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Abstract— Change point detection in dynamic networks aims
to detect the points of sudden change or abnormal events within
the network. It has garnered substantial interest from researchers
due to its potential to enhance the stability and reliability of
real-world networks. Most change point detection methods are
based on statistical characteristics and phased training, and
some methods are required to set the percent of change points.
Meanwhile, existing methods for change point detection suffer
from two limitations. On one hand, they struggle to extract
snapshot features that are crucial for accurate change point
detection, thereby limiting their overall effectiveness. On the
other hand, they are typically tailored for specific network
types and lack the versatility to adapt to networks of varying
scales. To solve these issues, we propose a novel unified end-
to-end framework called Variational Graph Gaussian Mixture
model (VGGM) for change point detection in dynamic networks.
Specifically, VGGM combines Variational Graph Auto-Encoder
(VGAE) and Gaussian Mixture Model (GMM) through joint
training, incorporating a Mixture-of-Gaussians prior to model
dynamic networks. This approach yields highly effective snap-
shot embeddings via VGAE and a dedicated readout function,
while automating change point detection through GMM. The
experimental results, conducted on both real-world and synthetic
datasets, clearly demonstrate the superiority of our model in
comparison to the current state-of-the-art methods for change
point detection.

Index Terms— Change point detection, abnormal events,
unsupervised learning, graph neural networks, dynamic
networks.
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I. INTRODUCTION

DYNAMIC networks are ubiquitous in real world. Social
networks [1], [2], transcriptional regulation networks [3],

financial transactions [4], and trade networks [5] can all
be characterized by dynamic networks. Modeling dynamic
networks is critical as it describes the way networks evolve and
interact over time, which helps us understand the evolutionary
patterns and predict future behavior of real-world systems [6],
[7]. Anomaly detection in dynamic networks is challenging
but of high importance since it can effectively safeguard
real-world networks from the threats caused by system faults
and attacks [8], [9]. Change point detection is an essential
task of anomaly detection in dynamic networks, which aims
to discover sudden change points or events that deviate from
normal patterns and helps to secure real-world networks
against sabotage [10]. Change point detection plays a crucial
role in enhancing the understanding and security of dynamic
systems and has numerous practical applications across multi-
ple domains. For instance, attack detection in Cyber-Physical
Systems [11], behavioral detection in cyber security [12],
finance fraud detection [13], pathological detection in medical
images [14] and so on.

Existing change point detection methods are mainly divided
into two categories [15], i.e., generative methods and feature-
based methods. For instance, Peel and Clauset [16] developed
the GHRG model, which simulates the dynamic network struc-
ture by hierarchical random graphs and detects deviations from
normal behavior by sliding windows. LAD [17] used singular
value decomposition of the graph Laplacian operator as the
low-dimensional representation of the snapshot. CICPD [15]
applied PageRank [18] to calculate the PageRank value of
each snapshot as the low-dimensional representation. However,
these methods require manually constructing the snapshot
feature vectors as the low-dimensional representation, and
some need to set the prior information of change points. These
limitations hinder the generalizability of traditional detection
methods, confining them to specific dynamic networks and
impeding their scalability to networks of different characteris-
tics and scales. This becomes especially evident in larger-scale
dynamic networks, where the performance of these methods
deteriorates significantly.

In recent years, deep learning-based methods [19], [20],
[21] have been widely applied to anomaly detection in
various domains. Compared to traditional methods, deep
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learning-based detection methods automatically extract fea-
tures by neural networks [22] and have demonstrated
impressive performance on larger-scale datasets. For exam-
ple, Netwalk [23] transposes vertex encoding into a
low-dimensional vector representation using clique embed-
dings to detect anomalies in dynamic networks. However, it is
a multi-stage detection method, and its embedding generation
process is relatively complex. Some methods [24], [25] view
change point detection as a time series anomaly detection
task and use deep sequential models for supervised or semi-
supervised learning. However, due to the limited number of
network snapshots and the significant changes in network
patterns before and after change points, the performance is
often unsatisfactory. In addition, due to some events in the
real world not being recorded, the manual label may hinder
supervised learning methods from deeply exploring hidden
evolving patterns in dynamic networks, making it challenging
to generalize change point detection in dynamic networks.
Therefore, it is more suitable to detect change points in
dynamic networks through unsupervised learning methods.
Consequently, we view this task as an unsupervised clustering
problem in this paper.

Graph Neural Networks (GNNs) have shown powerful
feature extraction ability, particularly when dealing with data
structured as graphs [26], [27], [28], [29], [30]. Dynamic
networks inherently exhibit temporal evolution in their graph
structure [31], [32], [33], [34], making GNN-based approaches
well-suited for the task of change point detection within
dynamic networks. To the best of our knowledge, only one
previous work [35] has explored the utilization of GNNs for
change point detection in dynamic networks, and it employs
a supervised learning methodology. However, based on our
previous analysis, unsupervised detection methods are more
appropriate for detecting change points in dynamic networks.
In summary, change point detection still faces some challenges
as follows: i) Most existing change point detection methods
are conducted in a staged manner, lacking a complete end-
to-end framework that can adapt to dynamic networks with
varying scales. ii) The inherent nature of change point detec-
tion suggests a preference for unsupervised learning methods.
However, the absence of sufficient supervised information
makes it more challenging to learn effective embeddings and
discover change points in an unsupervised manner.

Building upon the aforementioned challenges, we propose
a novel Variational Graph Gaussian Mixture model (VGGM)
for change point detection in dynamic networks. VGGM is
an end-to-end unsupervised model achieved through jointly
iterative training Variational Graph Auto-Encoder (VGAE)
[36] and Gaussian Mixture Model (GMM) [37], which per-
forms well on both real-world and synthetic networks with
different scales. VGGM automatically discovers change points
by GMM without setting additional parameters. And the
mechanism of joint training guarantees the effectiveness of
snapshot embedding. Specifically, We obtain node embeddings
by extracting the network’s topological structure informa-
tion through VGAE. Then, we obtain snapshot embeddings
that preserve the information of network structural changes
through a specific readout function. Next, we update the

prior distribution in VGAE by Gaussian mixture distribution
obtained from GMM and assign clustering labels for each
snapshot. Finally, we discover change points according to the
clustering labels and the temporal information. To summarize,
the main contributions of our work are:

• We propose a novel unified framework for change point
detection in dynamic networks, called VGGM, which is
capable of handling dynamic networks of varying scales.
To the best of our knowledge, we are the first to propose
an end-to-end unsupervised approach for change point
detection in dynamic networks.

• We jointly optimize VGAE and GMM through a way
of iterative training mechanism. The snapshot embedding
obtained under this constraint of joint iterative training
will capture more essential network information and be
more effective for change point detection.

• We conduct experiments on three real-world dynamic
networks and two synthetic networks with ground truth
change points. Experiment results validate the superiority
and excellent detection ability of our model.

The remainder of this paper is structured as follows: In
Section II, we provide a brief overview of prior research
on change point detection in dynamic networks. Section III
outlines the problem definition and provides an in-depth
description of our model. Section IV presents the experimental
results along with additional analysis. Finally, Section V
concludes and initiates a discussion regarding our work.

II. RELATED WORK

A. Generative Methods

Generative methods explore change point detection in
dynamic networks with a specific probabilistic architecture,
which seeks to discover potential change points in the latent
space. The difference between generative methods in adopting
various probabilistic generative models.

Peel and Clauset [16] introduced GHRG to pay more
attention to hierarchical network structures. To accurately and
quantitatively detect the change points, a generalized hierar-
chical random graph model is combined with the Bayesian
hypothesis test to estimate model parameters in CHRG.
Wang et al. [38] proposed EdgeMonitering, which is a more
general generative model for accommodating another snapshot
model. EdgeMonitering captures the temporal dependency
while computing the similarity between the snapshots with the
first-order Markov process. Miller and Mokryn [39] adopted
a size-agnostic model to detect change points in the dynamic
network, namely SizeCPD. SizeCPD doesn’t have any pro-
fessional and prior knowledge about the network, even the
temporal dependency relations. It computes the degree distri-
bution of snapshots with sliding windows and then conducts
hypothesis testing to discover change points. Jiao et al. [40]
proposed a new generative evolutionary model that takes
into account the interaction of anomalies at different levels
called GEABS. Specifically, GEABS discovers the correlation
of network macroscopic, mesoscopic, and micro-scale with
the Stochastic Block Model (SBM). Although these methods
have made promising results in dynamic networks, parameter
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estimation is required for these generative methods, which
usually bring high computational complexity and memory
cost.

B. Feature-Based Methods

The main idea of feature-based methods is to directly extract
feature vectors that contain the network’s essential structure
information from snapshots. Compared to generative methods,
these approaches have lower computational complexity and
memory cost. However, the quality of the extracted features
plays a crucial role in determining the detection performance
for change point detection in dynamic networks. Therefore,
how to extract features that comprehensively represent the
entire network is the key challenge for feature-based methods.
One such feature-based method is DeltaCon [41], which
leverages the similarity between two snapshots to detect
change points in dynamic networks. DeltaCon utilizes affinity
matrices of pairwise vertices as the feature vectors for each
snapshot. Affinity matrices consider more neighboring nodes,
allowing them to capture richer network information. Another
method, proposed by Zhu et al. [15], computes the PageRank
value of every snapshot using the PageRank algorithm [18]
as the feature vectors. Subsequently, it constructs a graph
by computing the similarity between the features of each
snapshot, transforming the change point detection problem
into a community detection problem that can be dealt with
through spectral methods. Huang et al. [17] introduced a graph
Laplacian-based detection framework. This approach utilizes
Singular Value Decomposition to assign low-dimension graph
representation for each snapshot. It captures both gradual and
abrupt changes by stimulating the long-term and short-term
dependencies in dynamic evolution by two sliding windows.

Some feature methods based on deep learning have also
emerged. For instance, Netwalk [23] transposes vertex encod-
ing into a low-dimensional vector representation by using
clique embeddings that minimize pairwise distances between
vertices in each random walk, and then utilizes a dynamic clus-
tering algorithm to discover change points. Sulem et al. [35]
proposed a graph similarity learning model based on a Siamese
graph neural network. it’s capable of handling any available
node attributes and detecting local and global changes in
dynamic networks. Although these methods can effectively
detect change points in dynamic networks, some limitations
hinder their generalizability, such as the demand for manual
feature engineering, additional parameters related to change
points, and staged training, among other issues.

III. METHODOLOGY

In this section, we first formalize the formal problem
definition for change point detection in dynamic networks
and then introduce the key concepts and symbols used in this
paper. In addition, we elaborate on the concrete details of the
proposed model. Table I summarizes the major notations used
in this paper.

A. Problem Definition

We represent a dynamic network as a series of snapshots,
denoted by G = {G0, G2, . . . , GT −1}, where T is the total

TABLE I
MAJOR NOTATIONS IN THIS PAPER

number of snapshots. G t represents the snapshot at time t ,
characterized by a node-set Vt and an edge-set Et , such
that G t = {Vt , Et , At }. Here, At is the adjacency matrix
of G t . In dynamic networks, nodes and edges may emerge
or vanish over time as the network evolves. We use Xt ∈

RN×D to represent the feature matrix of snapshot G t , with
D indicating the dimensionality of the feature matrix. Our
model assigns clustering labels to all snapshots, denoted as
K = {K0, K2, . . . , KM−1}, where M is the number of clusters.
Our goal is to identify those snapshots whose clustering labels
differ from those of their preceding snapshots. These identified
snapshots serve as change points within the dynamic network.

B. Proposed Method

The overall structure of VGGM is depicted in Fig. 1. Our
model consists of five main parts: VGAE, Readout Function,
GMM, Joint Iterative Training Mechanism, and the Change
Point Detection Algorithm. In the following sections, we will
offer an in-depth explanation of the operation and functionality
of each component.

1) VGAE: VGAE is a probabilistic generative model that
adopts a two-layer GNN encoder and an inner product decoder.
VGAE combines ideas from both graph autoencoders and
variational autoencoders to capture the topology structure
information within a given graph. It allows for the extrac-
tion of meaningful and informative node embeddings while
accounting for uncertainty, making it a valuable tool in graph
representation learning and generative modeling. VGAE learns
the node embedding of graph data by optimizing the recon-
struction loss and KL divergence between the approximate
posterior distribution and a single Gaussian prior distribution.
Due to the simplicity and effectiveness of VGAE, we employ
VGAE to extract node embedding. In this work, we adopt
GCN [42] as the GNN encoder in VGAE. Specifically, for a
snapshot G t , we feed Xt and At of G t into the GCN encoder
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Fig. 1. Overview of VGGM framework, which detects change points in dynamic networks through the collaboration of five parts. First, node embedding
is obtained by VGAE. And then we get snapshot embedding with a special Readout function. Next, we get the Gaussian mixture distribution by GMM to
update the single Gaussian prior in VGAE. At last, we discover the change points with clustering results and temporal information of the dynamic network.

to obtain the latent variable H.

H = δ(D̂−1/2Ãt D̂−1/2Xt W), (1)

where Ãt = At +I denotes the adjacency matrix with inserted
self-loops. Xt is the feature matrix, D̂ is the degree matrix, and
the W is the parameters matrix that can be learned. δ is the
activation function.

Then, we utilize two single-layer GCNs to encode the latent
variable, yielding the mean vector µenc

t and the variance vector
σ enc

t as follows:

µenc
t = δ(D̂−1/2Ãt D̂−1/2HW1), (2)

σ enc
t = δ(D̂−1/2Ãt D̂−1/2HW2). (3)

Node embeddings Zt can be sampled from posterior dis-
tribution N ∼ (µenc

t , σ enc
t ). It is important to note that

the sampling operation cannot be backpropagated through
gradient descent because it is non-differentiable. Therefore,
the reparameterization operation [43] is introduced to address
this issue. Specifically, a variable ε that follows a standard
normal distribution is introduced to transform the sampling
operation into a linear operation, i.e., Zt = ε ∗ σ enc

t + µenc
t ,

where ∗ is the denotes the dot product. This design ensures
that the model can perform backpropagation.

Based on the above statements, we can formalize the vari-
ational inference process achieved through a two-layer GCN
encoder as follows:

q(Zt |Xt , At ) =

n∏
i=1

q(Zi
t |Xt , At ), (4)

q(Zi
t |Xt , At ) = N (Zi

t |µ
i,enc
t , diag((σ

i,enc
t )2)), (5)

where Zi
t is the i-th elements of Zt , µ

i,enc
t and σ

i,enc
t are the

i-th row of µenc
t and σ enc

t , respectively.
An inner product between latent variables is adopted as the

decoder to reconstruct the input graph’s topological structure.
More specifically,

Ât = δ(Zt (Zt )
T ), (6)

where Ât is the reconstructed adjacency matrix. δ is the
logistic sigmoid function. We define Ai j

t are the elements of
At . The generative process can be formalized as,

p(At |Zt ) =

n∏
i=1

n∏
j=1

p(Ai j
t |Zi

t , Z j
t ), (7)

p(Ai j
t = 1|Zi

t , Z j
t ) = δ((Zi

t )
T Z j

t ). (8)

The initial variational lower bound of VGAE in our
model consists of reconstruction loss and the KL divergence
between the approximate posterior distribution q(Zt |Xt , At )

and the initialized prior distribution P(Zt ) i.e., single Gaussian
distribution.

L(1) = Eq(Zt |Xt ,At )[p(At |Zt )] − KL[q(Zt |Xt , At )||p(Zt )].

(9)

where KL[·||·] denotes the Kullback-Leibler (KL) divergence.
The calculation of KL divergence will be updated in the
subsequent joint iterative optimization. This will be introduced
in detail in the joint iterative training subsection.

2) Readout Function: We acquire node embeddings Zt
through the training of VGAE. Subsequently, we employ a
permutation-invariant readout function (i.e., pooling operation)
R(·) to obtain each snapshot embedding zt .
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Algorithm 1 Training Algorithm of VGGM

Input: Snapshots sequence GT −1
t=0 , feature matrix and adja-

cency matrix of each snapshot Xt , At , joint iteration
training times r , single Gaussian distribution p(Zt )

Output: Clustering results Ki (i = 0, 1, . . . , M − 1)

1: Get node embedding with VGAE optimized by Eq. 9
2: Get snapshot representation with Readout function R(·)

by Eq. 10
3: Compute mixture weights wi

t , µ
i,G M M
t and covariance

matrix 6
i,G M M
t of GMM for each snapshot

4: Choose a cluster c from cat (wt ), each cluster meets N ∼

(µ
c,G M M
t 6

c,G M M
t ) and denote it as pm(Zt )

5: Replace p(Zt ) with pm(Zt )

6: for i = 0 To r − 1 do
7: Get node embedding with VGAE optimized by Eq. 14
8: Repeat steps 2-5
9: end for

10: Get the clustering results Ki (i = 0, 1, . . . , M − 1) by Eq.
13

11: return Ki (i = 0, 1, . . . , M − 1)

Different types of pooling operations can significantly affect
the performance of change point detection. In the majority of
cases, the number of nodes responsible for inducing changes
in the network structure tends to be relatively small. In general,
the alteration of a small subset of nodes can potentially trigger
a substantial transformation in the entire network structure.
Some studies analyzed the characteristics of anomalous nodes
from a spectral domain perspective and found that a small
portion of anomalous nodes exhibit higher signal strength in
the spectral domain, while the majority of normal nodes have
low-frequency signals [44], [45]. This suggests that the major-
ity of nodes share a similar feature representation, while only
a few abnormal nodes possess distinct feature representation.
Consequently, when employing mean pooling or sum pooling
functions, the representations of these abnormal nodes will
be overshadowed by a multitude of normal representations.
Consequently, the resulting graph features obtained from such
pooling operations will exhibit similarity and prove unsuitable
for change point detection. Therefore, we apply the max
pooling to realize the pooling operation as follows:

zt = Rmax (Zi
t |i ∈ N ). (10)

3) GMM: GMM is a parameter probability density function,
expressed as a weighted sum of Gaussian component densities.
GMM describes data distribution by employing multiple Gaus-
sian distributions, which is a widely used clustering algorithm
both in academic research and industry due to its capability of
representing a class of data distributions. Thus, we leverage
GMM to divide the representation of all snapshots zt into
different clusters. The formalization of GMM for dynamic
networks can be described as follows:

p(x | λ) =

M∑
i=1

wi
t g

(
x | µ

i,G M M
t , 6

i,G M M
t

)
, (11)

Algorithm 2 Algorithm of CPD for Clustering Results

Input: Clustering results K i (i = 0, 1, 2, . . . , M − 1), K(Gt )

is denoted as the clustering label of G t
Output: Change points set Tcpd

1: initialize tag = K(G0), Tcpd = ∅, arrange clustering results
by time

2: for t = 0 To T − 1 do
3: if K(Gt ) = tag then
4: G t isn’t a change point
5: continue
6: else
7: Tcpd = Tcpd ∪ t
8: tag = K(Gt )

9: end if
10: end for
11: return Tcpd

where x is the input feature vectors of data, wi
t is the

mixture weights for snapshot G t , wi
t ≥ 0 and

∑M
i=1 wi

t = 1.
µ

i,G M M
t and 6

i,G M M
t is the mean vector and covariance

matrix separately of component i at snapshot G t in the
GMM, respectively. λM = (µ

i,G M M
t , 6

i,G M M
t ), M is the

number of Gaussian component. g
(

x | µ
i,G M M
t , 6

i,G M M
t

)
is

the component Gaussian distribution density, each component
is a D-variate Gaussian function.

g
(

x | µ
i,G M M
t , 6

i,G M M
t

)
=

1

(2π)D/2
∣∣∣6i,G M M

t

∣∣∣1/2

× exp
{

−
1
2

(
x−µ

i,G M M
t

)′

(6
i,G M M
t )−1

(
x−µ

i,G M M
t

)}
.

(12)

Moreover, to estimate the parameters of the GMM,
we employ the Expectation-Maximization algorithm [46]. The
GMM yields M clusters, denoted as K i , i ∈ {0, 1, . . . , M −1},
where each cluster represents a set of snapshots exhibiting
similar structural and attribute characteristics.

K i
= G M M(z), i ∈ {0, 1, . . . , M − 1}, (13)

where z denotes the set of all snapshot embeddings.
A GMM can be accurately represented by a series of param-

eters, including mean vectors µ
i,G M M
t , covariance matrix

6
i,G M M
t and weights wi

t of all components. We will update
the prior distribution of VGAE with the parameters of GMM
to achieve joint iterative training. This will be introduced in
detail in the joint iterative training subsection.

4) Joint Iterative Training: VGAE employs a single Gaus-
sian distribution prior to node embedding. However, the single
Gaussian distribution cannot sufficiently describe the data
distribution sometimes. Especially in the task of change point
detection in dynamic networks, the interactions between nodes
are more complex, and the topology structure undergoes
sudden changes as well. A simple Gaussian prior cannot
provide effective constraints to learn effective embedding in
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this case. Therefore, We adopt joint iterative training to replace
the single Gaussian distribution in VGAE with the Gaus-
sian mixture distribution obtained by GMM. There are some
existing studies that try to replace the Gaussian prior in the
variational framework with the Gaussian mixture distribution.
VaDE [47] combines the GMM with VAE to solve problems
of image clustering. Hui et al. [48] focuses on node clustering
by combining VGAE and GMM. Here we expand the idea
to detect change points in the dynamic network through joint
iterative training of VGAE and GMM.

With the help of joint iterative training, the generative
process can be described as follows:

• First, we select a cluster c for G t from the M clusters,
employing the GMM to model the choice of c. This selec-
tion is governed by a categorical distribution Cat (wt ),
where wt represents the mixture weights of the GMM.

• Each cluster c is characterized by a distribution param-
eterized by mean vectors µ

c,G M M
t and covariance

matrix 6
c,G M M
t , with the latter defined as 6

c,G M M
t =

(σ
c,G M M
t )2I, where I is the identity matrix and σ

c,G M M
t

represents the variance.
• Subsequently, we update the single Gaussian distribution

of the data with the Gaussian mixture distribution N ∼

(µ
c,G M M
t , 6

c,G M M
t ). This updated distribution serves as

the prior of VGAE in the next joint iteration training
phase.

• Next, we infer the posterior distribution to extract node
embeddings Zt , all under the constraints of this new prior.

• Finally, we employ an inner product decoder to generate
the final generative sample.

The final variational lower bound of VGAE consists of
reconstruction loss and the KL divergence between an approx-
imate posterior distribution and Gaussian mixture distribution.

L(2) = Eq(Zt |Xt ,At )[p(At |Zt )] − KL[q(Zt |Xt , At )||pm(Zt )].

(14)

where Eq(Zt |Xt ,At )[p(At |Zt )] is the graph reconstruction
loss, q(Zt |Xt , At ) is the approximate distribution, pm(Zt )

is the Mixture-of-Gaussians prior obtained by GMM.
Since the Mixture-of-Gaussians prior more accurately
describes the characteristics of dynamic networks, the snap-
shot embedding obtained under this distribution constraint
can capture more network structure information. Algorithm 1
describes the details of our model training.

5) Change Point Detection: In our clustering process
through GMM, there’s a potential issue where snapshots may
be grouped into the same cluster even if they aren’t temporally
adjacent. This clustering behavior isn’t suitable for identifying
potential change points in dynamic networks. To address
this concern, we incorporate temporal dependence information
into the clustering results to identify potential change points.
Specifically, we obtain the clusters through GMM, resulting
in M clusters, each containing snapshots with identical cluster
labels. To discover potential change points, we organize these
snapshots based on their cluster labels and arrange them in
temporal order. We iterate through the arranged snapshots and
compare the cluster label of each snapshot with the current
value of tag. If the cluster label of a snapshot at time t

TABLE II
CHARACTERS OF DATASETS, T IS THE NUMBEROF SNAPSHOTS, Nmax

IS THE MAXIMUM NUMBER OF NODES IN THE DYNAMIC NETWORK,
Emean , Emax , AND Emin ARE THE MEAN, MAXIMUM, AND

MINIMUM NUMBER OF EDGES IN THE DYNAMIC NETWORK,
RESPECTIVELY

differs from the current value of tag, we flag the snapshot
as a potential change point and update the value of tag
with the cluster label of the current snapshot. This process
continues until we have examined all snapshots, and at the
end, we will identify all the change points. This procedure
is further detailed in Algorithm 2, which provides a step-by-
step guide on how we identify change points by incorporating
temporal information into the clustering results.

C. Complexity Analysis

The time complexity of our model primarily arises from
VGAE. VGAE learns node representations through the recon-
struction graph loss, and for snapshot G t , its complexity is
O(|Vt |

2), where |Vt | is the number of nodes in G t . To reduce
complexity and accelerate training, we employ negative sam-
ple sampling to compute the reconstruction loss. This involves
treating all edges within a snapshot as positive samples and
sampling an equal number of edges as negative samples.
The optimization is then performed by minimizing the cross-
entropy loss. The complexity for G t is O(|Et |), where |Et | is
the number of edge in G t . For the dynamic network G with
T snapshots, the overall complexity is O(T |Et |).

IV. EXPERIMENTS

In this section, we first introduce our five datasets, including
three real-world networks and two synthetic networks. Then
we introduce all the compared methods with our model and
what kind of metric we adopt to evaluate. At last, we show
our results on five datasets and make further analysis.

A. Datasets and Baselines

1) Datasets: We conduct experiments using three
real-world networks and two synthetic networks of varying
scales to assess VGGM’s change point detection capabilities.
A detailed overview of the characteristics of these five
datasets is provided in Table II. The ground truth information
is provided in Fig. 2, Fig. 7, and Table III.

• MIT Proximity Network [49]: MIT Proximity Network
is a dynamic network that describes the social interactions
between students and staff in MIT Media Laboratory.
This network is composed of 94 individuals (the number
of nodes) interactions between August 31, 2000, and
July 10, 2005. We divide the MIT Proximity Network by
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Fig. 2. Visualization of adjacency matrix in Synthetic Network-1000. The coordinate axis represents the indices of nodes, where an element is marked as
1 if there exists an edge between a pair of nodes, and 0 if there is no edge. In this dynamic network, we initialize G0 with four communities (the structure
of G0 is the same as G1). When a snapshot exhibits a significant difference in network structure compared to the snapshot of the previous moment, we label
this snapshot as a change point. For example, G2 has 10 communities while G1 has 4 communities, G2 is considered a change point. It can be observed that
we introduce a total of eight change points into the dynamic network.

Fig. 3. Three network structures with different numbers of communities in
Synthetic Network-5000.

one week, and finally, get a dynamic network composed
of 45 snapshots from August 30, 2004, to July 10, 2005.
Each snapshot is an undirected graph describing the
relation between individuals. If two nodes interact with
each other, we can establish an edge for them. The
number of change points in the MIT Proximity Network
is 20.

• ENRON Email Network [50]: Enron Email Network is
built by email communications between different individ-
uals of Enron energy company. We construct a dynamic
network with 45 snapshots and 147 nodes (each node
represents a senior employee of the company.), taking
one month as a scale between November 1998 to June
2002. If two senior employees have direct email com-
munication, we establish an edge between them. Each
snapshot of the dynamic network describes the commu-
nication behavior of the company’s senior employees in
the corresponding month. We identify 18 incidents that
affect the Enron Mail Network structure as the change
points.

• World Trade Network [51]: World Trade Network con-
sists of trade records which include annual import and
export amounts from 196 countries between 1948 to
2000. Therefore, we use one year as the time scale to
construct a dynamic network, where each edge shows
that two countries conducted trade. The World Trade
Network has 53 snapshots and 196 nodes. On average,
each snapshot has 10926 edges. In our work, 21 points
that have a significant influence on the network structure
are labeled as change points.

• Synthetic Network [52]: We synthesize two dynamic
networks with different scales by the Stochastic Block
Model (SBM). SBM is a probabilistic generative model
describing the structure of a graph. It partitions the
graph into several communities by maintaining differ-
ent connection probabilities for nodes within the same
community and nodes in different communities. It can be
used for community detection, graph clustering, and other
tasks. Both synthetic networks consist of 16 snapshots.
For Synthetic Network-1000, the probability of edges
within the same community is 0.25, while the probability
of connecting nodes between different communities is
0.05. For Synthetic Network-5000, the within-community
connection probability is 0.1, and the probability of
connecting nodes between communities is 0.01. In our
setting, the intra-community and inter-community con-
nection probabilities remain constant. We only vary the
number of communities to introduce change points in
the synthetic networks. We show the network structure
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TABLE III
EVENTS OF ENRON EMAIL NETWORK AND WORLD TRADE NETWORK

and change points of Synthetic Network-1000 in Fig. 2.
Eight change points largely affect the network struc-
ture in 16 snapshots in Synthetic Network-1000. The

evolution process of Synthetic Network-5000 is the same
as Synthetic Network-1000. Fig. 3 shows the network
structure of Synthetic Network-5000. The change points
are identical in both synthetic networks.

2) Baselines: To ascertain the effectiveness of our model,
we conduct a comprehensive performance comparison with
seven advanced methods in change point detection, utilizing
five distinct dynamic network datasets as our evaluation bench-
marks. These selected approaches served as our baselines for
the comparative analysis.

• SCOUT [53]: This method first discovers potential
change points through a search and then performs clus-
tering on the same segment in the dynamic network.

• GHRG [16]: It combines a generalized hierarchical ran-
dom graph model with a Bayesian hypothesis test to
estimate model parameters and calculates the deviation
score of each snapshot whether it is a change point.

• CICPD [15]: This method is a change point detection
method based on community detection. It extracts fea-
tures for each snapshot with PageRank and finds change
points with spectral clustering.

• LAD [17]: This method obtains the low-dimension graph
representation of each snapshot by computing the Sin-
gular Value Decomposition of graph Laplacian. and
distinguishes change points by computing the anomalous
score.

• MultiLAD [54]: MultiLAD is a method based on LAD
and extends LAD to the multi-view setting. It identifies
the most informative singular values from each view.

• Netwalk [23]: It learns vector representations based on
the walk and detects change points based on a dynamic
clustering algorithm. Change points are detected by learn-
ing graph representations which can be updated steadily
as networks evolve.

• MICPD [55]: It is a multi-view feature interpretable
framework, which encodes high-dimensional data infor-
mation into a low-dimensional representation by a vector
autoregressive model, and discovers change points with
interactions of multiple entities across time.

• GEABS [40] This method introduces a generation model,
which takes into account the interaction of anomalies
at different levels (node, community, and network) to
capture all types of anomalies of dynamic networks.

• s-GNN [35] It adopts a siamese graph neural network to
learn the graph similarity of the dynamic network. This
method can online detect change points and adapt to the
specific network domain and localize changes.

3) Evaluation Metric: The change point detection problem
can also be viewed as a binary classification problem. Thus,
we employ three widely used indicators in classification tasks,
namely, Precision, Recall and F1, as our evaluation metrics.
which can be computed as follows:

• Precision: It indicates the proportion of the exact number
of searches in the predictions.

Precision =
T P

T P + F P
, (15)
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TABLE IV
PRECISION, RECALL, F1 OF OUR METHOD AND OTHER BASELINES

Fig. 4. The results of ablation experiment on five datasets. The performance of VGGM and other variants on the Mit Proximity Network, Enron Email
Network, World Trade Network, and two Synthetic Networks are listed from left to right. We conduct all variants of VGGM on each dataset.

where T P is the number of positive class predictions that
belong to ground truth, and F P represents that model
classifies true negative as positive.

• Recall: It indicates the proportion of positive instance
predictions by the model in the whole dataset.

Recall =
T P

T P + F N
, (16)

where F N represents the number of data instances that
the model considers to be negative but positive.

• F1-score: We employ the F1-score as the final perfor-
mance metric for evaluation.

F1 =
2 ∗ T P

2 ∗ T P + F N + F P
, (17)

where F1 is a comprehensive indicator, representing the
harmonic mean of both Precision value and recall
value.

B. Experiment Settings and Results

1) Implement Details: We conduct our method and all
baselines in an environment featuring Ubuntu 22.04.1 LTS,
an Intel(R) Xeon(R) Gold 6330 CPU @ 2.00GHz, and a
GeForce GTX 3090 Graphics Card. The software versions
utilized included CUDA 11.3 and PyTorch 1.12.0. To represent
the feature matrix for each dynamic network, we employed
one-hot encoding across all datasets. We conduct all experi-
ments with a fixed number of epochs and iterations for each
dataset. For constructing graph neural networks and handling
mini-batch data, we utilized the PyTorch Geometric Library
version 2.3.0. In addition, all methods are conducted 10 times,
and the final results are obtained as the mean values. Our
model is trained using the Adam optimizer with a learning rate
of 0.01, and a weight decay of 1e-5 is applied. The embedding
dimension for snapshot representation is set to 8, while the

GNN in VGAE featured 32 and 16 channels. For training
GMM, we utilize a diagonal covariance matrix and determined
the number of components based on the network structure
of each dataset, with values of 2, 3, and 4 being chosen
accordingly. For instance, we set the number of components
to 3 for two synthetic networks.

2) Experiment Results: We show the change point detec-
tion results of our method and other compared methods in
Table IV. The best performance is highlighted in black, and the
second-best performance is underlined. Due to the high time
complexity of GEABS, it results in an “out of time” issue on
the Synthetic-5000 dataset with millions of edges. Therefore,
our experimental results don’t report the performance of
GEABS on this dataset. According to the experimental results,
we can draw the following conclusions:

• It can be seen that our model VGGM outperforms other
methods in most cases, in terms of measures Recall
and F1, which implies that our model can discover more
change points in a dynamic network. We can find that
the recall rate is close to 1 in five datasets, which shows
that almost all the change points in the dynamic network
can be found.

• We also observe that VGGM performs exceptionally
well on two synthetic networks, showcasing significantly
higher precision than other methods. However, its per-
formance on three real-world datasets is not notably
remarkable. This could be attributed to the possibility
of incomplete recording of certain events in real-world
datasets, leading to imperfect ground truth labels. Con-
sequently, false negatives may not necessarily indicate
true model inaccuracies. In the case of synthetic datasets,
where the ground truth is entirely accurate, the model
exhibits higher precision compared to the real-world
datasets.
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Fig. 5. The performance of our model with different graph embedding dimensions on five datasets. It reflects the robustness of VGGM and the effect of
embedding dimensions as graph embedding dimensions changed. The F1 curve is generally stable on each dataset when the embedding dimensions are 4 to
256.

Fig. 6. The hyper-parameter sensitivity experiments on the number of
components of GMM.

• Lastly, our evaluation reveals interesting variations in
the performance of different methods across datasets.
CICPD demonstrates strong performance on the MIT
and Enron datasets but struggles on synthetic datasets.
LAD and MutilLAD exhibit similar performance on the
first four datasets but perform poorly on larger-scale
datasets. Netwalk displays relatively good performance
on synthetic datasets but yields mixed outcomes on real-
world datasets. In contrast, MICPD doesn’t perform well
on the MIT dataset. GEABS exhibits better performance
on three small-scale networks compared to synthetic net-
works. s-GNN performs well on two synthetic networks
but does not perform well on three real-world networks.
In comparison, VGGM consistently delivers excellent
performance across all datasets, demonstrating its versa-
tility in detecting change points within dynamic networks
of varying scales, including larger-scale networks, while
maintaining excellent overall performance. This suggests
that VGGM is more capable of generalizing dynamic net-
works of different scales and characteristics and mining
the evolution patterns of the dynamic network.

Based on the aforementioned experimental results, we have
confidence in the effectiveness of our model. By jointly
iteratively optimizing the GMM and VGAE, we approximate
the Mixture-of-Gaussians prior, which we believe provides
a more accurate characterization of the dynamic networks
compared to the distribution assumed in VGAE. Consequently,

the embeddings of each node capture more comprehensive
and precise network information. Additionally, the incorpo-
ration of the max-pooling mechanism successfully preserves
the anomaly information across the entire network snapshot.
We attribute the effectiveness of our model to these factors.

C. Ablation Experiments

To verify the effectiveness of the different parts in VGGM,
we conduct a set of ablation studies.

• w/o Joint. In order to investigate the impact of joint
iterative training, we conduct experiments using a vari-
ant referred to as “w/o Joint”, where VGAE and
GMM are trained separately. In this variant, VGAE is
employed with a single Gaussian prior to obtaining node
embeddings.

• w/o Max. To examine the significance of different pool-
ing methods, we train another variant referred to as “w/o
Max”. In this variant, we replace the max pooling oper-
ation with mean pooling to obtain snapshot embeddings.

All presented results are depicted in Fig. 4, from which we
can derive the following conclusions:

• In all five datasets, the performance metrics measured
by F1 experience degradation when the joint iterative
training mechanism is removed. This deterioration is
particularly pronounced in the World Trade and Synthetic
datasets. This observation underscores the positive impact
of joint iterative training, which enhances performance
by enabling the Gaussian mixture distribution to provide
a more precise representation of the data. This effect
is especially significant in the context of large-scale
dynamic networks.

• Replacing the max pooling operation with mean pool-
ing as the readout function results in underperformance
compared to the original model. This alternative approach
approximately matches the performance of the model
without the joint iterative training mechanism across the
five datasets. This finding suggests that the selection of
pooling functions can significantly influence the model’s
detection capabilities. In particular, max pooling has
proven to be effective in capturing abnormal information
within dynamic networks.

D. Hyper-Parameter Sensitivity

To explore the effect of hyper-parameter, we conduct a
series of hyper-parameter sensitivity experiments. Given the
limited number of hyper-parameters in our model, we specif-
ically focused on investigating the impact of varying the
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Fig. 7. A case study of change point detection within the MIT proximity network. Real change points are marked with colored vertical bars that span the
entire height of the figure. The colored vertical bars represent the occurrence of continuous events, where the start and end of the events are also considered
change points. Detected change points are marked using small green vertical bars.

embedding dimensions of the graph representation vector and
the component number of GMM. We systematically vary the
embedding dimensions to 4, 8, 16, 32, 64, 128, and 256,
monitoring the resulting changes in performance across five
datasets. The results are presented in Fig. 5. Additionally,
We set the component number of GMM to 2, 3, 4, 5, 6, and
7 to observe its impact on the model’s performance across four
datasets (The impact of the number of GMM components is
consistent for the two synthetic datasets.). Fig. 6 shows the
results.

1) Embedding Dimension: Notably, for the MIT Proximity
Network dataset, the optimal performance is achieved when
the embedding dimension is set to 8. Furthermore, high perfor-
mance is maintained when the embedding dimension is chosen
as 32. Even in the case of the highest dimensionality (256),
VGGM still manages to maintain an F1 score exceeding 0.5.
Interestingly, for the remaining datasets, the best performance
consistently corresponds to an embedding dimension of 8. The
performance remains relatively stable when different embed-
ding dimensions are employed. This valuable observation
suggests that our model exhibits a high degree of resilience
to variations in hyperparameters, highlighting its robustness in
practical applications.

2) GMM Component: It can be observed that all datasets
achieve the best performance when the number of components
of GMM is set to 3 or 4. Relatively good performance is
maintained when the number is 2 as well. As the number
of components increases, the performance tends to decrease.
The optimal number of components for each dataset is related
to its intrinsic structural characteristics. For example, in the
Synthetic-1000 dataset, which has three different network

structures (community=2, 4, 10), the best performance is
achieved when the number of components is set to 3.

E. Case Study

To further demonstrate the change point detection capability
of our model, we conducted an in-depth case study using the
MIT Proximity Network dataset. The objective is to highlight
the specific points successfully detected by our model, which
eluded detection by other methods. The results, as illustrated
in Fig. 7, illuminate several noteworthy observations:

• Our model exhibits an exceptional recall rate, missing
only two points in the dataset, contributing to its high
overall recall performance.

• Points labeled as 1, 7, 10, 18, and 20, which remained
undetected by most other methods, were accurately iden-
tified by our approach. This suggests that our model
possesses superior sensitivity to changes in network struc-
ture, enabling it to excel in capturing change points within
dynamic networks.

• It is noteworthy that our model’s precision is slightly
compromised due to its identification of the last five
points as change points. In reality, the dataset for the MIT
ACADEMIC CALENDAR 2004-2005 solely includes
“SUMMER SESSION (incl. Exam Period)” to document
the period from June 6 (Mon) to August 16 (Tues) [15].
Consequently, some events during this period aren’t
recorded. Therefore, our model identifying these points
as change points cannot be considered incorrect.

This case study effectively demonstrates that our model is
more sensitive to changes in network structure compared to
other methods, showcasing its superior capabilities in captur-
ing change points within dynamic networks.
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V. CONCLUSION AND FUTURE WORK

In this paper, we present a novel unsupervised model named
VGGM for change point detection in dynamic networks.
VGGM achieves seamless end-to-end training by means of
a joint iterative training process involving VGAE and GMM,
thus addressing the issue of staged training. Meanwhile, under
the constraint of joint iterative training, VGAE is capable of
acquiring more effective snapshot embeddings, while VGGM
exhibits the ability to accurately find change points without
additional parameters. Experimental results show that our
model not only works well on various real-world networks but
also can deal with larger-scale synthetic networks. We conduct
ablation experiments to verify the importance of different parts
in our model. Additionally, we demonstrate the resilience of
our model through a hyper-parameter sensitivity experiment.
Finally, we conduct a case study to thoroughly explore the
detection capabilities of VGGM. Our paper has some limi-
tations as we only study dynamic networks with snapshots
at the same scale. However, dynamic networks with snap-
shots at different scales are more challenging and crucial
for real systems. We plan to address this issue in future
work.
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