have revealed that our strategy can achieve
better performance compared to other strategies.

The rest of the paper is organized as follows. Some
related works are reviewed in Section II. The system
model is mathematically formulated in Section III, and
the optimization problem is also given in Section IV.
An online approach for service placement is put for-
ward in Section V, followed by the simulation evalua-
tion in Section VI. Finally, the conclusion is drawn in
Section VII.

II. RELATED WORK

202 © China Communications Magazine Co., Ltd. · March 2023

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 06,2023 at 08:26:08 UTC from IEEE Xplore. Restrictions apply.

Due to the restricted physical size and energy sup-
ply of smart devices (e.g., OBU), there are increas-
ingly strong demands for shifting the task execution
from the local to the third party with abundant com-
putational resources. Such a tendency has given birth
to several new computing paradigms represented by
edge computing. Extensive attention has been paid to
this research field, aiming to optimize the performance
of task offloading and service outsourcing from differ-
ent angles [7]. Meanwhile, service placement usually
plays an important role in improving the performance
of the systems when tasks are offloaded and resources
are scheduled in the cloud-edge networks [8–12].

Mobile Edge Computing (MEC), derived from edge
computing, brings the computational resources close
to the devices and enables tasks to be accomplished
with shorter response latency compared to cloud com-
puting. To further enhance the performance of MEC,
Li et al. [1] jointly optimized task offloading, service
placement and resources deployment at the edge of
MEC. To improve the quality of service such as re-
sponse latency, service providers usually deploy ser-
vices at the network edges. In this context, Panadero
et al. [13] studied the service placement at the edge
server by minimizing the total cost for task offload-
ing which includes the costs on service placement, the
throughput of edge server, and the energy consump-
tion. In the meanwhile, the strict requirement for user-
perceived delay should be satisfied. They proposed a
heuristic algorithm to solve the formulated Mixed In-
teger Linear Programming problem.

Likewise, Internet of Things (IoT) devices are in-
creasingly demanding services characterized by ultra-
low response latencies. In this context, minimiza-
tion of response latency while meeting multiple con-
straints has become the main focus in the existing lit-
erature. However, current works seldom consider the
load-balancing issue which has played a key role in
cost-efficient system management. Therefore, an op-
timization problem with two optimization objectives
was proposed in [14], aiming to place IoT services
with load balance for improving the quality of service
that is defined as a function of deadline violation, ser-
vice deployment, and unhosted services.

Task execution at the network edges brings bene-
fits to the task requestors, but it also causes serious
pressure on the limited computational resources of
the edge servers. How to efficiently schedule these

resources for the requestors has become one of the
prime challenges. Different from the previous works
which try to jointly optimize the service placement
and request routing, Yuan et al. [15] have considered
the non-negligible operating expenses caused by ser-
vice placement. Specifically, they introduce a two-
timescale framework to minimize these costs during
frequent cross-cloud service replacement and replica-
tion, and further design a greedy algorithm to address
the service placement problem. Community networks
have attracted lots of attention recently. These net-
works are usually constructed and managed voluntar-
ily at the edge, and featured by irregular topology and
resource heterogeneity. In view of this, Panadero et
al. [16] proposed a service placement strategy, which
can place services in decentralized community net-
works.

Complicated services can usually be divided into
independent components which can be separately ac-
complished at different edge servers in a cooperative
fashion. Previous works usually assumed services are
unsplittable or ignored the fact that edge servers can
be geographically isolated. Furthermore, the inter-
ference caused by services sharing the same physi-
cal nodes/links was also ignored, which however can
cause long computation delays. Accordingly, Han et
al. [17] paid attention to the Interference-Aware (IA)
service placement while assuming that services can be
composed of multiple components in the edge-cloud
networks.

Apart from the computational resources, storage
and networking resources are both required for data-
intensive applications such as machine learning tasks.
Furthermore, the service (libraries, databases and
codes) placement strategy should be updated over
time. Accordingly, a two-time-scale framework is
put forward in [18], aiming to jointly optimize ser-
vice placement and request allocation. Moreover, a
polynomial-time service placement algorithm is de-
signed in real-time response to the service requests.
Simulation results reveal that their approach achieves
90% of the optimal performance. To realize ser-
vice migration in dynamic mobile networks, pervasive
edge computing is attracting more and more attention
recently. Against this background, Ning et al. [19]
aimed to maximize the utility value of the edge sys-
tem. Specifically, they consider both storage capac-
ity and response latency in the optimization problem.

© China Communications Magazine Co., Ltd. · March 2023 203

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 06,2023 at 08:26:08 UTC from IEEE Xplore. Restrictions apply.

!"!#$%&'
()* +,-.#

)./0./
!"1#$%&'2%/.3.44#

560./7-.

Figure 1. A VEC application scenario.

Lyapunov optimization is introduced for converting
it into instant subproblems. Moreover, two approxi-
mation algorithms are used to obtain the average sys-
tem utility in the future and make decisions on service
placement, respectively.

Due to the increasingly unoccupied resources on
UAVs, more and more UAVs can act as the edge
servers to process the offloaded tasks by the onboard
processors [20–22]. Thus, services should be placed
beforehand. He et al. [20] aimed to jointly optimize
the service placement and resource allocation problem
in UAV-assisted edge computing, which was modeled
as a mixed-integer nonlinear programming problem
and divided into two subproblems, which are proven to
be submodular and convex, respectively. Thus, a gen-
eral alternative optimization is adopted to solve this
problem.

III. SYSTEM MODEL

A considered scenario is depicted in Figure 1. Multi-
ple RSUs are scattered in the densely populated area.
In addition, their performance is enhanced by deploy-
ing edge servers that are rich in computational re-

sources, as denoted in the figure. Thus, services can
be provided at the edge of the network. Consider-
ing the mobility of vehicles, the strategy for service
placement, i.e., which services should be deployed at
which RSUs, should be updated periodically. There-
fore, we divide the timeline T into T time slots in this
paper, and each time slot lasts τ seconds, i.e., T =

{0, · · · , T−1}. The service placement can be updated
within each time slot, so as to reflect its dynamics. We
denote the set of RSUs by N = {1, · · · , N}, where
N is the number of RSUs in the considered model. In
addition, we further assume that the area considered
in this paper can be divided into M disjoint sub-areas
(regions), indexed by M. Due to the increasing den-
sity of RSU deployment, it is likely that one sub-area
or region can be covered by multiple RSUs.

Let Rm(⊂ N) denote the set of RSUs that can cover
the region m. Thus, vehicles with offloading requests
at region m can resort to RSU n ∈ Rm. Assume
that there are K computing services that can be de-
ployed at RSUs, indexed by K = {1, · · · ,K}. Each
service k can be represented by a 2-tuple of (dk, sk),
where dk and sk denote the task-input data size and
averagely required workload (e.g., the CPU cycles),

204 © China Communications Magazine Co., Ltd. · March 2023

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 06,2023 at 08:26:08 UTC from IEEE Xplore. Restrictions apply.

respectively. Each RSU n can be represented by a 2-
tuple of (Dn, fn), where Dn and fn denote the caching
and processing capabilities of RSU n, respectively.

Definition 1. Service Placement Decision. Ser-
vice placement in this paper refers to the deploy-
ment of services at the edge server by downloading
service-oriented data such as parameters, libraries
and databases in advance from the remote data center.
Let δtk,n be a binary variable to indicate whether the
service k is deployed at RSU n in time slot t. δtk,n = 1,
if service k is deployed at RSU n in time slot t; and 0,
otherwise. Define δtn = {δt1,n, · · · , δtK,n} as the ser-
vice placement decision of RSU n for all services in K
in time slot t, and δt = {δt1, · · · , δtN} as the service
placement decisions of all RSUs in N in time slot t.

Note that it is impractical for RSU n to deploy all the
services simultaneously since the storage (caching) ca-
pability (i.e., Dn) is limited. In particular, the service
placement decisions should meet the following con-
straint:

K∑
k=1

δtk,ndk ≤ Dn, ∀t ∈ T , ∀n ∈ N , (1)

which indicates that the total amount of task-input data
of all the services placed at RSU n should not exceed
its caching capability Dn in each time slot. We inves-
tigate the performance of service placement in vehicle
edge computing in regions instead of individual vehi-
cles [2], since the statistical information on vehicular
offloading requests can be better captured and evalu-
ated in regions than individual vehicles, and this way
can better cater to service placement featured by the
long-term process. As a result, it is no longer adequate
to assume that the number of vehicular offloading re-
quests is constant as most of the existing literature did
[3, 5]. In this paper, we assume that the vehicular task
arrivals, i.e., the arrivals of the offloading requests gen-
erated by vehicles in the corresponding regions, follow
a Poisson process. In particular, let λt

k,m denote the ar-
rival rate of vehicular tasks requesting service k in the
region m in time slot t.

Let Rt
k,m ⊆ Rm denote the set of RSUs that have

deployed service k in the region m in time slot t. Thus,
vehicular offloading requests in the region m can re-
sort to the RSU in Rt

k,m. Thus, two cases may occur
as follows. One is that the set Rt

k,m is empty. Then,

we assume that the vehicular offloading requests will
be forwarded to the cloud center where the tasks are
served by corresponding services. The other case is
that the set Rt

k,m is not empty, i.e., there are multiple
RSUs that can serve the vehicular offloading requests.
For simplicity, the vehicular offloading requests are as-
sumed to be evenly distributed among RSUs in Rt

k,m

[2]. Thus, we define wt
k,n as the average workloads

required by service k to RSU n in time slot t, given as:

wt
k,n =

0

M⋃
m=1

Rt
k,m = ∅,

M∑
m=1

In,m
skλ

t
k,m

|Rt
k,m|

M⋃
m=1

Rt
k,m ̸= ∅,

(2)

where
⋃M

m=1Rt
k,m = ∅ means that there are no re-

gions m ∈ M that have placed service k. In,m is an
indicator to denote whether the RSU n covers the re-
gion m, which can be defined as:

In,m =

{
1 n ∈ Rm,

0 n /∈ Rm.
(3)

Combining the service placement decision δtk,n,
wt

k,n can be further rewritten as:

wt
k,n = δtk,n

M∑
m=1

In,m
skλ

t
k,m

|Rt
k,m|

, ∀k ∈ K,∀n ∈ N . (4)

Service placement at the edge server in advance
aims to reduce the response delay and further improve
the Quality of Service (QoS) and Quality of Experi-
ence (QoE). However, it shall be noted that the ser-
vice deployment and placement at the edge, e.g., by
downloading task-input data, libraries and databases
pertaining to the corresponding services from the data
center, will also incur costs such as energy consump-
tion at the edge.

3.1 Response Delay Model

The average response delay for the tasks processed at
the edge mainly consists of the queueing delay and
computation delay, when the corresponding services
have already been placed at the edge server in advance.
We have considered the queueing delay in the paper,

© China Communications Magazine Co., Ltd. · March 2023 205

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 06,2023 at 08:26:08 UTC from IEEE Xplore. Restrictions apply.

owing to the fact that the computational resources at
RSUs cannot process all the tasks in parallel, espe-
cially when the number of vehicular offloading re-
quests is huge. Furthermore, the queueing delay is one
of the causes that incur long response latency.

Since the vehicular task arrival of each service type
follows a Poisson process with rate λt

k,m and the of-
floading requests are evenly distributed among RSUs
in Rt

k,m, the overall task arrival at RSU n for service
k is also a Poisson process, with the rate λt

k,n given as:

λt
k,n =

M∑
m=1

In,m
λt
k,m

|Rt
k,m|

, ∀k ∈ K,∀n ∈ N . (5)

The service time of one task of service type k at
RSU n can be expressed as sk/fn. Accordingly, the
service rate µk,n is:

µk,n =
fn
sk

, ∀k ∈ K,∀n ∈ N , (6)

where fn denotes the processing frequency of RSU n.
Specifically, we evaluate and analyze the response de-
lay by modeling this process as an M/M/1 queue. Thus
the response delay, i.e., the average sojourn time (wait-
ing time and service time) for service k at RSU n in
time slot t, is given as:

rdtk,n =
sk

fn − sk
∑M

m=1

In,mλt
k,m

|Rt
k,m|

. (7)

The above equation implies that service k has been
placed at RSU n. On the other hand, it is also possible
that service k is not placed at RSU n. In this case, the
offloading request will be served at the cloud center.
Due to the sufficient computing resources and power-
ful computing capabilities at the cloud center, we thus
assume that the calculation delay at the cloud center
can be ignored. The response delay, denoted by rdtk,c,
is mainly caused by the transmission delay when data
and execution results are transmitted over the back-
bone network using the backhaul links. Such trans-
mission delay can be estimated and predicted based on
historical statistical data and highly efficient machine
learning approaches such as auto-regression analysis.
Hence, the average response delay for service k in time

slot t rdtk is:

rdtk =
1

N

N∑
n=1

δtk,nrd
t
k,n + (1− δtk,n)rd

t
k,c. (8)

3.2 Energy Consumption Model

As mentioned earlier, the service placement at the
edge in advance incurs negligible energy consump-
tion, including static energy consumption and dy-
namic energy consumption. The static energy, denoted
by αn, is consumed for maintaining virtual resources
allocated to service k, which is independent of the
workload of the service. The dynamic energy βt

k,n

is consumed for performing the service at run time.
Thus, the total energy consumption for service k at
RSU n in time slot t (i.e., the static energy consump-
tion plus the dynamic energy consumption) can be ex-
pressed as:

etk,n = αn + ςηwt
k,n(fn)

2

= αn + ςηδtk,n(fn)
2

M∑
m=1

In,m
skλ

t
k,m

|Rt
k,m|

, (9)

where the second part on the right-hand side represents
the dynamic energy consumption βt

k,n, ς represents
the effectively switched capacitance coefficient, and η

is the number of cycles needed to perform one task-
input bit from n. The energy consumption for com-
putation undertaking at the edge server is supposed to
be lower than the given threshold, so the residual en-
ergy can be kept for other purposes such as vehicle-
to-infrastructure and pedestrian-to-infrastructure com-
munications. Thus, the following constraint should be
satisfied:

K∑
k=1

etk,n ≤ etmax,n, ∀n ∈ N ,∀t ∈ T , (10)

where etmax,n is the maximal energy consumption that
RSU n can tolerate to perform the tasks. Therefore,
for arbitrary time slot t, the total energy consumption
for undertaking all the services at RSU n should not
exceed this energy threshold. For easy discussion, we
assume that the energy threshold is the same for each
time slot at RSU n.

206 © China Communications Magazine Co., Ltd. · March 2023

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 06,2023 at 08:26:08 UTC from IEEE Xplore. Restrictions apply.

IV. PROBLEM FORMULATION

Our goal in this paper is to minimize the overall re-
sponse delay of services along the infinite time slots,
by adjusting the strategy of service placement at RSUs
within each time slot. In particular, our optimization
problem can be formulated as:

(P1) min
δt,∀t

lim
T→∞

1

T

T−1∑
t=0

K∑
k=1

rdtk,

s.t. : lim
T→∞

1

T

T−1∑
t=0

K∑
k=1

etk,n ≤ En, ∀n ∈ N , (11)

fn,min ≤ fn ≤ fn,max, ∀n ∈ N , (12)

In,m ∈ {0, 1} ∀n ∈ N ,∀m ∈ M, (13)

δtk,n ∈ {0, 1}, ∀k ∈ K,∀n ∈ N ,∀t ∈ T , (14)

Constraints (1), (10), (15)

where (11) represents that the long-term energy con-
sumption at RSU n should not exceed the threshold
En, for the reason that the evaluation of service place-
ment strategy needs a long process as mentioned ear-
lier. The computational resources allocated for ser-
vice deployment and execution should be bounded as
shown in (12), owing to the limited computing capa-
bilities at the edge server in contrast to the cloud cen-
ter. The number of services that are placed is restricted
by the limited storage capacity of the edge server. In
addition, per-slot energy consumption for RSU n is
also bounded by etmax,n as shown in (10).

The difficulties in addressing the problem P1 are
summarized as follows. First, the entire information,
such as the offloading requests in all time slots, is re-
quired for optimally solving this problem. However, it
is difficult to obtain this information about the future
time slots in the current time slot. In addition, P1 is
essentially an integer linear programming that is com-
putationally prohibitive even if the entire information
is acquired a priori. Last but not least, it is quite diffi-
cult to handle the constraint (11), since it similarly re-
quires the entire information in all the time slots. Ac-
cordingly, an online approach is needed for addressing
this problem, such that the response delay can be opti-
mized by placing services at the edge within each time
slot.

V. ONLINE ALGORITHM FOR SERVICE
PLACEMENT

To address the above challenges, we in this section
present an online algorithm, named Online service
Placement for vehicular Edge Computing (OPEC).
Specifically, the Lyapunov optimization technology
is introduced for converting the infinite time-slotted
(global) energy consumption constraint (11) into re-
spective constraints within each time slot. Thus,
the optimization for P1 can be solved approximately
within each time slot.

5.1 Lyapunov-Based Online Algorithm

To covert the global constraint into local ones, n en-
ergy migration queues Qn(n ∈ N) are constructed,
which can be recursively defined as:

Qn(t+1) = max[Qn(t)−En, 0]+
K∑
k=1

etk,n,∀n ∈ N ,

(16)
where Qn(t) is a numerical value to denote the queue
backlog of RSU n in time slot t. Actually, Qn(t) can
indicate how far the energy consumption in the current
time slot deviates from the global energy constraint En,
e.g., a larger value of Qn(t) for RSU n always denotes
a sharper deviation from En. Note that we assume that
Qn(0) = 0 holds, ∀n ∈ N .

Lemma 1. For an arbitrary RSU n ∈ N , given the
corresponding queue backlog Qn(t) in time slot t, the
following inequality always holds

1

T

T−1∑
t=0

E[
K∑
k=1

etk,n − En] ≤
1

T
E[Qn(T)].

Proof. The lemma can be proven based on the follow-
ing two cases.

• Case 1: Qn(t) ≥ En. In this case, we have Qn(t+

1) = max[Qn(t)−En, 0]+
∑K

k=1 e
t
k,n = Qn(t)−

En +
∑K

k=1 e
t
k,n, so we can obtain

∑K
k=1 e

t
k,n −

En= Qn(t+ 1)−Qn(t).

• Case 2: Qn(t) < En. In this case, Qn(t +

1) = max[Qn(t) − En, 0] +
∑K

k=1 e
t
k,n =∑K

k=1 e
t
k,n and

∑K
k=1 e

t
k,n − En = Qn(t +

1) − En < Qn(t + 1) − Qn(t). As a result,

© China Communications Magazine Co., Ltd. · March 2023 207

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 06,2023 at 08:26:08 UTC from IEEE Xplore. Restrictions apply.

∑K
k=1 e

t
k,n − En≤ Qn(t + 1) − Qn(t) holds,

∀t ∈ T . Take the expectation of this inequal-
ity and then summarize it over ∀t ∈ T , we have∑T−1

t=0 E
[∑K

k=1 e
t
k,n − En

]
≤
∑T−1

t=0 E[Qn(t +

1) − Qn(t)] = E[Qn(T)]. Thus, ∀n ∈ N ,
we can obtain 1

T

∑T−1
t=0 E

[∑K
k=1 e

t
k,n − En

]
≤

1
T E[Qn(T)].

Define the vector Q(t) = {Q1(t), · · · , QN (t)} as
the queue backlogs of N RSUs in time slot t. Then,
the Lyapunov function with regards to (w.r.t.) Q(t) is
defined as: F(Q(t)) = 1

2

∑N
n=1Q

2
n(t).

The Lyapunov function is actually the function of
the queue backlogs of all the RSU N in time slot t.
We can further define Lyapunov drift as the increment
of the queue backlogs in two consecutive time slots,
given as:

△(Q(t)) ≜ E[F(Q(t+ 1))−F(Q(t))|Q(t)]. (17)

The Lyapunov drift can actually indicate the fluc-
tuation of two consecutive states. From the perspec-
tive of system stability, the smaller the Lyapunov drift,
the better the system stability. However, minimizing
the Lyapunov drift faces a similar challenge, since it
also needs the information in future time slots. For ex-
ample, the optimization of △(Q(t)) needs the future
information F(Q(t + 1)). To avoid involving future
information, we can actually relax it by determining
its upper bound. In the next, we will show how to find
the upper bound of the Lyapunov drift according to the
following lemma [23].

Lemma 2. Given four non-negative real numbers A,
B, C and m, they satisfy C = max{B −m, 0} + A,
then C2 ≤ A2 +B2 +m2 − 2B(m−A).

Based on this Lemma, we have

△ (Q(t)) = E[F(Q(t+ 1))−F(Q(t))|Q(t)]

=
1

2
E[

N∑
n=1

[max[Qn(t)− En, 0] +
K∑

k=1

etk,n]
2

−
N∑

n=1

Q2
n(t)|Q(t)]

≤ 1

2
E[

N∑
n=1

[E2
n + (

K∑
k=1

etk,n)
2

+ 2Qn(t)(
K∑

k=1

etk,n − En)]|Q(t)]

= D −
N∑

n=1

EnQn(t) + E[
N∑

n=1

Qn(t)
K∑

k=1

etk,n|Q(t)],

where

D =
1

2

N∑
n=1

E2
n +

1

2
E

 N∑
n=1

(
K∑

k=1

etk,n

)2

|Q(t)

≤ 1

2

N∑
n=1

E2
n +

1

2
E

[
N∑

n=1

(etmax,n)
2|Q(t)

]

=
1

2

N∑
n=1

[
E2
n + (etmax,n)

2
]
≜ B.

Therefore, the upper bound of the Lyapunov drift
can be given as:

△(Q(t)) ≤ B −
N∑

n=1

EnQn(t)

+ E

[
N∑

n=1

Qn(t)
K∑
k=1

etk,n|Q(t)

]
. (18)

It is noticeable that the upper bound of △(Q(t)) no
longer depends upon the information in future time
slots such as Q(t + 1). Then, we introduce the drift-
plus-penalty term that integrates the Lyapunov drift
into the optimization objective per time slot, given as:

Θ(t) = △(Q(t)) + V E

[
K∑
k=1

rdtk|Q(t)

]
, (19)

where V is a positive numeric value to denote the pref-
erence between energy consumption and response de-
lay. Combining (18), we have:

Θ(t) ≤ B −
N∑

n=1

EnQn(t)

+ E

[
N∑

n=1

Qn(t)
K∑
k=1

etk,n + V

K∑
k=1

rdtk|Q(t)

]
. (20)

We now turn our attention to the optimization of
the supremum of the drift-plus-penalty term, i.e., the

208 © China Communications Magazine Co., Ltd. · March 2023

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 06,2023 at 08:26:08 UTC from IEEE Xplore. Restrictions apply.

right-hand side of (20). Since B, En and Qn(t) are in-
dependent of the service placement decisions and thus
can be obtained in time slot t, to optimize the supre-
mum of the drift-plus-penalty is equivalent to the op-
timization of the following problem:

(P2) min
∀t,δt

{
N∑

n=1

Qn(t)
K∑
k=1

etk,n + V
K∑
k=1

rdtk

}
,

s.t. : (12), (13), (14), (15). (21)

Therefore, we can solve the problem P1 approxima-
tively by solving the problem P2. Compared to P1, it
is relatively easier to solve P2, because the time slot
spanned energy constraint has been converted into per-
slot ones. An important issue is naturally posed, i.e.,
what is the degree of approximation of the solution of
P2 towards that of P1?

Theorem 1. If there exists a solution to the problem
P1, the service placement profile obtained by solving
P2 over time slots t ∈ {0, · · · , T − 1} can also ap-
proximately optimize the problem P1 and the optimal-
ity gap which denotes the difference between the two
solutions is bounded by O(1/V).

Proof. Since there is a solution to P1, there exits a
service placement profile δt∗ in time slot t, and the
corresponding global optimum l∗, which respectively
satisfy 1)

∑K
k=1 e

t
k,n ≤ En, ∀n ∈ N and 2) l∗ =

min
δt,∀t

limT→∞
1
T

∑T
t=1

∑K
k=1 rd

t
k, based on [24].

Accordingly, we have:

Θ(t) = △(Q(t)) + V E

[
K∑

k=1

rdtk|Q(t)

]

≤ B −
N∑

n=1

EnQn(t)

+ E

[
N∑

n=1

Qn(t)
K∑

k=1

etk,n + V
K∑

k=1

rdtk|Q(t)

]

= B + E

[
N∑

n=1

Qn(t)

(
K∑

k=1

etk,n − En

)
|Q(t)

]

+ V E

[
K∑

k=1

rdtk|Q(t)

]
‡
≤B + V l∗. (22)

Since Θ(t) ≤ B + E[
∑N

n=1Qn(t)(
∑K

k=1 e
t
k,n −

En)|Q(t)] + V E[
∑K

k=1 rd
t
k|Q(t)], for ∀t ∈

{0, · · · , T − 1} and valid service placement pro-
file δt, the inequality still holds when substituting δt

by δt∗. Owing to
∑K

k=1 e
t
k,n − En ≤ 0 for δt∗, the

inequality (‡) holds.
Take the expectation of (22) and add it over the time

slots t ∈ {0, · · · , T − 1}, i.e.,

T−1∑
t=0

E[△(Q(t)) + V E[
K∑

k=1

rdtk|Q(t)]]

=
T−1∑
t=0

E[E[F(Q(t+ 1))−F(Q(t))|Q(t)]

+ V E[
K∑

k=1

rdtk|Q(t)]]

=
T−1∑
t=0

E[F(Q(t+ 1))−F(Q(t))] + V E[
K∑

k=1

rdtk]

= E[F(Q(T))−F(Q(0))] +

T−1∑
t=0

V E[
K∑

k=1

rdtk]

= E[F(Q(T))] +
T−1∑
t=0

V E[
K∑

k=1

rdtk]

≤
T−1∑
t=0

E[B + V l∗] = (B + V l∗) ∗ T.

Since E[F(Q(T))] ≥ 0, we can have∑T−1
t=0 V E

[∑K
k=1 rd

t
k

]
≤ (B + V l∗) ∗ T . Thus,

we obtain 1
T

∑T−1
t=0 E

[∑K
k=1 rd

t
k

]
≤ l∗ + B

V . Since∑K
k=1 rd

t
k is the expected response time for all the

services in time slot t, and according to the law of
iterated expectations, E[

∑K
k=1 rd

t
k] =

∑K
k=1 rd

t
k.

Therefore, we have 1
T

∑T−1
t=0

∑K
k=1 rd

t
k ≤ l∗ + B

V .
Thus, the service placement profile obtained by

solving P2 can infinitely approximate the optimiza-
tion of P1 by adjusting the variable V . Let G(V)

denote the optimality gap which denotes the differ-
ence between the two solutions. The optimal value
by solving the supremum of drift-plus-penalty term is
l∗+B/V , so G(V) = B/V and O(G(V)) = O(1/V).
Hence, the optimality gap is bounded by O(1/V).

The above analysis can guarantee that the service
placement profile obtained by solving P2 can approx-
imately solve P1. However, another issue that needs

© China Communications Magazine Co., Ltd. · March 2023 209

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 06,2023 at 08:26:08 UTC from IEEE Xplore. Restrictions apply.

to be addressed is whether the service placement de-
cisions obtained from P2 do not violate the long-term
constraint (11) for P1.

Theorem 2. The service placement decisions obtained
from solving P2 over time slot t ∈ {0, · · · , T − 1}
always satisfy (11).

Proof. Let δt∗ denote the service placement decisions
of all RSUs N in time slot t obtained by solving prob-
lem P2, i.e., the supremum of the drift-plus-penalty
term. In other words, when services are placed based
on δt∗, the supremum of the drift-plus-penalty term
can achieve the minimum. For the sake of clear ex-
pression and easy discussion, let Y (δt) =

∑K
k=1 rd

t
k

and Zn(δ
t) =

∑K
k=1 e

t
k,n. We have:

Θ(t) = △(Q(t)) + V E[Y (δt∗)|Q(t)]

≤ B −
N∑

n=1

EnQn(t)

+ E[
N∑

n=1

Qn(t)Zn(δ
t‡) + V Y (δt‡)|Q(t)]

§
≤B −

N∑
n=1

EnQn(t) +

N∑
n=1

Qn(t)(En − ϵn) + V L‡
t

= B −
N∑

n=1

ϵnQn(t) + V L‡
t ,

where δt‡ is an arbitrary valid service placement pro-
file for all RSUs N in time slot t except δt∗ and
L‡
t is the corresponding response delay. Due to

E[Zn(δ
t∗)] = Zn(δ

t∗) ≤ En, there exists a small
enough ϵn > 0 that satisfies Zn(δ

t∗) ≤ En − ϵn,
∀n ∈ N , so the inequality (§) holds.

Take the expectations of the above inequality,
E{Θ(t)} ≤ B − E[

∑N
n=1 ϵnQn(t)] + V L‡

t , i.e.,

E[F(Q(t+ 1))]− E[F(Q(t))] + V E[Y (δt∗)]

≤ B + V L‡
t − E[

N∑
n=1

ϵnQn(t)].

By summing this inequality over t ∈ {0, · · · , T − 1},
we have

E[F(Q(T))]− E[F(Q(0))] + V
T−1∑
t=0

E[Y (δt∗)]

≤ BT + V L‡
tT − E

[
T−1∑
t=0

N∑
n=1

ϵnQn(t)

]
≤ BT + V L‡

tT = B′T,

where B′ = B + V L‡
t . Since F(Q(T)) =

1
2

∑N
n=1Q

2
n(T), we have E[

∑N
n=1Q

2
n(T)] ≤

2B′T . Then, we have E2
[∑N

n=1Qn(T)
]

≤

KE
[∑N

n=1Q
2
n(T)

]
≤ 2B′T. Therefore, we

have E
[∑N

n=1Qn(T)
]
/T ≤

√
2B′/T . Due to

Qn(T) ≥ 0 for ∀n ∈ N , E[Qn(T)]/T ≤
√

2B′/T

holds, for ∀n ∈ N . Given Lemma 1, we have

1

T

T−1∑
t=0

E

[
K∑
k=1

etk,n − En

]
≤ 1

T
E[Qn(T)] ≤

√
2B′

T
.

After taking the limit on both sides, we have

lim
T→∞

1

T

T−1∑
t=0

E

[
K∑
k=1

etk,n − En

]
≤ lim

T→∞

√
2B′

T
= 0,

i.e., limT→∞
1
T

∑T−1
t=0

∑K
k=1 e

t
k,n ≤ En, ∀n ∈ N .

Therefore, the following conclusions hold 1) the
queue backlog is mean rate stable; 2) the service place-
ment profile for P2 can solve P1 without violating the
constraint (11).

5.2 OPEC Algorithm Description

Algorithm 1. Online service placement for vehicular edge
computing (OPEC).

Input: Qn(0), En, Dn, N , M , T
Output: Service placement decisions
1: F(Q(0)) = 0
2: Calculate µk,n based on (6), ∀k ∈ K,∀n ∈ N
3: for t = 0 to T − 1 do
4: Observe and record λtk,m,Rt

k,m, ∀k ∈ K, ∀m ∈ M
5: Calculate λtk,n based on (5), ∀k ∈ K, ∀n ∈ N
6: Set etmax,n, ∀n ∈ N
7: Predict and obtain rdtk,c, ∀k ∈ K
8: Obtain δt∗ by solving problem P2
9: Calculate etk,n based on (9), ∀k ∈ K,∀n ∈ N

10: Update Qn(t+ 1) based on (16), ∀n ∈ N
11: end for

The algorithm OPEC, which leverages the Lya-

210 © China Communications Magazine Co., Ltd. · March 2023

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 06,2023 at 08:26:08 UTC from IEEE Xplore. Restrictions apply.

punov technology to convert the time slot spanned en-
ergy consumption, is shown in Algorithm 1. This al-
gorithm aims to obtain the optimal service placement
decisions for optimizing problem P1. To this end, the
service placement decisions can be obtained by solv-
ing the problem P2 along each time slot. In the be-
ginning, some variables should be initialized such as
F(Q(0)) and µk,n. Within each time slot, some vari-
ables are observed and calculated such as λt

k,m, Rt
k,m,

and λt
k,n. Then the approximately optimum service

placement decision is obtained by solving problem P2

(line 8). After that, the algorithm calculates the energy
consumption based on the service placement decisions
(line 9) and further updates the queue backlog of each
queue (line 10).

5.3 Algorithm Design for P2

In algorithm OPEC, there is still a pending issue that
needs to be addressed, i.e., the optimization of P2,
so in this subsection, we will discuss how to ob-
tain the decision placement decision in each time slot
by solving the problem P2 efficiently, i.e., δt∗ =

argmin
δt,∀t

{
∑N

n=1Qn(t)
∑K

k=1 e
t
k,n + V

∑K
k=1 rd

t
k}.

Lemma 3. The optimization problem P2 is NP-Hard.

Proof. It is well-known that the multiple knapsack
problem (MKP) is an NP-hard problem [25], which
can be formally described as follows. Given a set of
knapsacks G and items I, each knapsack k ∈ G can
pack finite items based on its knapsack capacity ak and
each item i ∈ I has a size si and profit pi. MKP aims
to find a way to assign items into the knapsacks such
that the total profits can be maximized, i.e.,

(P3) max
∑
k∈K

∑
i∈I

xk,ipi,

s.t. :
∑
i∈I

xk,isi ≤ ak ∀k ∈ G, (23)

xk,i ∈ {0, 1} ∀k ∈ G,∀i ∈ I. (24)

Next, we will prove that our problem is actually an
instance of MKP, i.e., P2 is equivalent to P3. First,
it is easy to transform P2 into a maximization prob-
lem, e.g., by the inverse operation. Then, given our

system model, the set of RSUs N and the set of ser-
vices K correspond to the set of knapsacks G and items
I, respectively. Each service has the required amount
of task-input data (e.g., dk) which corresponds to the
item size si. Each RSU has a storage capacity Dn that
corresponds to the backpack capacity ak. The total
amount of task-input data for all the tasks assigned to
the RSU should not exceed its storage capacity. Such
a constraint is actually the knapsack constraint in (23).
The objective function can be considered as the profit
of each service in P2. Therefore, P2 is equivalent
to P3 where K items are packed to N RSUs to opti-
mize the response delay. Accordingly, the optimiza-
tion problem P2 is NP-Hard.

The searching space in the potential solution do-
main is up to KN , which thus prohibits the exhaustive
search in reality, especially considering the strict la-
tency requirements of vehicular services. In addition,
iteration-based evolutionary algorithms have similar
drawbacks in handling the strict latency requirements.
Indeed, the time taken to make decisions on service
placement at RSUs should be as fast as possible. Thus,
we in this paper put forward a greedy algorithm for
this problem to cater to such requirements in the next.

Actually, several factors could affect the perfor-
mance of the service placement decision in pursuit of
energy consumption and response latency optimiza-
tion. For instance, the request rate of service usu-
ally indicates its popularity. Intuitively, placing the
most popular services at RSUs can reduce the re-
sponse delay to the most extent. Further to this, ser-
vices with larger sizes of task-input data tend to be
placed at RSUs, since they actually consume more
network resources than those with smaller task-input
data sizes. Next, services that require less computa-
tional resources tend to be placed, since services with
larger computational demands usually incur relatively
long computation delays and large energy consump-
tion. Last but not least, the value of V can also af-
fect the objective value of P2. V is used to adjust
the tradeoff between response latency and energy con-
sumption. Usually, a larger value of V indicates that
the VEC system values the response latency more than
the energy consumption, while a smaller value of V

indicates that the system values energy consumption
more due to the limited energy supply. Specifically,
we use the average service requests arriving at RSU
n for service k denoted by ptk,n as the popularity of

© China Communications Magazine Co., Ltd. · March 2023 211

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 06,2023 at 08:26:08 UTC from IEEE Xplore. Restrictions apply.

service k, and ptk,n is defined as:

ptk,n =
M∑

m=1

In,m
λt
k,m

|Rm|
, ∀k ∈ K,∀n ∈ N . (25)

Based on these observations, we design a utility
function that incorporates the above three factors into
one single value to evaluate each service within each
time slot. In particular, the utility function of service
k at RSU n in time slot t can be defined as:

Uk,n(t) = wv
Vmax − V

Vmax − Vmin
+ wp

ptk,n −min
l∈K

(ptl,n)

max
l∈K

(ptl,n)−min
l∈K

(ptl,n)

+ wd

dk −min
l∈K

(dl)

max
l∈K

(dl)−min
l∈K

(dl)
+ ws

max
l∈K

(sl)− sk

max
l∈K

(sl)−min
l∈K

(sl)
,

(26)

where wp, wd, ws and wv are numerical values to de-
note the preferences towards the four factors which
satisfy wp + wd + ws + wv = 1. The two functions
max(·) and min(·) denote the maximal and minimal
values, respectively. Vmax and Vmin are the upper and
lower bounds of V , respectively. Therefore, the ser-
vice with a larger utility value is more worth being
placed at RSUs.

A greedy algorithm GAPO for solving P2 is put
forward as depicted in Algorithm 2. As illustrated in
our system model, RSUs are inter-connected with each
other, so the information collected from regions such
as λt

k,m can be timely disseminated and shared among
them. Some initializations should be accomplished
such as δt = 0. Additionally, the algorithm initializes
one Max-Heap hn for each RSU n within each time
slot. In the next, each RSU can make its own service
placement decisions independently. Specifically, RSU
n calculates the utility value of each service based on
the gathered information. The heuristic rule is that
services with larger utility values tend to be placed
at RSUs. To achieve this goal, the algorithm pushes
the pair of service index and the corresponding utility
value (i.e., (k,U t

k,n)) into the heap hn. Thus, a ser-
vice with a larger utility value is always retrieved first
when the pop operation over hn is implemented. Then
n checks whether there is enough storage capacity for
the current service popped from hn. If the storage ca-

pacity is sufficient, the current service is placed and
the service placement decision is updated (line 15).
Repeat the procedure until hn is empty or RSU n has
insufficient storage capacity.

Algorithm 2. Greedy algorithm for per slot optimization
(GAPO).

Input: K, N , V , En, Dn, wp, wd, ws, t
Output: δt

1: Record and share λtk,m among RSUs N , ∀k ∈ K,
∀m ∈ M

2: Initialize δt with zeros
3: Initialize a heap hn for each n ∈ N
4: for each n in N do
5: Csum = 0
6: for each k in K do
7: Calculate ptk,n based on (25)
8: Calculate U t

k,n based on (26)
9: Push (k,U t

k,n) into hn
10: end for
11: while hn not empty do
12: hn.pop(l,U t

l,n)
13: Csum = Csum+ dl
14: if Csum ≤ Dn then
15: δtl,n = 1
16: end if
17: end while
18: end for
19: Return δt

Remark 1. GAPO is actually executable in parallel
to a great extent after each RSU n obtains the re-
quired information from the VEC network. In GAPO,
the time taken for each RSU n mainly includes the fol-
lowing parts. The first part is the time taken for RSUs
to communicate with each other such that the infor-
mation required for decision-making can be gathered.
The second part is the time taken to sort the services
in hn and the process can be accomplished with the
time complexity O(K logK), where K is the number
of services. The third part is the time taken to traverse
hn with the aim to find appropriate services to place,
and the process can be accomplished with the worst
time complexity O(K logK). Note that the first part
of the time is usually negligible compared to the other
two parts. To sum up, the time complexity of GAPO
is O(NK logK) without considering the parallel ex-
ecution of each RSU. The time complexity is much less
than the evolutionary algorithms such as Genetic Al-
gorithm (GA).

212 © China Communications Magazine Co., Ltd. · March 2023

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 06,2023 at 08:26:08 UTC from IEEE Xplore. Restrictions apply.

Table 1. Parameter settings.

Para. Description Value

M The number of regions 6
N The number of RSUs 20
K The number of services [25, 65]
λt
k,m Arrival rate for service k in region m [10, 20]

En Energy consumption constraint for RSU n [1.2, 2.2]
fn The processing frequency [0.005,1]GHz
dk The task-input data size for service k [1, 6]
sk Average required workload for service k [20, 25]
Dn The caching capability of RSU n [30, 50]
ςη The coefficients for energy consumption 1e-12
αn The static energy consumption [0, 1)

VI. SIMULATION EVALUATION

6.1 Parameter Settings

The main parameters with the default values in the
simulation are listed in Table 1. Note that the pa-
rameters are set empirically. For example, we assume
that the topology of the vehicular edge computing net-
work is built in a random way. In particular, the set
of RSUs that can cover the region m (i.e., Rm) is de-
termined randomly. Additionally, we assume that the
transmission delay can be predicted when task data are
transmitted over the backbone network and thus the
response delay for task execution in the cloud center
can be obtained. For the utility function of services at
RSUs, the weights towards the four factors are set to
0.3, 0.2, 0.2, and 0.3, respectively.

6.2 Results Analysis and Discussion

Figure 2 shows the performance comparison in terms
of the optimal values. In addition to the proposed
heuristic, there are actually several approaches for
solving the problem P2. In particular, we compare
our approach with three other approaches in the simu-
lation. The three approaches are the greedy approach,
the random approach and the genetic approach, re-
spectively. We denote them by P Max, RND, and GA
in the simulation, respectively. The greedy approach
only adopts the service popularity as the selection cri-
teria. Within each time slot, the services are sorted in
descending order based on the defined service popu-
larity. Then, the service with the largest value of pop-
ularity is always placed first. The procedure repeats
until the violation of constraint conditions, such as (1)
happens. The random approach is the simplest way

Figure 2. The performance comparison with different ap-
proaches for P2.

to place the services for RSUs within each time slot.
During each time slot, services are randomly selected
to place as long as no violation happens. The ran-
dom approach does not consider the feature of the op-
timization objective or the feature of service requests.
The genetic algorithm is especially suitable for binary
MKP, owing to its simple deployment and easy imple-
mentation. However, the solution accuracy of this ap-
proach mainly depends upon the number of iterations,
which often turns out to be a time-consuming process.
Therefore, it can hardly satisfy the stringent latency
requirement in this paper.

From Figure 2, we can observe that the average per-
formance of OPEC with GA is the best among the four
approaches, and OPEC with GAPO comes second. In
the parameter settings for GA, the crossover and mu-
tation probability are respectively set to 0.2 and 0.02.
The population size and the maximal number of iter-
ations are 20 and 30, respectively. In the simulation,
some information is the same for all the time slots,
which includes M , N , K, Rm, En and so on. To
reflect the dynamics of the vehicular edge computing
networks, some information is totally independent in
each time slot. Such information is exemplified by
λt
k,m, dk and sk.
As a result, we can easily observe that the perfor-

mance of all approaches wildly fluctuates in different
time slots. Even so, our approach is average much bet-
ter than the random approach and the greedy approach.
The random approach can occasionally yield better re-
sults, e.g., when the number of time slots is 10. In con-
trast, the greedy approach, which only considers the

© China Communications Magazine Co., Ltd. · March 2023 213

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 06,2023 at 08:26:08 UTC from IEEE Xplore. Restrictions apply.

Figure 3. The execution time comparison with different ap-
proaches for P2.

service popularity, never yields the best result but oc-
casionally yields the worst result as denoted in the fig-
ure. This is because it neglects two important factors
such as dk and sk, which can seriously affect the value
of the optimization objective. For example, based on
(9), it is obvious that the service with a larger value
of sk renders more energy consumption if it is placed
at RSU. However, energy consumption has been in-
corporated into the optimization of the objection func-
tion as shown in problem P2. Therefore, minimization
of the optimization objective is supposed to consider
the influence of the averagely required workload sk.
It shall be noted that the performance of OPEC with
GAPO, P Max and RND is equally bad compared to
OPEC with GA, when the time slot is zero. The ser-
vice placement profile is generated randomly for the
three approaches at the beginning. However, this ini-
tial service placement profile can be updated with the
increasing iterations in OPEC with GA.

The execution times for different approaches are de-
picted in Figure 3. Comparatively speaking, the aver-
age execution time of OPEC with GAPO is slightly
longer than the other two approaches, i.e., OPEC with
RND and OPEC with P Max. However, these three
approaches can almost achieve real-time response in
the simulation. Obviously, the execution time of
OPEC with GA is much longer than the above three
approaches. As shown in Figure 3, this strategy usu-
ally takes seconds to get the result in the simulation
and thus the execution times of the other three ap-
proaches are negligible compared to that of OPEC
with GA. Combining with the results in Figure 2, we

Figure 4. The energy consumption along different time
slots.

can see that GA helps OPEC achieve the best perfor-
mance in terms of optimal values at the expense of un-
bearable time overhead. Considering the strict delay
requirement for obtaining the optimal service place-
ment profile, GA-based approach is not appropriate.

Next, we evaluate the average energy consumption
at different RSUs along the time slots. The experi-
mental results are shown in Figure 4. On one hand,
we need to investigate the energy consumption of each
RSU along the time slots; On the other hand, it is
more important to check whether the violation hap-
pens along the time slots. Specifically, we select 4
from 20 RSUs in the simulation, and the label “RSU:
1.27” means the RSU with its energy threshold being
1.27. First, it is noticeable that the energy consump-
tion of the four RSUs does not exceed their own global
energy constraints. As a result, the simulation result
has verified the rationality of the theoretical analysis.
Second, the energy consumption for RSUs all seem
stable along the time slots. Such an observation is ac-
ceptable and understandable, since it is in accord with
the conclusion drawn in Theorem 2, i.e., the queue
backlog is mean rate stable. Last but not least, we
notice that the energy consumption for all the RSUs
is the least when the time slot is zero. It is explicable
since we assume that there are no services to be placed
at RSUs in the simulation. Thus, there are no services
at RSUs that incur energy consumption at the initial
time slot.

We investigate the influence of the number of ser-
vices upon the performance of our approach in the
next. Figure 5 reveals the optimal values with differ-

214 © China Communications Magazine Co., Ltd. · March 2023

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 06,2023 at 08:26:08 UTC from IEEE Xplore. Restrictions apply.

Figure 5. The performance comparison under different
numbers of services.

Figure 6. The performance comparison with different val-
ues of V .

ent numbers of services. Several conclusions can be
drawn from the observation as follows. First, it seems
that the optimal value of the optimization objective has
little to do with the number of services, since there are
no deterministic relationships between them. For ex-
ample, when the number of services is 25, the optimal
value in most cases is better than that with the num-
ber of services equal to 35 and 45. On the other hand,
when the number of services is 55, the optimal value
in most cases is also better than that with the number
of services equal to 35 and 45, respectively. Accord-
ingly, the number of services is not the more the better,
or the less the better, in terms of the optimal values.

The control parameter V can be used for making
a tradeoff between the response latency and energy
consumption as mentioned earlier. We study the in-
fluence of V upon the long-term average response de-

Figure 7. The performance comparison with different stor-
age capabilities.

Figure 8. The response delays with different numbers of
services.

lay and the long-term average energy consumption in
the simulation. The results are shown in Figure 6.
Obviously, the long-term average energy consumption
for all RSUs increases with the increasing value of
V . In contrast, the long-term average response delay
decreases as V increases. According to the theoret-
ical analysis, the placement decision profile obtained
by the proposed algorithm can gradually approach the
best decision profile by increasing the value of V .
However, it is inadvisable to blindly increase the value
of V , considering the ever-increasing average energy
consumption for all the RSUs in the long run. It is bet-
ter to seek a tradeoff between the response delay and
energy consumption when V is set in the simulation.

We investigate the influence of storage capabilities
on the performance of OPEC. The simulation results
are shown in Figure 7. Obviously, greater storage

© China Communications Magazine Co., Ltd. · March 2023 215

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 06,2023 at 08:26:08 UTC from IEEE Xplore. Restrictions apply.

capabilities enable more services to be placed at the
same time. However, the more services to be placed,
the more energy consumption at RSUs. Thus, it is
worthwhile investigating the relationships between the
performance of the approach and the storage capacity.
The simulation result in the figure shows that the per-
formance of OPEC is constrained by the storage ca-
pacity at RSUs. For instance, greater storage capacity
yields better performance in terms of optimal values.

Since our goal in this paper is to reduce the average
response latency for all the requested services by plac-
ing services at the edge in advance, we have conducted
the last experiment to evaluate our approach compared
to the traditional approach that does not apply a ser-
vice placement strategy. As shown in Figure 8, it is
obvious that a better result is yielded when the ser-
vice placement strategy is applied. In addition, the
response delays increase for both approaches as the
number of services increases. More importantly, our
approach is much better than the traditional approach
no matter how the number of services varies.

VII. CONCLUSION

VEC can cater to the strict delay requirement of ve-
hicular tasks/services, since the computing resources
are deployed at the network edge such as RSUs. How-
ever, the explosive growth in vehicular offloading re-
quests has caused tremendous pressure on both the
edge server and the front-haul links. In this paper,
we attempt to optimize the VEC systems by service
placement strategy. Specifically, we minimize the av-
erage response latency for the requested services along
the slotted timeline, while considering multiple con-
straints such as energy consumption and storage ca-
pacity. The greedy heuristic has been incorporated
into the drift-plus-penalty-based algorithm for search-
ing for the approximate solution. Extensive simulation
has proven that our approach can achieve better per-
formance compared with other approaches in terms of
optimal values.

ACKNOWLEDGMENT

This work was supported by National Natural Sci-
ence Foundation of China (No. 62071327) and Tian-
jin Science and Technology Planning Project (No.
22ZYYYJC00020).

References
[1] X. Li, X. Zhang, et al., “Asynchronous online service place-

ment and task offloading for mobile edge computing,” in
18th Annual IEEE International Conference on Sensing,
Communication, and Networking, SECON 2021, Rome,
Italy, July 6–9, 2021, pp. 1–9. IEEE, 2021.

[2] J. Xu, L. Chen, et al., “Joint service caching and task of-
floading for mobile edge computing in dense networks,” in
2018 IEEE Conference on Computer Communications, IN-
FOCOM 2018, Honolulu, HI, USA, April 16-19, 2018, pp.
207–215. IEEE, 2018.

[3] C. Tang, X. Wei, et al., “Mobile vehicles as fog nodes for
latency optimization in smart cities,” IEEE Transactions on
Vehicular Technology, vol. 69, no. 9, pp. 9364–9375, 2020.

[4] L. Chen, C. Shen, et al., “Collaborative service placement
for edge computing in dense small cell networks,” IEEE
Transactions on Mobile Computing, vol. 20, no. 2, pp. 377–
390, 2021.

[5] C. Tang, C. Zhu, et al., “Toward response time minimization
considering energy consumption in caching-assisted vehic-
ular edge computing,” IEEE Internet of Things Journal,
vol. 9, no. 7, pp. 5051–5064, 2021.

[6] C. Tang, C. Zhu, et al., “Caching assisted correlated task of-
floading for iot devices in mobile edge computing,” in 2021
IEEE Global Communications Conference (GLOBECOM),
pp. 1–6. IEEE, 2021.

[7] R. Xie, Q. Tang, et al., “When serverless computing meets
edge computing: Architecture, challenges, and open is-
sues,” IEEE Wireless Communications, vol. 28, no. 5, pp.
126–133, 2021.

[8] H. Hou, H. Jin, et al., “Cost efficient edge service placement
for crowdsensing via bus passengers,” Mobile Networks and
Applications, vol. 26, pp. 899–908, 2021.

[9] M. Ayoubi, M. Ramezanpour, et al., “An autonomous iot
service placement methodology in fog computing,” Softw.
Pract. Exp., vol. 51, no. 5, pp. 1097–1120, 2021.

[10] T. Huang, W. Lin, et al., “An ant colony optimization-based
multiobjective service replicas placement strategy for fog
computing,” IEEE Transactions on Cybernetics, vol. 51,
no. 11, pp. 5595–5608, 2021.

[11] X. Xu, B. Shen, et al., “Edge server quantification and
placement for offloading social media services in industrial
cognitive iov,” IEEE Transactions on Industrial Informatics,
vol. 17, no. 4, pp. 2910–2918, 2021.

[12] Y. Hao, M. Chen, et al., “Deep reinforcement learning
for edge service placement in softwarized industrial cyber-
physical system,” IEEE Transactions on Industrial Infor-
matics, vol. 17, no. 8, pp. 5552–5561, 2021.

[13] Y. Chen, S. Zhang, et al., “Locus: User-perceived delay-
aware service placement and user allocation in mec envi-
ronment,” IEEE Transactions on Parallel and Distributed
Systems, vol. 33, no. 7, pp. 1581–1592, 2021.

[14] J. Ortı́n, J. R. Gállego, et al., “On optimizing network func-
tion placement for multicast group call service provision
in lte iops networks,” IEEE Access, vol. 9, pp. 160 897–
160 916, 2021.

[15] B. Yuan, S. Guo, et al., “Joint service placement and request
routing in mobile edge computing,” Ad Hoc Networks, vol.
120, p. 102543, 2021.

[16] J. Panadero, M. Selimi, et al., “A two-stage multi-criteria

216 © China Communications Magazine Co., Ltd. · March 2023

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 06,2023 at 08:26:08 UTC from IEEE Xplore. Restrictions apply.

optimization method for service placement in decentralized
edge micro-clouds,” Future Generation Computer Systems,
vol. 121, pp. 90–105, 2021.

[17] P. Han, Y. Liu, et al., “Interference-aware online multicom-
ponent service placement in edge cloud networks and its ai
application,” IEEE Internet of Things Journal, vol. 8, no. 13,
pp. 10 557–10 572, 2021.

[18] V. Farhadi, F. Mehmeti, et al., “Service placement and
request scheduling for data-intensive applications in edge
clouds,” IEEE/ACM Transactions on Networking, vol. 29,
no. 2, pp. 779–792, 2021.

[19] Z. Ning, P. Dong, et al., “Distributed and dynamic service
placement in pervasive edge computing networks,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32,
no. 6, pp. 1277–1292, 2021.

[20] X. He, R. Jin, et al., “Joint service placement and resource
allocation for multi-uav collaborative edge computing,” in
2021 IEEE Wireless Communications and Networking Con-
ference (WCNC), pp. 1–6. IEEE, 2021.

[21] Z. Liu, C. Zhan, et al., “Robust edge computing in uav sys-
tems via scalable computing and cooperative computing,”
IEEE Wireless Communications, vol. 28, no. 5, pp. 36–42,
2021.

[22] C. Tang, C. Zhu, et al., “Integration of UAV and fog-enabled
vehicle: Application in post-disaster relief,” in 25th IEEE
International Conference on Parallel and Distributed Sys-
tems, ICPADS 2019, December 4-6, 2019, pp. 548–555.
IEEE, 2019.

[23] L. Georgiadis, M. J. Neely, et al., “Resource allocation and
cross-layer control in wireless networks,” Foundations &
Trends in Networking, vol. 1, no. 1, pp. 1–144, 2006.

[24] Neely and J. Michael, “Stochastic network optimization
with application to communication and queueing systems,”
Synthesis Lectures on Communication Networks, vol. 3,
no. 1, p. 211, 2010.

[25] K. Bernhard and J. Vygen, “Combinatorial optimization:
Theory and algorithms,” Springer, Third Edition, 2005.,
2008.

Biographies

Chaogang Tang received his B.S. degree
from the Nanjing University of Aeronau-
tics and Astronautics, Nanjing, China, and
Ph.D. degree from the School of Informa-
tion Science and Technology, University of
Science and Technology of China, Hefei,
China, and the Department of Computer Sci-
ence, City University of Hong Kong, Hong

Kong, China, under a joint Ph.D. program, in 2012. He is now with
the China University of Mining and Technology. His research in-
terests include mobile cloud computing, fog computing, Internet
of Things, and big data.

Yubin Zhao received his B.S. and M.S.
in 2007 and 2010 respectively from Bei-
jing University of Posts and Telecommu-
nications (BUPT), Beijing, China. He re-
ceived his Ph.D. degree in computer science
in 2014 from Freie Universität Berlin (FU
Berlin), Berlin, Germany. He is currently
an Associate Professor with the School of

Microelectronics Science and Technology, Sun Yat-Sen Univer-
sity, Zhuhai, China. His current research interest includes wireless
power transfer, indoor localization and target tracking.

Huaming Wu received the B.E. and M.S.
degrees from Harbin Institute of Technology,
China in 2009 and 2011, respectively, both in
electrical engineering. He received the Ph.D.
degree with the highest honor in computer sci-
ence at Freie Universität Berlin, Germany in
2015. He is currently an associate professor
at the Center for Applied Mathematics, Tian-

jin University, China. His research interests include mobile cloud
computing, edge computing, Internet of Things, deep learning,
complex network, and DNA storage.

© China Communications Magazine Co., Ltd. · March 2023 217

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 06,2023 at 08:26:08 UTC from IEEE Xplore. Restrictions apply.

