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ABSTRACT As a powerful tool for storing digital information in chemically synthesized molecules, DNA-
based data storage has undergone continuous development and received increasingly more attention. Effi-
ciently recovering information from large-scale DNA strands that suffer from insertions, deletions, and sub-
stitution errors (collectively referred to as edit errors), is one of the major bottlenecks in DNA-based storage
systems. To cope with this challenge, in this paper, we provide a segmented-edit error-correcting code with
the re-synchronization function, termed the DNA-LM code. Compared with the previous segmented-error-
correcting codes, it has a systematic structure and does not require the endpoint of the received segment as
pre-requisite information for decoding. In the case that the number of edit errors exceeds the edit error-cor-
recting capability of a segment, it can easily regain synchronization to ensure that the subsequent decoding
continues. Both encoding and decoding complexity is linear in the codeword length. The redundancy of each
segment is dlog ke þ 6 quaternary symbols, where k is the length of the message segment. We further general-
ize the decoding algorithm to deal with duplicated DNA strands, whereas it still maintains linear time com-
plexity in the codeword length and the number of duplications. Simulations under a stochastic edit errors
model show that, at a low raw error rate of the “next-gen” sequencing, our code can enable error-free decod-
ing by concatenating with the (255,223) RS code.

INDEX TERMS DNA-based storage system, segmented-edit error-correcting codes, synchronization errors,
VT codes

I. INTRODUCTION

With the rapid development of the Internet of Things (IoT)
and intelligent applications, a large amount of new data is
collected by different types of sensors on a daily basis [1],
which leads to increasing demand for storage systems [2].
Along with the development of Deoxyribonucleic Acid
(DNA) synthesis and sequencing technologies, DNA has
become a promising storage medium for mass data storage
due to its longevity and enormous information density. In
recent years, the DNA-based storage system has received
extensive attention [3]–[8].
In a typical DNA-based storage system based on next-gen-

eration sequencing technologies (i.e., the Illumina sequenc-
ing technology), as depicted in Figure 1, digital data is
fragmented into pieces and encoded into short DNA strands

that usually do not exceed 300 nucleotides due to the limita-
tion of the synthesizing and sequencing technologies. These
DNA strands are duplicated and spatially disordered in the
experimental system. During the sequencing process, some
DNA strands may get lost, which are called dropouts. This
process is characterized as a shuffling-sampling channel [9].
Meanwhile, insertions, deletions, and substitutions may be
introduced into individual DNA strands due to biological
mutations. These errors are characterized as an insertion,
deletion, and substitution (IDS) channel [10], [11]. For con-
venience, we refer to a single insertion or deletion as an indel
error, and a single insertion, deletion, or substitution as an
edit error. Following the above model, one of the related
information-theoretic problems is the reliable transmission
over the DNA-based storage channel. Error-correcting codes
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are required to ensure accurate recovery of the information
stored on DNA strands.
To cope with dropouts and edit errors, a typical approach

is to introduce a concatenated coding scheme. The outer
code is used to correct erasures and substitutions after adding
indexes to DNA strands [9]. Whereas the inner code is used
to correct edit errors in individual DNA strands. Classic
error-correcting codes for memoryless channels, such as the
Reed-Solomon (RS) code [12], the Low-Density Parity-
Check (LDPC) code [13], and Luby Transform (LT)
code [7], [14] have shown reliable performance as the outer
code. In contrast, the study on edit errors has received limited
attention in the literature. Although some attempts have been
made to this problem, there is still a lack of a practical and
efficient algorithm that performs on large-scale data, as will
be discussed next. Thus, the most important objective of our
work is, specifically, to provide an improved edit error cor-
rection code for reliable communication over the IDS
channel.
We assume the requirements for the inner code to include

two essential features: (i) the ability to correct stochastic edit
errors; (ii) the encoding and decoding complexity should ide-
ally be linear because of the need for large-scale dataset
usage.
However, previous well-studied codes for correcting sto-

chastic edit errors, such as the HEDGES code [12], the
watermark code [11], and the q-ary t-deletion-correcting
codes presented by Sima et al. [15], all require more than lin-
ear time to decode (see in Table 1). Additionally, the code
introduced in [16] that can correct insertions, deletions, and
transpositions also takes polynomial time in the codeword
length to encode and decode. The work [10] provided an edit
error-correcting algorithm for convolutional codes based on
the BCJR algorithm. However, for a ðn; k;mÞ convolutional
code, its decoding operations perform in polynomial time in
ðk þ mÞ. A recent survey on such codes is shown in [17].
Unfortunately, all of these codes are not optimal due to their
decoding complexity.
Another feature of DNA-based storage that needs to be

accounted for is its error rate over the inner channel. Analysis
of the experimental data based on the Illumina sequencing

technology indicates that the conventional DNA-based stor-
age system suffers a low raw error rate, almost 1% [7], [8],
[23]. For example, the experiment in [8] obtained that the
average nucleotide error rate per position is 0:6%, with 0:4%
substitutions, 0:2% deletions, and 0:04% insertions. This
inspired us to design the edit error-correcting code from a
new perspective, i.e., to build a structure that can be kept syn-
chronized against stochastic errors based on the segmented
error correction code.
In this work, to achieve efficient encoding and decoding

for large-scale DNA storage, we design a new edit error-cor-
recting code for the IDS channel with low complexity, low
redundancy, and the ability to integrate information from
multiple reads, termed DNA-LM code (a hybrid Levenshtein
code and marker code for the DNA-based storage system).
The codeword of the DNA-LM code implicitly contains dis-
joint segments, each of which consists of two parts called the
marker codeword and the data-block codeword. The marker
codeword is 2 quaternary symbols encoded from its adjacent
segments. The data-block codeword has a generalized Lev-
enshtein code structure encoded from the message segment.
Our contributions are as follows.

� We provide a new segmented-edit error-correcting code
with linear time complexity for both encoding and
decoding, much lower than that of previous DNA-
based storage systems [7], [10], [12], [18] (see in
Table 1).

� We design a new code structure such that each code-
word segment can correct a single edit error without
knowing its endpoint and regain the synchronization of
the next segment, which is particularly different from
conventional segmented-error-correcting codes [19],
[20], [24]. When multiple edit errors occur in a seg-
ment, our code marks this segment as erasures and eas-
ily resyncs to continue decoding subsequent segments.
The redundancy per segment is dlog ke þ 6 quaternary
symbols (k is the length of the message segment),
which is also lower than previous segmented-error-cor-
recting codes.

� We generalize our decoding algorithm so that it can
decode duplicated DNA strands. The superiority of our

FIGURE 1. A typical DNA-based data storage system.
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work is that trace reconstruction can be performed sim-
ply from our code structure, and can work in conjunc-
tion with error correction, while the overall decoding
still has linear time complexity.

� To test the edit error-correcting capability of our code,
we implement its encoding and decoding algorithms
and simulate them under a stochastic error channel.
Simulations show that the DNA-LM code is also stable
against stochastic edit errors and can achieve the
required low decoding error rate with an appropriate
number of segments. In particular, by concatenating
with an efficient outer code (e.g., the (255,223) RS
code), this cascade coding scheme is capable to achieve
error-free decoding.

This paper is organized as follows. In Section 2, we intro-
duce the DNA alphabet, the inner channel model for DNA
storage, and provide three coding schemes of segmented-edit
error-correcting codes over the quaternary alphabet. In Sec-
tion 3, we present our new DNA-LM code and prove its edit
error-correcting capability. In Section 4, we provide a linear
decoding algorithm of our code. In Section 5, we describe
how to generalize our code in the case of duplications. In
Section 6, we discuss the capacities of the DNA-LM code,
including the code rate, the algorithm complexity, and the
decoding error rate. We also test the performance of the cas-
cade coding scheme by concatenating our DNA-LM code and
the (255,223) RS code. Finally, we conclude the paper in
Section 7.

II. PRELIMINARIES AND PROBLEM DEFINITION

A. DNA ALPHABET

DNA strands consist of chains made from four types of
nucleotide subunits with different bases: adenine (A), cyto-
sine (C), guanine (G), and thymine (T). We map these four
DNA nucleotides D ¼ fA; T;G;Cg to the quaternary alpha-
bet S ¼ f0; 1; 2; 3g, as follows:

A $ 0; T $ 1; C $ 2; G $ 3:

Given any DNA sequence sssssss 2 DN , it could be one-to-one
mapped to a quaternary sequence xxxxxxx 2 S

N . As a result, we
focus on the codes over the quaternary alphabet in this work.

B. PROBLEM DEFINITION: DESIGNING EDIT ERROR-

CORRECTING CODES FOR IDS CHANNELS

The main problem we consider is to correct edit errors
over the IDS channel introduced in [10], [11]. Let
xxxxxxx ¼ ðx1; x2; . . . ; xnÞ denote the information sequence,
Enc : Sk ! S

n denote an encoder map. Then the code-
word is EncðxxxxxxxÞ ¼ ccccccc, which will be transmitted over the
IDS channel. Let yyyyyyy ¼ ðy1; y2; . . . ; yNÞ denote the channel
output sequence, and Dec : SN ! S

k denote a decoder
map. Here, the length of the channel output sequence N
is random and depends on the insertion and deletion
probabilities. Our objective is to design an encoder map
Enc and a decoder map Dec such that (i). Enc has the
lowest possible redundancy, (ii). both Enc and Dec have
linear complexity, and (iii). the Hamming distance
between DecðyyyyyyyÞ and xxxxxxx is as small as possible. Here, the
most commonly used performance measure is the nucleo-
tide-error rate, denoted NER.
For illustration, the transition process characterizing a sin-

gle use of the channel is shown in Figure 2. At the channel
use of xi, three events may occur: (i). With probability pi, an
insertion event occurs where a uniformly random symbol is

TABLE 1. Comparison of edit correction coding schemes.

FIGURE 2. The transmission probabilities of a single symbol in

the IDS channel.
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inserted into the received stream; (ii). With probability pd,
the enqueued symbol xi is deleted; (iii). With probability
pt ¼ 1� pi � ps, the enqueued symbol xi is transmitted, i.e.,
put into the received stream, with a probability of suffering a
substitution error. We assume that error probabilities are
independent and identically distributed (i.i.d.).

C. RELATEDWORK

The segmented-edit error channel was introduced by Liu and
Mitzenmacher [24], and subsequently studied by Abroshan
et al. [19]. Recently, it has been applied to the DNA-based
storage system [20]. In these studies, the segmented-edit
error channel model refers to a channel where input sequen-
ces are implicitly divided into disjoint segments, with at
most one insertion or deletion occurring in each segment.
Each segmented codeword contains fixed-pattern prefixes
and suffixes to determine the boundaries between segments.
Since a substitution should be considered as a deletion plus
an insertion, these codes can not cope with substitutions. To
avoid confusion in this paper, we call the above codes the
segmented-indel error-correcting codes, and call a code that
could correct one indel error or one substitution in each seg-
ment a segmented-edit error-correcting code. Besides, these
codes are greedily constructed and thereby have no system-
atic encoding algorithm. The theoretical performance of
these codes is shown in Table 1.
Given that previous segmented-indel error-correcting

codes are not robust to substitutions, and they have not been
provided with practical coding algorithms, we have not been
able to compare the numerical results of the decoding perfor-
mance between our codes and them. We follow the same
assumption of segmented errors and design modified coding
schemes which can correct edit errors. We concatenate the
marker code [25] (the marker codeword) with quaternary sin-
gle-indel/edit error-correcting codes (the data-block code-
word) to form segments. The marker can play a similar role
to the prefix/suffix of segmented-indel error-correcting
codes. We set the sequence “001” as the marker, which is
inspired by [19]. The difference is that in order to achieve
systematic encoding, we separate the marker from the code-
word. We now provide three representative single-edit error-
correcting codes as codeword components.
To correct a single edit error, we have a celebrated class of

the Varshamov-Tenengolts (VT) code [26]. The VT code
originally refers to a class of binary algebraic block codes
that consists of all binary vectors of length n belonging to

VTa;mðnÞ ¼ xxxxxxx 2 f0; 1gn :
Xn
i¼1

ixi � a ðmod mÞ
( )

; (1)

where m is a predetermined integer. a is an integer with 0 �
a � m� 1, usually called the syndrome or the remainder of
the sequence xxxxxxx. Levenshtein [27] later proved that for m �
nþ 1 and a fixed integer a with 0 � a � m� 1, the VT
codes are asymptotically optimal single-indel error-correct-
ing codes. Levenshtein also showed that when m � 2n, the

VT code can correct an edit error. The structure of (1) has
been generalized to many forms, which are often referred to
as VT codes collectively. The following are classic quater-
nary VT codes.

1) THE TENENGOLTS CODE FOR NON-BINARY

ALPHABETS

Tenengolts first generalized the VT codes to non-binary alpha-
bets in 1984 [28]. For any q-ary sequence sssssss ¼ ðs1; s2; . . . ; snÞ,
Tenengolts defined a corresponding ðn� 1Þ-length auxiliary
binary sequence Asssssss ¼ ða1;a2; . . . ;an�1Þ, where ai ¼ 0 if
si < si�1 and otherwise ai ¼ 1. For any 0 � a � n� 1 and
0 � b < q, the Tenengolts code is defined as follows:

Tena;bðnÞ, sssssss 2 Zn
q :

Xn
i¼1

si � b ðmod qÞ;
Xn�1

i¼1

iai � a ðmod nÞ
( )

;

where Tena;bðnÞ is a single-indel error-correcting code.
Unfortunately, Tenengolts did not provide an efficient

algorithm for encoding a message into such a code with this
algebraic structure. Only recently, Abroshan et al. [29] pro-
posed an encoder to systematically map a k-bits message
sequence onto a n-length q-ary codeword. Therefore, we
term it Encoder TA (introduced by Tenengolts and encoded
by Abroshan et al.).

2) THE INTERLEAVED BINARY ENCODER

A systematic encoding method for the binary VT code
that can correct a single indel error was first introduced
in 1998 by Abdel-Gaffar and Ferreira [30]. Later, Sao-
wapa et al. [31] adopted it to get a systematic encoder
for codes that can correct a single edit error. We call it
Encoder SS (satisfied systematic code structure and
encoded by Saowapa), and briefly restate the linear
encoding method here since we will utilize this method
for an interleaved encoding scheme below.
Encoder SS. For any message sequence xxxxxxx ¼ fx1; x2; . . . ; xkg

2 f0; 1gk , encoder SS sticks it into a codeword yyyyyyy ¼ SSðxxxxxxxÞ 2
VTa;2nðnÞ, where k ¼ n� dlog ne � 1. The encoder inserts
“parity” bits at dyadic positions, i.e., c2i , for 0 � i � t � 2 and
cn, and attaches message symbols to other positions, to ensure
that

Pn
i¼1 iyi � a ðmod 2nÞ. Here, t ¼ n� k is the number of

redundancy bits.
Example. Given a message sequence xxxxxxx ¼ 01011 and a

fixed syndrome a ¼ 0, we have n ¼ 10, t ¼ 5 and m ¼ 20.
The codeword yyyyyyy ¼ ðy1; y2; . . . ; y10Þ should satisfy thatP10

i¼1 iyi �
P4

j¼1 2
j�1y2j�1 þ 10� y10 þ 0 � 3þ 1 � 5þ 0 � 6þ

1 � 7þ 1 � 9 � 0 ðmod 20Þ. Then expand 19� 10 ¼ 9 into
the binary form 1 � 23 þ 1 � 20. We obtain the codeword
�1�00�0101�11�1, where bits with overbars are check bits.
Since we are interested in codes over the quaternary alpha-

bet, it is also quite intuitive to construct a code by interleav-
ing two binary Levenshtein codewords. Here we call it
Encoder IBS (obtained by interleaving two binary VT codes
and encoded by Saowapa) and describe it in detail.
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Interleaved Sequence. For a sequence yyyyyyy ¼ ðy1; y2; . . . ; ykÞ 2
S
k , let yi ¼ yð0Þi 20 þ yð1Þi 21 be the binary form of symbol

yi, then set yð0Þyð0Þyð0Þyð0Þyð0Þyð0Þyð0Þ ¼ ðyð0Þ1 ; . . . ; yð0Þn Þ, yð1Þyð1Þyð1Þyð1Þyð1Þyð1Þyð1Þ ¼ ðyð1Þ1 ; . . . ; yð1Þn Þ. Here,
we say that yyyyyyy is the interleaved sequence of yð0Þyð0Þyð0Þyð0Þyð0Þyð0Þyð0Þ and yð1Þyð1Þyð1Þyð1Þyð1Þyð1Þyð1Þ, and
denote it by yð1Þyð1Þyð1Þyð1Þyð1Þyð1Þyð1Þ k yð0Þyð0Þyð0Þyð0Þyð0Þyð0Þyð0Þ.
Encoder IBS. The IBS code is defined as:

IBSk;aðnÞ ¼ yyyyyyy ¼ yð1Þyð1Þyð1Þyð1Þyð1Þyð1Þyð1Þ k yð0Þyð0Þyð0Þyð0Þyð0Þyð0Þyð0Þ : xxxxxxx ¼ xð1Þxð1Þxð1Þxð1Þxð1Þxð1Þxð1Þ k xð0Þxð0Þxð0Þxð0Þxð0Þxð0Þxð0Þ 2 S
k;

n

yðiÞyðiÞyðiÞyðiÞyðiÞyðiÞyðiÞ ¼ Encoder SSðxðiÞxðiÞxðiÞxðiÞxðiÞxðiÞxðiÞÞ 2 VTa;2nðnÞ; i ¼ 0; 1g;

where k ¼ n� dlog 2ðnÞe � 1. Obviously, the IBSk;aðnÞ code
is a single-edit error-correcting code over the quaternary
alphabet.
Example: Given a message xxxxxxx ¼ 02312 and a fixed syn-

drome a ¼ 0, we have n ¼ 10 and m ¼ 20. we expand the
message into 01101 k 00110, then encode SSð01101Þ ¼
0000110010 and SSð00110Þ ¼ 1101011000. Hence, we
have the codeword yyyyyyy ¼ 0000110010 k 1101011000 ¼
1101231020.

3) THE ORDER-OPTIMALCODE

Cai et al. [21] provided a single-edit error-correcting code
over the quaternary alphabet by enforcing the k-sum bal-
anced constraint on the message sequence and appending the
syndrome next to it. Here we call it Encoder Cai. In general,
the redundancy of n-length VT codewords is Klog nþ
oðlog nÞ bits, where K is a constant that varies by code struc-
ture. Small K is preferred to ensure a high code rate. The
redundancy of Encoder Cai is log nþ Oðlog log nÞ þ 16 bits.
It has K ¼ 1, as a result, it was called order-optimal. This
code has an efficient code rate when n is large (say
n > 512). However, when the message sequence is short the
advantage of order-optimality is impacted because some con-
stant redundant bits are always required, which decreases the
practical code rate when n is small (see in Table 1).
More recently, this work was extended in [32], which pro-

vides another simpler proof of the result on optimal redun-
dancy and a single-edit error-correcting code with lower
redundancy (modified from Encoder Cai). Since it does not
provide a practical coding algorithm, we will focus more on
Encoder Cai in the next subsection.

D. QUATERNARY SEGMENTED-INDEL/EDIT ERROR-

CORRECTING CODE CONSTRUCTION

Armed with the above typical VT codes, we now construct
new segmented-indel/edit error-correcting codes by
concatenating the marker with each VT codeword. For illus-
tration, the code structure is shown in Figure 3. Each code-
word segment includes a data-block codeword and a marker
codeword. We use a fixed pattern ”001” as the marker code,
which is a conventional choice [19], [25]. We use the codes
described above in turn to be the data-block codeword, and
call the concatenated codes the 4-ary TA-Marker code, the
IBS-Marker code, and the Cai-Marker code, respectively.

Since markers can be used to locate the segment bound-
aries and regain synchronization, these codes can correct seg-
mented-indel errors (the TA-Marker code) or segmented-edit
errors (the IBS-Marker code and the Cai-Marker code).
However, since re-synchronization can only rely on markers,
they may not be robust enough to stochastic edit errors.

III. THE DNA LEVENSHTEIN-MARKER CODE

In this section, we present a new segmented-edit error-cor-
recting code, which is more robust than codes described in
Section 2.3 in that it can correct a single edit error in each
codeword segment including the marker, and has a double
guarantee for re-synchronization. This code is designed over
the quaternary alphabet for DNA-based storage applications,
and we term it the DNA Levenshtein-Marker (DNA-LM)
code.

A. THE STRUCTURE OF DNA-LM CODE

As depicted in Figure 4, the DNA-LM code is concatenated
by a series of segmented codewords. Each codeword seg-
ment is systematically encoded by the DNA segment-Lev-
enshtein-Marker (DNA-sLM) code, which is concatenated by
a marker code and a data-block code. We call the redesigned
marker code the marker. Each data-block codeword consists
of four components, namely, the message, the check, the sep-
arator, and the syndrome. The separator and the marker
work collaboratively to detect whether an indel error exists
and locate which component contains it. The check detects
and locates the substitution. If the edit error is in the message,
the syndrome will correct it. Otherwise, the error-free mes-
sage will correct other components. By majority vote, the
marker, the separator, and the syndrome can further regain
the synchronization of the next segment.
In practice, the encoder first divides the message sequence

into several short segments, then encodes each message seg-
ment into a DNA-sLM codeword, and finally concatenates
them together to construct a complete codeword (Figure 4).
Here, the first segment does not need the marker to keep syn-
chronization, so the encoder omits it.
Before giving the structure of the DNA-sLM code, we

define some important symbols as follows:
� Define Syn : f0; 1gk ! ½0; 2kÞ as the syndrome of a

binary sequence, where

SynðzzzzzzzÞ �
Xk
i¼1

izi ðmod 2kÞ: (2)

We use BSynðzzzzzzzÞ to represent the binary form of SynðzzzzzzzÞ.
For any message sequence xxxxxxx ¼ xð1Þxð1Þxð1Þxð1Þxð1Þxð1Þxð1Þ k xð0Þxð0Þxð0Þxð0Þxð0Þxð0Þxð0Þ, we define

the function IBSyn : Sk ! S
t to satisfy

IBSynðxxxxxxxÞ ¼ BSynðxð1Þxð1Þxð1Þxð1Þxð1Þxð1Þxð1ÞÞ k BSynðxð0Þxð0Þxð0Þxð0Þxð0Þxð0Þxð0ÞÞ; (3)

where xð1Þxð1Þxð1Þxð1Þxð1Þxð1Þxð1Þ; xð0Þxð0Þxð0Þxð0Þxð0Þxð0Þxð0Þ 2 f0; 1gk and t ¼ dlog ð2kÞe: We call
IBSynðxxxxxxxÞ the syndrome of xxxxxxx.
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� Define Ck : Sk ! S as the check function of the mes-
sage xxxxxxx, where

CkðxxxxxxxÞ �
Xk
i¼1

xi ðmod 4Þ: (4)

� Define Sp : S3 ! S as the separator function. Specifi-
cally, Spða; b; cÞ satisfies, if aþ 2 6¼ b; c, set
Spða; b; cÞ ¼ aþ 2, if aþ 3 6¼ b; c, set Spða; b; cÞ ¼
aþ 3, otherwise, Spða; b; cÞ ¼ aþ 1.

� Define Mk : S3 ! S as the marker function, which is
the same as the definition of the separator function Sp.

Then, the structure of the DNA-sLM code is defined as
follows.
Definition 1. The DNA-sLM code C, is defined as

C ¼ ðm;m; x1; x2; . . . ; xk; c; s; s; s; a1; . . . ; atÞ 2 S
kþtþ6 :

n

c ¼ Ckðx1; x2; . . . ; xkÞ; ða1; a2; . . . ; atÞ ¼ IBSynðx1; x2; . . . ; xkÞ;
s ¼ Spðc; a1; a2Þ;m ¼ Mkðf ; x1; x2Þg;

where f is the last symbol of the previous codeword seg-
ment. We call ðm;mÞ the marker, xxxxxxx ¼ ðx1; x2; . . . ; xkÞ the
message, ðcÞ the check, ðs; s; sÞ the separator, and
aaaaaaa ¼ ða1; a2; . . . ; atÞ the syndrome.

Example. Let the message sequence be xxxxxxx ¼ 013210 with
two segments xxxxxxx1 ¼ 013 and xxxxxxx2 ¼ 210. To obtain the first
codeword segment, we have xxxxxxxð0Þ1 ¼ 011 and xxxxxxxð1Þ1 ¼ 001,
then Synðxxxxxxxð0Þ1 Þ ¼ 5 and Synðxxxxxxxð1Þ1 Þ ¼ 3, thus IBSynðxxxxxxx1Þ ¼
011 k 101 ¼ 123, Ckðxxxxxxx1Þ ¼ 0, and Spð0; 1; 2Þ ¼ 3. Here,
we omit its marker, so the codeword is 0130333123. For
the second codeword segment, we have Mkð3; 2; 1Þ ¼ 0,
and other parts are obtained similarly to the first segment,
thus it is 002103222012. The entire codeword is

yyyyyyy ¼ 0130333123002103222012: (5)

B. PROOF OF ERROR-CORRECTING CAPABILITY OF

DNA-LM CODE

In this subsection, we show that the DNA-LM code can cor-
rect segmented edit errors and regain synchronization after
each segment decoding. For conventional segmented-indel
error-correcting codes [19], [20], since the prefix and the suf-
fix within a segment do not have errors simultaneously, they
can mutually ensure that the segment boundary can be recog-
nized. In analogy with them, markers in our code structure
play the same role as segment prefixes of their codes. How-
ever, our code structure has no suffixes to identify segment
endpoints. Instead, we elaborately design the DNA-LM code
structure so that it can both correct a single edit error
and regain synchronization. The following discussion is

FIGURE 3. The concatenated encode structure of data-block codewords and Sellers marker codewords.

FIGURE 4. The structure of the proposed DNA Levenshtein-Marker codeword.
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conducted under the condition that the received segmented
codeword has an undetermined endpoint.
Theorem 1. The DNA-sLM code can correct a single edit

error and identify the starting position of the next segment.
As a result, the DNA-LM code can correct segmented edit
errors through iterative decoding of the DNA-sLM code.
Before proving this theorem, we need to establish some

lemmas. Levenshtein has proved that codes have structure
(1) with m ¼ 2n can correct an edit error [27]. Based on this,
Lemma 1 shows that the syndrome can detect the edit error
even when the boundary of a received codeword is unknown.
Inspired by Levenshtein’s proof (in which determines the
type of error based on the length of the sequence) [27], our
proof further shows that our decoder may detect errors even
if it is uninformed of the boundary by using a distinct code
structure. Lemma 2 proves that our data block code is able to
correct a single edit error, the idea of which is derived
from [28]. Lemma 3 further proves that if an edit error occurs
in the marker, our code can still detect it and obtain the cor-
rect message. Finally, Lemma 4 shows that our code can
determine where the segment ends after decoding. It indi-
cates that the decoding of the DNA-sLM code can be per-
formed segment-by-segment so that the DNA-LM code is
capable of correcting segmented edit errors and keeping
synchronization.
For a k-length message, we define

DinsðxxxxxxxÞ , xxxxxxxins 2 S
n : ðx1;. . .; xj�1; r; xj;. . .; xk�1Þ 6¼ xxxxxxx

� �
;

DdelðxÞ , xxxxxxxdel 2 S
n : ðx1;. . .; xj�1; xjþ1;. . .; xk; rÞ 6¼ xxxxxxx

� �
;

DsubðxÞ , xxxxxxxsub 2 S
n :¼ ðx1;. . .; xj�1; r; xjþ1;. . .; xkÞ 6¼ xxxxxxx

� �
;

to represent the first k elements of a received DNA-sLM code-
word which has an insertion, a deletion, and a substitution
error in the data-block, respectively. Here, if a deletion
occurs, the subsequent symbol will be added. And if an inser-
tion occurs, xk will be truncated.
Lemma 1. For any sequence xxxxxxx 2 DinsðxÞ [ DdelðxÞ [

DsubðxÞ, IBSynðxxxxxxxÞ 6¼ IBSynðxxxxxxxÞ.
Proof. We first consider the insertion error. Let að0Þ and

að1Þ be syndromes of xxxxxxxð0Þins and xxxxxxxð1Þins , where xxxxxxxð1Þins k xxxxxxxð0Þins ¼ xxxxxxxins.
And let að0Þ; að1Þbe the correct syndrome of xð0Þxð0Þxð0Þxð0Þxð0Þxð0Þxð0Þ and xð1Þxð1Þxð1Þxð1Þxð1Þxð1Þxð1Þ,
where xð1Þxð1Þxð1Þxð1Þxð1Þxð1Þxð1Þ k xð0Þxð0Þxð0Þxð0Þxð0Þxð0Þxð0Þ ¼ xxxxxxx. We assume that IBSynðxxxxxxxinsÞ ¼
IBSynðxxxxxxxÞ, so that að0Þ ¼ að0Þand að1Þ ¼ að1Þ. Without loss of
generality, we omit the superscript, it follows that

a� a � kxk �
Xk�1

i¼j

xi � jr ðmod 2kÞ:

If r ¼ 0, since 0 � Pk�1
i¼j xi � k � 1, we have a� a �

0 ðmod 2kÞ if and only if xj; . . . ; xk�1; xk are all equal to 0.
And if r ¼ 0, since j � jþPk�1

i¼j xi � k, we have a� a �
0 ðmod 2kÞ if and only if xj; . . . ; xk�1; xk are all equal to 1.
This is contrary to our assumption xxxxxxx =2 DinsðxÞ, so the

assumption does not hold. The same could be proved for the
deletion and substitution errors. tu
Since the encoding of the data-block code is independent

of the marker code, we first show the edit error-correcting
capability of the data-block code.
Lemma 2. The data-block code can correct a single edit

error.
Proof. For any message xxxxxxx, denote its data-block codeword

as yyyyyyy ¼ ðxxxxxxx; c; s; s; s; aaaaaaaÞ: Let the error domain obtained from yyyyyyy
via at most one edit error be

DðyyyyyyyÞ, rrrrrrr : rrrrrrr is obtained from yyyyyyy via an edit errorf g [ yyyyyyyf g:

The data-block code is a single-edit error-correcting code
if and only if for different data-block codewords yyyyyyy1111111 6¼ yyyyyyy2222222

Dðyyyyyyy1111111Þ \ Dðyyyyyyy2222222Þ ¼ ;:

We first discuss about the error domain DðyyyyyyyÞ. Let rrrrrrrk1
denote the first k elements of rrrrrrr. Take ccccccc ¼ Ckðrrrrrrrk1Þ, and aaaaaaa ¼
IBSynðrrrrrrrk1Þ. We first define some events to represent diverse
error cases.

� Suppose DðCkÞ represents the event in which the
received sequence satisfies the following form

DðCkÞ, rrrrrrr : rkþ1 ¼ Ckðrrrrrrrk1Þ
� �

:

We can see that DðCkÞ is the subset of DðyyyyyyyÞ, and if
the message and the check are both correct in the
received sequence, the received sequence rrrrrrr should
belong to DðCkÞ. However, the opposite is not
correct.

� Suppose DðSp�1Þ;DðSp0Þ, and DðSpþ1Þ respectively
represent events in which the received sequence satis-
fies the following form

DðSp0Þ, rrrrrrr : rkþ2 ¼ rkþ3 ¼ rkþ4f g;
DðSpþ1Þ, rrrrrrr : rkþ3 ¼ rkþ4 ¼ rkþ5 6¼ rkþ2f g;
DðSp�1Þ, rrrrrrr : rkþ1 ¼ rkþ2 ¼ rkþ3 6¼ rkþ4f g:
It is obvious that DðSp�1Þ;DðSp0Þ, and DðSpþ1Þ are
subsets of DðyyyyyyyÞ as well. Assuming that the separator
is correct, then if there is no indel error in the mes-
sage and the check, rrrrrrr 2 DðSp0Þ; if there is a deletion
in the message or the check, rrrrrrr 2 DðSp�1Þ; and if
there is an insertion in the message or the check, rrrrrrr 2
DðSpþ1Þ. Besides, due to the structure of the separa-
tor, it is apparent that DðSp�1Þ;DðSp0Þ and
DðSpþ1Þ are mutually disjoint. If the separator is
incorrect, the received sequence will not satisfy any
of the above forms. We use DðSpÞ ¼ DðSp�1Þ [
DðSp0Þ [ DðSpþ1Þ to represent the event that the
separator is correct.

� Suppose DðSyn�1Þ;DðSyn0Þ and DðSynþ1Þ represent
events, respectively, in which the received sequence
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satisfies the following form

DðSyniÞ, rrrrrrr : ðrkþ5þi; rkþ6þi; . . . ; rkþ4þtþiÞf
¼ IBSynðrrrrrrrk1Þg \ DðSpiÞ [ DðSpÞcð Þ;

where i 2 f�1; 0;þ1g. We use i ¼ þ1; �1, and 0
to indicate the symbol-shift of the syndrome. If the
message and the syndrome are correct in the
received sequence, rrrrrrr should satisfy one of the above
forms. We use DðSynÞ ¼ DðSyn�1Þ [ DðSyn0Þ [
DðSynþ1Þ to represent the event that the syndrome
and the message are both correct.

Armed with the above definitions, we define the following
events

DðS1Þ, DðCkÞ \ DðSp0Þ \ DðSyn0Þ;
DðS2Þ, DðCkÞ\DðSynÞð Þ[ DðCkÞ\DðSp0Þð Þ

[
i2f�1;0;þ1g

DðSpiÞ\DðSyniÞð Þ;

DðS3Þ, DðCkÞc \ DðSp0Þ \ DðSyn0Þcð Þ
[

i2f�1;þ1g
DðSpiÞ \ DðSyniÞcð Þ:

Then, when a single edit error occurs, we can make
observations:
� If the whole received segment has no edit error, rrrrrrr

should belong to set DðS1Þ;
� If the message is correct but the other part has an edit

error, we can see that rrrrrrr 2 DðS2Þ. The proof is obvious.
Based on our assumptions, when the message is correct,
at most only one function of the check, the separator, or
the syndrome does not match the message. For exam-
ple, rrrrrrr 2 DðSp�1Þ represents an event where the separa-
tor is correct but moved forward by one position, which
indicates that a deletion occurred before the separator.
In this case, the syndrome must also move one position
forward. Otherwise, the received sequence rrrrrrr has an
error in both the check and the syndrome, which contra-
dicts our hypothesis. Second, since the message is cor-
rect, IBSynðrrrrrrrk1Þ is equal to the received syndrome
ðrkþ4; rkþ5; . . . ; rkþ3þtÞ, which means that rrrrrrr satisfies
DðSyn�1Þ. Therefore, when the message is correct and
the check is deleted, rrrrrrr satisfies DðSp�1Þ \ DðSyn�1Þ.

� If the message has an edit error, rrrrrrr 2 DðS3Þ. The proof is
as follows. If a substitution occurs in the message,
IBSynðrrrrrrrk1Þ will not be equal to ðrkþ5; rkþ6; . . . ; rkþ4þtÞ,
so that rrrrrrr =2 DðSyn0Þ. And because the separator and the
check match the original message, according to Lemma
1, rrrrrrr 2 DðCkÞc \ DðSp0Þ \ DðSyn0Þc. The same rela-
tions can be obtained when an insertion occurs in the
message, rrrrrrr 2 DðSpþ1Þ \ DðSynþ1Þc; when a deletion
occurs in the message, rrrrrrr 2 DðSp�1Þ \ DðSyn�1Þc.

In summary, DðS1Þ indicates that the whole data-block
codeword has no edit error; DðS2Þ indicates that the message
is correct and we decode the first k-symbols of the received
sequence as the message segment; DðS3Þ indicates that the

message has an edit error. Furthermore, it is easy to Figure
out that DðS1Þ � DðS2Þ, and DðS2Þ \ DðS3Þ ¼ ;; DðS2Þ [
DðS3Þ ¼ DðyyyyyyyÞ. Here, due to space constraints, we omit the
proof.

Suppose that there are two different codewords yyyyyyy1111111; yyyyyyy2222222, and
a received sequence rrrrrrr, which simultaneously belongs to
Dðyyyyyyy1111111Þ and Dðyyyyyyy2222222Þ. Assume that the message segments of
codewords yyyyyyy1111111 and yyyyyyy2222222 are xxxxxxx1111111 and xxxxxxx2222222, respectively.

On the one hand, if the received sequence rrrrrrr belongs to
DðS3Þ, the message is incorrect and both the separator
and the syndrome are correct. In this case, the position of
the syndrome is uniquely determined by checking which
event of DðSp0Þ, DðSp�1Þ, and DðSpþ1Þ satisfies. Since
the syndrome is fixed, xxxxxxxðsÞ1111111 and xxxxxxxðsÞ2222222 belong to the same
VT codebook, for s ¼ 0; 1. However, for any VT code-
book described in (1), if m ¼ 2n where n is the codeword
length (in our code, there should be k), then their edit
error distance and the Hamming distance are both at least
3. This conflicts with the assumption that there is only
one edit error within the received sequence rrrrrrr. On the
other hand, if rrrrrrr belongs to the set DðS2Þ, the message in
rrrrrrr is correct. We have xxxxxxx1111111 ¼ xxxxxxx2222222, and yyyyyyy1111111 ¼ yyyyyyy2222222. This contra-
dicts the assumption.

Based on the above discussion, we can see those error
domains of different codewords are disjoint. It means that
the data-block code can decode each error sequence into a
unique codeword. tu
Lemma 2 proved that the data-block code is a single-edit

error-correcting code, which can be regarded as a situation
where the marker codeword is always correct. Based on this,
we now prove that the DNA-sLM code is still a single-edit
error-correcting code even when the marker codeword has
one edit error.
Lemma 3. The DNA-sLM code can correct an edit error.
Proof. Assuming that the received sequence is rrrrrrr. For the

consistency of proof, let ðr�1; r0Þ denote the first two sym-
bols of rrrrrrr, which is presumably the marker. We can determine
the correctness of the marker code by checking the first two
symbols of the received sequence. If r�1 ¼ r0, it means that
there is no edit error in the marker, and then Lemma 2 works.
If r0 6¼ r1, it indicates that an edit error occurred in the
marker code due to the specific design of the marker func-
tion. It remains to show that the edit error-correcting capabil-
ity could be realized in this case.

Following previous notations, let DðCkmÞ denote the
event that the received sequence satisfies:

Ck ðr1þm; r2þm; . . . ; rkþmÞð Þ ¼ rkþ1þm:

TABLE 2. Table for error types in the received sequence.

Error type Marker Check Separator Remainder

sub ðx;mÞ or ðm; xÞ DðCk0Þ DðSp0Þ DðSyn0Þ
del m DðCk�1Þ DðSp�1Þ DðSyn�1Þ
ins ðx;m;mÞ or ðm; x;mÞ DðCkþ1Þ DðSpþ1Þ DðSynþ1Þ

612 VOLUME 11, NO. 3, JULY-SEPT. 2023

Wu et al.: Segmented-Edit Error-Correcting Code With Re-Synchronization Function for DNA-Based Storage Systems

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on September 06,2023 at 08:41:14 UTC from IEEE Xplore.  Restrictions apply. 



The definitions of DðSpmÞ and DðSynmÞ are the same as
Lemma 2. Here m ¼ �1; 0; 1 indicates the symbol-shift.
Table 2 lists the events that the received sequence satisfies
when different types of errors occur in the marker.
Here, x can be an arbitrary symbol in S except for m. Let

the error domain of codeword yyyyyyy after taking one edit error in
the marker be

DmarkerðyyyyyyyÞ, rrrrrrr : rrrrrrr is obtained from yyyyyyy by one edit error; r�16¼r0f g:
We now prove that the sets DmarkerðyyyyyyyÞ for different yyyyyyy 2 C
are disjoint.
The structure of the separator ensures that the correct sep-

arator meets only one event in Table 2, so that the k þ 1 to 2
symbols before the separator are determined to be the mes-
sage. In other words, Dmarkerðyyyyyyy1111111Þ 6¼ Dmarkerðyyyyyyy2222222Þ if yyyyyyy1111111 6¼ yyyyyyy2222222.

The above analysis shows that when the received
sequence satisfies any event in the above list, we do not use
the marker to find the beginning of the data-block codeword.
Instead, we use the position of the separator to detect the edit
error in the marker to regain synchronization. tu
To summarize, Lemma 3 shows that the DNA-sLM code is

a single-edit error-correcting code. Next, we will show that
the beginning of the next segment can be determined by the
special structure of the DNA-slM code so that the decoding
can be performed segment-by-segment.
Lemma 4. In the case of an edit error within the first seg-

ment, the decoder can determine the segmented endpoint to
keep synchronization, thereby continuing to decode the next
segment.
Proof. The proof is divided into two parts as follows. First,

consider the case of no edit error within the syndrome, i.e.,

rrrrrrr 2 DðCkÞ \ DðSynÞð Þ [i2f�1;0;þ1g DðSpiÞ \ DðSyniÞð Þ:
In such a situation, it is easy to find the boundary of the
syndrome. After the syndrome, it is the beginning of the
next segment. Second, consider the case of an incorrect
syndrome. For brevity, because the separator is correct
and can be located, we use rrrrrrr to represent the remaining
sequence trimmed after the separator. And we use
aaaaaaa ¼ IBSynðxxxxxxxÞ to represent the syndrome calculated by the
message. Let

DðM1Þ, ðrt; rtþ1; rtþ2; rtþ3Þ : rt ¼ rtþ1 6¼ at; rtþ2 6¼ rtþ1f g;
DðM2Þ, ðrt; rtþ1; rtþ2; rtþ3Þ : rtþ1 ¼ rtþ2 6¼ atf g;
DðM3Þ, ðrt; rtþ1; rtþ2; rtþ3Þ : rtþ2 ¼ rtþ3 6¼ at; rtþ1 ¼ atf g:
Recall that the marker function should satisfy the rule:
m =2 fa; b; cg, if m is inserted between a and b; c. There-
fore, DðM1Þ, DðM2Þ and DðM3Þ are pairwise disjoint sets.
And they represent the cases of one deletion, one substitu-
tion, and one insertion in the syndrome, respectively,
while the marker of the next segment is correct. Then we
can trim the received sequence before the correct marker
and decode the next segment. However, if the received
sequence is not in any above sets, it means that the marker

of the next segment has an edit error. Under the assump-
tion that a single edit error within each segment, the sepa-
rator of the next segment is correct to help the decoder
relocate the message and regain synchronization. There-
fore, the received sequence can re-synchronize itself after
decoding the current segment. tu
Based on the above lemmas, we now prove Theorem 1.

According to Lemma 2 and Lemma 3, we obtained that the
first segment can correct an edit error whether the edit error
is in the marker codeword or the data-block codeword.
According to Lemma 4, after decoding the first segment, the
decoder can determine the beginning of the next segment, so
that codeword segments can be decoded in sequence. This
means that the DNA-LM code is a segmented-edit error-cor-
recting code.

IV. DECODER OF THE DNA LEVENSHTEIN-MARKER

CODE

In this section, we show the decoding algorithm of the DNA-
LM code. Denote a received sequence as rrrrrrr. The decoding
algorithm is performed segment-by-segment. Specifically,
each round contains two phases: decoding the message of the
first segment and regaining the synchronization of the next
segment.
Step 1: Decode the foremost message segment.
� Case 1: r1 ¼ r2. The decoder first removes ðr1; r2Þ and

restarts rrrrrrr. Then according to Lemma 2 (6), when the
remaining sequence rrrrrrr 2 DðS2Þ, the message is correct
and is the first k symbols of rrrrrrr. When rrrrrrr 2 DðS3Þ, the
error type of the message xxxxxxx is as follows:
1) rrrrrrr 2 DðSp0Þ , xxxxxxx has a substitution;
2) rrrrrrr 2 DðSpþ1Þ , xxxxxxx has an insertion;
3) rrrrrrr 2 DðSp�1Þ , xxxxxxx has a deletion.

The decoder uses the correct syndrome, the t symbols
after the separator, to correct two de-interleaved binary mes-
sage sequences through the Levenshtein decoder.

� Case2: r1 6¼ r2. According to Lemma 3, the decoder
checks which i 2 �1; 0; 1 makes rrrrrrr satisfy DðCkiÞ \
DðSpiÞ \ DðSyniÞ, and sets the message as ðrðiþ3Þ; . . . ;
rðkþiþ2ÞÞ.

� Case 3: the received sequence does not satisfy any
above events. It indicates that more than one edit error
within the segment. In this situation, the decoding fails.
Each corresponding position of this message segment
is marked as an erasure symbol eeeeeee, waiting to be recov-
ered by outer codes.

Step 2: Locate the start of the subsequent segment.
� In Case 1 and Case 2, the start of the subsequent seg-

ment is determined according to Lemma 4, and the
decoder will restart rrrrrrr from this point;

� In Case 3,the decoder will scan the received sequence
sequentially to detect subsequence ða;m;m; b; cÞ and
ða; s; s; s; b; cÞ, where m ¼ Mkða; b; cÞ and
s ¼ Spða; b; cÞ. They jointly point to the position of the
next segment with high probability.
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Step 3: Repeat steps 1-2 until all segments are decoded.
Following the above steps, the sequence rrrrrrr can be decoded

segment-by-segment. In particular, Step 2 shows that the spe-
cially designed structure of the data-block code provides a
second guarantee for keeping and regaining synchronization
of the whole sequence, while the first is the marker code. It
makes the decoding of the subsequent segment to still have a
chance to process smoothly, even when multiple edit errors
occur in a segment.

V. CODING FOR DUPLICATIONS

Recall that in a typical DNA-based storage system, digital
information is synthesized into many short DNA strands, and
each of these strands is massively miscopied through the
sequencing process [23]. Errors generated in DNA synthesis
will be inherited and appear in the corresponding sequencing
readouts. We suppose that error patterns due to synthesis are
clustered into a class since they are hardly discarded directly
by the algorithm below, but rather need to be corrected by
the decoding algorithm. Without loss of generality, we
assume that the remaining error patterns of these duplications
are independent, and the positions of edit errors within a
readout are uniformly random.
To deal with these duplications, a typical approach is to

perform a multiple sequence alignment (MSA) of the
received sequences and the subsequent a majority decision
on the alignment [33], [34]. However, because edit errors
make sequence alignment extremely difficult, it is thought to
be the stage that takes up the most space and time in DNA-
based information storage [10]. For instance, the time com-
plexity of a popular MSA algorithm ”MUSCLE” is
OðMN2 þM3NÞ, where N and M are the length and number
of sequences, respectively. Moreover, in experiments for
DNA storage, the MSA procedure usually requires more
than 100 times the sequencing depth to recover data [7], [8].
In this section, we provide a joint decoding algorithm that

combines our code structure and our decoding algorithm
with the reconstruction of traces, skipping the complex MSA
process. This idea is inspired by the algorithms introduced
in [10], which also combines its unique code structure (i.e.,
the convolutional code) with duplications’ decoding via the
BCJR algorithm. Compared to MSA techniques, our decod-
ing strategy can process over a single sequence case. Further-
more, some algorithms examine the trace reconstruction
problem over a fixed number of sequences [35], [36]. How-
ever, these works process only uncoded sequences, whereas
we focus on coded transmissions.
We illustrate the generalized decoding method through the

following example

rrrrrrr1 ¼ 0130333123 0003222012;

rrrrrrr2 ¼ 010333123 00103222012:

where yyyyyyy is the codeword of (5), rrrrrrr1 and rrrrrrr2 are its two duplica-
tions with different edit errors.

The decoder operates in two phases. In the first phase,
the decoder identifies whether a sequence satisfies the
event DðSp0Þ through the sliding window algorithm. If
there are many qualifying sequences, this message seg-
ment will be obtained by the majority voting algorithm.
Otherwise, the decoder will check whether the unique
qualifying sequence belongs to event DðS2Þ, in the same
way as the algorithm described in section 4. In the exam-
ple above, rrrrrrr1 satisfies the event DðSp0Þ, thus the decoder
will operate on it. In the second phase, the decoder deals
with the case that none of the sequences satisfy the event
DðSp0Þ or further DðS2Þ, but there exist sequences satisfy-
ing the event DðSp�1Þ or DðSpþ1Þ, such as the second
segment of rrrrrrr2. The message can be obtained by decoding
such sequences. However, there could be possible that no
sequence satisfies the event DðSpÞ, causing the decoding
to fail and this message segment to be marked as era-
sures. Besides, this decoding algorithm also proceeds seg-
ment-by-segment, as described in Section 4.
Assuming edit errors are i.i.d. on the DNA strands, it is

apparent that the number of qualifying sequences increases
with the number of duplications, which further achieves
higher coding performance gains. However, we note that
duplications also come with an added cost to the sequencing
process. Again, our code can work on any scale of
duplications.

VI. CODE CAPABILITY

In this section, we analyze the coding performance of the
DNA-LM code. We use N and n to represent the length of the
DNA-LM codeword and DNA-sLM codeword encoded by the
K and k message symbols, respectively. We use l to indicate
the number of segments.

A. CODE COMPLEXITY ANALYSIS

For each length-k segment, the encoding procedure consists
of calculating four main components of the DNA-sLM code:
the syndrome, the check, the separator, and the marker. All
of these calculations can be accomplished in linear time. The
decoding algorithm of one segment can also be computed in
time OðnÞ. Since the encoding and the decoding of the entire
sequence are performed sequentially among segments, the
entire encoding or decoding process can be completed in
time OðNÞ.
In the case of decoding m duplicated DNA strands, both

the majority voting algorithm and the error correction algo-
rithm work on at most m sequences. Therefore, the time com-
plexity is OðmNÞ.

B. CODE RATE ANALYSIS

We first consider the segmented code rate of the DNA-LM
code. Since the DNA-LM code is concatenated by a series of
DNA-sLM codeword segments, and the marker of the first
segment is omitted to reduce redundancy, the segmented
code rate is asymptotically close to the integrated code rate.
As illustrated in Definition 1, there are three symbols for the
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separator, one symbol for the check, dlog ke symbols for the
syndrome, and two symbols for the check in each segment
with k-length message symbols. Thus, the segmented code
rate of the DNA-LM code is

R ¼ 2k
k þ dlog ke þ 6

bits
symbol

: (7)

By simulations, we plotted the segmented code rates of
the DNA-LM code, the 4-ary TA-Marker code, the IBS-
Marker code and the Cai-Marker code with varied seg-
ment lengths, as shown in Figure 5(a). These curves
show that when the length of the message segment is less
than 200, the segmented code rate of IBS-Marker code is
the highest. The DNA-LM code has a slightly higher code
rate than the 4-ary TA-Marker code, ranking second. The
Cai-Marker code has the lowest code rate when the
length is below 200. This is because the codeword seg-
ment of the Cai-Marker code requires some constant
redundant symbols, although its segmented code is order
optimal asymptotically. Indeed, the difference between
the segmented code rate of these codes gets smaller as
the length of the message segment increases. Further-
more, we calculated the code rate when the segment num-
ber l varies with a fixed total message length K (Figure 5
(b)). As expected, when we divided the message into
more segments, we observed a lower code rate.

C. DECODING ERROR RATE

We now test the edit error-correcting capability of our codes
through the inner channel introduced in Section 2.2. Under
the channel assumptions, the error probabilities are shown in
Table 3.
Given that the codeword sequence is concatenated by l

such segments, the probability of at most one edit error
within each segment as

PL ¼ ðpn0 þ npn�1
0 p1Þl; (8)

where p0 ¼ ptð1�psÞ and p1 ¼ pdþptpsþpiptð1�psÞþpipd.
This is the lower bound on the theoretical probability of
error-free decoding.
Next, we tested NER of the DNA-LM code, the 4-ary TA-

Marker code, the IBS-Marker code, and the Cai-Marker
code at varied conditions through simulations. The NER is
defined as the ratio of the total number of residual incorrect
symbols and erasures compared to the original message
sequence. We assumed that the DNA mutation error rate per
nucleotide pr ¼ pi þ pd þ ps, and ps : pi : pd ¼ 2 : 1 : 1,
which roughly approximates the proportion of errors in Illu-
mina sequencing. The parameters and their default values are
listed in Table 4. Without losing generality, we first consider
the case where m ¼ 1, i.e., there are no duplications.
We first plotted the NER as a function of the DNA muta-

tion error rate. As shown in Figure 6(a), when the hyper-
parameters (k; l; pr) are the same, the DNA-LM code achieves

FIGURE 5. The code rate of our codes. (a) shows the segmented code rate versus the length of the message segments (in nucleotides).

(b) shows the code rate versus the number of the message segment with the fixed message sequence length K ¼ 180.

TABLE 3. Table for error probabilities.

Total error number Insertion Deletion Substitution Probability

0 0 0 0 ptð1� psÞ
1 0 1 0 pd
1 0 0 1 ptps
1 1 0 0 piptð1� psÞ
11 1 1 0 pipd

1 Given that a deletion after a random insertion can be seen as a substitu-
tion, this case also introduces only one edit error.

TABLE 4. Parameters used for the simulations.

Parameter Paraphrase Default value

K length of the message sequence 180
k length of the message segment 30
l number of the segments 6
m number of duplications 1
pr DNA mutation error rate 0.01
T number of simulations 10000
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the lowest nucleotide error rate. The 4-ary TA-Marker code
shows the worst performance because it can only correct
indel errors but no substitutions. The IBS-Marker code and
the Cai-Marker code achieve a moderate performance, due
to the limitation that they can only correct a single edit error
in each data-block codeword, while edit errors in marker
codewords may disrupt synchronization. We further com-
pared the lower bound of the theoretical probability of error-
free decoding (8) (dotted line) with simulations (solid lines).
Simulations indicate that our segmented-edit error-correcting
codes have achieved better performance than theoretical
results. This is because our encoders and decoders are care-
fully designed to cope with some, although not all, multiple
edit errors within segments to avoid out-of-sync
events. Figure 6(b) illustrates that the NER of codes
decreases as the number of segments increases. It is reason-
able to assume that it can achieve a lower NER by separating
sparse errors into different segments.
To investigate the bias in edit error-correcting capabilities

of different segments, we plotted the NER per position
in Figure 7. The curve of the DNA-LM code seems more vol-
atile than other codes, but this is due to the setting of the
coordinate system. All curves show a small jump between

adjacent segments, as decoding may lose synchronization if
multiple edit errors within a segment. In addition, we noticed
a slight decrease in the last segment. One explanation is that
the boundary of the last segment is determined by the length
of the sequence so that the decoding can be re-synchronized.
To focus more on the DNA-LM code, we further plotted the

NER as a function of the DNA mutation error rate with varied
numbers of segments (Figure 8). It shows that the NER
decreases significantly as the number of segments increases.
Besides, since the code rate increases with the number of seg-
ments (Figure 5(b)), there is a trade-off between the code rate
and the NER. In practice, the error probabilities may not be
identically distributed among positions. Since the encoding of
each message segment is independent of each other, one can
set the lengths of message segments to vary with the error
probability within DNA strands. For example, considering
that the two ends of the DNA strand are more prone to
errors [23], the encoder can choose a shorter segment length
towards the ends of the DNA strands.
As depicted in Figure 9, we can observe how the NER

decreases with the number of duplications. In agreement
with the results of Section 5, the NER is significantly lower
for multiple reads as compared to a single read.

FIGURE 6. NER performance. (a) shows the NER as the function of the DNA mutation error probability, where pr increases from 0 to 2%.

(b) shows the NER as the function of the segment number with the DNAmutation error probability pr ¼ 0:01.

FIGURE 7. NER performance at different positions in the mes-

sage sequence.

FIGURE 8. NER performance of the DNA-LM code with varied

numbers of the message segment.
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Finally, we verified that the messages could be recovered
without error via concatenating an outer code (specifically,
(255,223) RS code) to our DNA-LM code, but only up to a
maximum tolerable error rate that increased with decreasing
code rate. As an initial validation of coding performance, we
first randomly generated messages of length 223	 31 bytes.
Second, as the outer encoding, we used a concatenated cod-
ing scheme to produce 255 strands via an outer code (i.e., the
(255,223) RS code) and appended a unique 1-byte prefix
(i.e., 0 to 255) to each strand as the index. Third, as the inner
encoding, we encoded each strand of length 128 quaternary
symbols via our DNA-LM code with the segment of length
(16,32,64), yielding DNA strands of length (214,174,152).
To simulate the overall DNA storage channel, we pooled and
shuffled all of the strands and then duplicated them as if
sequencing to depth 5, i.e., each strand was duplicated a
Poisson random number of times, with a mean of 5. We fur-
ther induced stochastic edit errors to each strand in the pool
based on the inner channel model, where the total error rate
pr traversed f0:01; 0:02; 0:03; 0:05; 0:07; 0:10; 0:15g and ps :
pi : pd ¼ 1 : 1 : 1. We constructed a statistical error model to
analyze the byte error rate.
As a result, Figure 10 shows the byte error rate as a func-

tion of the DNA mutation error rate. We also plotted the
decoding performance of [12], in which the inner code is the
HEDGES code and the outer code is the same (255,223) RS
code. The HEDGES code is a well-designed convolutional
code and is able to correct stochastic edit errors, however, its
decoding complexity is Oð2nÞ. The comparison indicates that
at close code rates, although our DNA-LM code performs
poorly at high raw error rates, it allows a higher raw error
rate for error-free decoding than [12]. Specifically, the DNA-
LM code with rate r ¼ 1:47 is capable of error-free decoding
at 1% DNA mutation error rate (i.e., via the “next-gen”
sequencing).

VII. CONCLUSION

In this work, we have designed a new segment-edit error-cor-
recting code, called the DNA-LM code. Each codeword seg-
ment is a concatenation of a marker codeword and a data-

block codeword. It is distinctive in that it does not require
segment endpoints as a prerequisite for decoding, but rather
can decode segment by segment through its special struc-
ture. Another advantage of the DNA-LM code is that its
data-block code also has the same re-synchronization func-
tion as the marker code, but without the additional code
redundancy. It makes the DNA-LM code more likely than
other segment-error-correcting codes to restart decoding,
even if multiple edit errors occur within a segment. Further-
more, it can be simply generalized to decode duplicated
DNA strands. Simulations showed that the DNA-LM code
is capable of error-free decoding for the “next-gen”
sequencing readouts via concatenating with an efficient
outer code (e.g., the (255,223) RS code).
To summarize, the DNA-LM code is useful when the

amount of data increases: (i) its codewords are systematic;
(ii) it only takes linear time complexity for encoding and
decoding; (ii) it allows varying the code rate, with corre-
spondingly greater tolerance of edit errors at lower code
rates; (iv) it produces erasures when segmented decoding
fails, making it easier for outer code to recover the residual
errors; (v) when generalized to decoding duplicated DNA
strands, it still maintains linear time complexity; (vi) it ena-
bles error-free decoding at a low row error rate. Given this,
the DNA-LM code can be applied to a wide range of storage
systems with synchronization errors, especially being used as
an inner code in the DNA-based storage system.
For future work, in order to cope with more complex error

cases and effectively correct the burst errors that may occur
in a DNA strand, we will further combine a class of burst-
error-correcting codes (e.g., RS codes) with our DNA-LM
code.
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