
IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 11, NO. 2, APRIL 2025 933

GAIKube: Generative AI-Based Proactive
Kubernetes Container Orchestration Framework

for Heterogeneous Edge Computing
Babar Ali, Muhammed Golec , Subramaniam Subramanian Murugesan, Huaming Wu , Senior Member, IEEE,

Sukhpal Singh Gill , Felix Cuadrado , and Steve Uhlig

Abstract—Containerized edge computing emerged as a
preferred platform for latency-sensitive applications requir-
ing informed and efficient decision-making accounting for the
end user and edge service providers’ interests simultaneously.
Edge decision engines exploit pipelined knowledge streams to
enhance performance and often fall short by employing inferior
resource predictors subjected to limited available training data.
These shortcomings flow through the pipelines and adversely
impact other modules, including schedulers leading to such
decisions costing delays, user-experienced accuracy, Service Level
Agreements (SLA) violations, and server faults. To address
limited data, substandard CPU usage predictions, and container
orchestration considering delay accuracy and SLA violations, we
propose a threefold GAIKube framework offering Generative
AI (GAI)-enabled proactive container orchestration for a hetero-
geneous edge computing paradigm. Addressing data limitation,
GAIKube employs DoppelGANger (DGAN) to augment time
series CPU usage data for a computationally heterogeneous edge
cluster. In the second place, GAIKube leverages Google TimesFM
for its long horizon predictions, 4.84 Root Mean Squared
Error (RMSE) and 3.10 Mean Absolute Error (MAE) against
veterans Long Short-Term Memory (LSTM) and Bidirectional
LSTM (Bi-LSTM) on concatenated DGAN and original dataset.
Considering TimesFM quality predictions utilizing the DGAN
extended dataset, GAIKube pipelines CPU usage predictions
of edge servers to a proposed dynamic container orchestrator.
GAIKube orchestrator produces container scheduling, migration,
dynamic vertical scaling, and hosted application model-switching
to balance contrasting SLA violations, cost, and accuracy objec-
tives avoiding server faults. Google Kubernetes Engine (GKE)
based real testbed experiments show that the GAIKube orches-
trator offers 3.43% SLA violations and 3.80% user-experienced
accuracy loss with zero server faults at 1.46 CPU cores expense

Received 2 July 2024; revised 30 October 2024; accepted 24 November
2024. Date of publication 2 December 2024; date of current version
9 April 2025. B. Ali is supported by the Ph.D. Scholarship at the Queen Mary
University of London. M. Golec is supported by the Ministry of Education
of the Turkish Republic. H. Wu is supported by the National Natural Science
Foundation of China (No. 62071327). F. Cuadrado has been supported by
the HE ACES project (No. 101093126). The associate editor coordinating
the review of this article and approving it for publication was J. Kang.
(Corresponding author: Huaming Wu.)

Babar Ali, Muhammed Golec, Subramaniam Subramanian Murugesan,
Sukhpal Singh Gill, and Steve Uhlig are with the School of Electronic
Engineering and Computer Science, Queen Mary University of London,
E1 4NS London, U.K. (e-mail: b.ali@qmul.ac.uk; m.golec@qmul.ac.uk;
s.subramanianmurugesan@qmul.ac.uk; s.s.gill@qmul.ac.uk; steve.uhlig@
qmul.ac.uk).

Huaming Wu is with the Center for Applied Mathematics, Tianjin
University, Tianjin 300072, China (e-mail: whming@tju.edu.cn).

Felix Cuadrado is with the School of Telecommunications
Engineering, Universidad Politécnica de Madrid, 28040 Madrid, Spain
(e-mail: felix.cuadrado@upm.es).

Digital Object Identifier 10.1109/TCCN.2024.3508771

in comparison to industry-standard model-switching, GKE pod
scaling, and GKE optimized scheduler.

Index Terms—Edge computing, generative AI, container
migration, vertical scaling, Kubernetes, service level agreement.

I. INTRODUCTION

EXPLOSIVE growth of the Internet of Things (IoT)
devices is a key enabler for producing a diverse range

of services and applications. Machine Learning (ML) and
Deep Learning (DL) applications are constantly improving end
users’ experiences generating notably accurate inferences in
the fields of spanning healthcare, transportation, surveillance,
and computer vision [1]. End users are mainly interested in
quick and accurate responses. To address latency challenges,
edge computing infiltrated the computing continuum hosting
ML/DL applications in closer proximity to data, enticing users
to offload compute-intensive tasks to edge. It extends cloud
service closer to users, which is mainly a distributed, hetero-
geneous and resource-constrained computing paradigm [2].

A. Opportunities and Challenges

The inevitable confluence of edge and containerization
brings tremendous opportunities in the computing landscape
enhancing reliability, latency, ease of application manage-
ment, lesser overhead, and bandwidth conservation [3], [4].
However, it introduces critical management challenges requir-
ing efficient solutions to manage service provider cost,
user-experienced accuracy, latency, and edge server health. The
computational heterogeneity of edge servers (CPU, memory),
Kubernetes containers (CPU, memory), and multiple accessi-
ble ML/DL model versions add up to existing challenges [5].
Model-Switching [6] offers to change ML/DL model versions
responding to dynamic load and high accuracy demands.
However, static resource provisioning incurs either cost or
SLA violations [7]. Thus, Model-Switching assisted vertical
container scaling at edge computing offers a multitude of
benefits with greater responsibility on scheduler. For example,
a decision for all the containers to employ the best accuracy
model in the lowest possible container cores extremely over-
loading a few edge servers can increase accuracy and conserve
cost but it can damage edge servers and increase Service Level
Agreement (SLA) violations [8]. Therefore, an efficient and

2332-7731 c© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 09,2025 at 02:17:45 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0146-9735
https://orcid.org/0000-0002-4761-9973
https://orcid.org/0000-0002-3913-0369
https://orcid.org/0000-0002-5745-1609
https://orcid.org/0000-0001-6251-6836

934 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 11, NO. 2, APRIL 2025

dynamically adaptive orchestrator for containers at the edge is
required.

It is financially infeasible to deploy powerful servers at
the edge [9]. Sub-optimal and reactive solutions can cause
resource contention and potential downtimes ultimately incur-
ring monetary cost and wasted computations [9]. To avoid
system faults, the orchestration unit must be equipped with
a server usage predictor to assist in producing proactive and
dynamic decisions [10]. Moreover, high-precision predictors
are inherently data-hungry requiring diverse training data
while data limitation can result in average models [11].
Generative Adversarial Networks (GAN) attempted to address
this limitation and offer to produce synthetic data employing
state-of-the-art ML models under the hood [12], [13], [14].
DoppelGANger (DGAN) [15] and TimeGAN [16] are promi-
nent GANs characterizing time series data. Furthermore, with
the shorter prediction sequences limitation of TimeGAN,
this work employs DGAN for its salient features [17]. The
next section presents the motivation for Generative Artificial
Intelligence (GAI) based container orchestration.

B. Motivation

Firstly, GAI can generate vast amounts of high-quality
data while significantly cutting down on data collection time
and cost [18]. Original data can be extended with unseen
and realistic data encompassing a wide range of workload
patterns leading to the production of accurate and robust
models [19]. Secondly, researchers are producing multiple
variants of ML/DL applications differing in accuracy and
computation resource demands [20]. Fig. 1a represents the
SLA violation percentage comparison of Yolo5 application
nano, small, and medium versions hosted in 0.5, 1, and 2
cores containers. SLA violations for each model are reduced
with the increment of provisioned cores. It can be con-
cluded that under-provisioning increases SLA violations and
over-provisioning incurs costs [21]. Moreover, Fig. 1b shows
SLA violations against container cores with dynamic model-
switching subjected to violation rate. Two cores container
offering the lowest SLA violations with the highest accuracy.
Half core suffers from under-provisioning while one core
changed models resulting in improved accuracy and a higher
violation rate. Thus, model-switching requires dynamic scaling
for accuracy, cost, and SLA violations. Finally, GKE offers
container placement in balanced and optimized modes. Prior
one distributes containers evenly among server nodes, while
optimized mode opts to overload servers. The balanced mode
can lead to higher cost with more active nodes while opti-
mized one can suffer from server damage where putting load
more than 75-80% impacts machine performance [22], [23].
Thus, there is a need for an efficient and proactive con-
tainer placement in optimized mode to avoid performance
degradation.

C. Contributions

Considering the challenges of user-experienced accuracy,
latency, service provider cost, SLA violations, edge server
health, and data limitation, in this paper we propose the

Fig. 1. (a) Latency SLA violations for various cores and model versions
against model accuracy with 700ms SLA threshold. (b) Container cores
against SLA violations for Model Switching.

GAIKube container orchestration framework offering threefold
contributions. It utilizes GAN to produce CPU usage data for
heterogeneous edge servers. Leveraging the extended dataset,
GAIKube employs a decoder-only time series predictor for
proactive scheduling. Finally, pipelining predictions into a
dynamic and adaptive scheduler responsible for heterogeneous
edge server cluster management. The following are key con-
tributions of this work.

• GAIKube employs DGAN [15] to produce time series
CPU usage data of heterogeneous 2, 4, and 6 cores edge
servers utilizing Bitbrains [24] dataset historical records

• We adopted Google TimesFM [25] offering minimal
RMSE and MAE errors against LSTM and Bi-LSTM for
six timestep ahead CPU usage forecasts of heterogeneous
edge nodes on the extended Bitbrain dataset

• GAIKube proposes a proactive scheduler to dynamically
modify container resources, switch YOLO models, and
migrate containers exploiting pipelined predictions and
SLA violation rates. These decisions account for accu-
racy, latency, cost, and edge server health

• Experimental results in the GKE testbed show GAIKube
outperforms the default GKE optimized scheduler [26],
dynamic pod scaler [27] and model-switching [6] offering
3.43% SLA violations, 3.80% accuracy loss, and zero
server faults at 1.46 CPU cores expense.

The rest of the paper is organized as follows. Section II
highlights existing research works conducted in this paradigm
followed by critical analysis. The accuracy, cost, and server
utilization problem is formulated in Section III. GAIKube
framework is detailed in Section IV. Performance evaluation
and results are discussed in Section V. Section VI concludes
this work and highlights future directions.

II. RELATED WORK

Tuli et al. [28] proposed a PreGAN model for proactive
container migrations in heterogeneous edge computing. The
generator employed faulted edge server classification to pro-
duce modified scheduling decisions. The discriminator selects
between the original and the generator decisions targeting var-
ious quality parameters. PreGAN improved energy and SLA
violations, However, this work does not offer dynamic scaling
and model-switching for user-experienced accuracy. In another
work, Ray et al. [29] proposed a proactive VM migration
technique to avoid server faults. The authors modeled the profit
and migration cost problem using Integer Linear Programming
(ILP) to redistribute VMs from faulty to healthy nodes. This

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 09,2025 at 02:17:45 UTC from IEEE Xplore. Restrictions apply.

ALI et al.: GAIKube: GAI-BASED PROACTIVE KUBERNETES CONTAINER ORCHESTRATION FRAMEWORK 935

TABLE I
COMPARISON OF GAIKUBE WITH EXISTING WORKS

work outperformed its counterparts however, they did not
consider IoT applications and dynamic scaling.

Zhang et al. [6] proposed a model-switching technique
to modify the hosted DL application version in response
to dynamic workload and accuracy requirements employing
profiled statistics. It improved user-experienced accuracy in
comparison to individual DL models. However, this work is
evaluated in homogeneous settings without offering dynamic
scaling. Salmani et al. [7] proposed the idea of selecting a
set of model variants employing model-switching to meet
accuracy, delay, and cost objectives. It utilized ILP to iden-
tify the model variants and container replicas to respond
to dynamic workload. Kubernetes experiments show reduced
cost and improved accuracy. However, this work overlooked
heterogeneity and employed the default Kubernetes sched-
uler for container placements. Wang et al. [30] proposed a
proactive heuristic Vertical Pod Autoscaler (VPA) employing
LSTM predictions to conserve CPU cores. Containers are
rescaled when the predicted usage falls outside the lower and
upper bound thresholds. However, the predictive performance
can be enhanced with the latest predictive models and
extended datasets. In another work, Tran et al. [31] employed
Bi-LSTM on the Bitbrains dataset for CPU prediction to
avoid server faults. Bi-LSTM predictions are pipelined to
a container migration framework that proactively migrates
containers to predicted healthy servers. However, this work
can be analyzed in heterogeneous settings with dynamic
scaling.

GARLSched [32] algorithm accelerates the Proximal Policy
Optimization (PPO) scheduler learning process employing
a GAN expert. Discriminator classification performance is
enhanced by distinguishing GAN expert and PPO actions.
Simulation results show GARLSched improved task waiting
time in scalable settings however, this work lacks real testbed
evaluation. GKE VPA [27] and GKE optimized scheduler [26]
are the industry-standard production scalers and container
schedulers of the Google platform. VPA dynamically updates
container CPU and memory resources employing histori-
cal records and monitored performance responding dynamic
workload and costs. In parallel, the GKE optimized sched-
uler aggressively maximizes server utilization by placing
containers to the maximum limit. This approach improved
utilization and minimized cost at the possible expense of server
faults.

A. Critical Analysis

Table I presents a detailed comparison of existing research
conducted in this paradigm. Works [28], [32] offered GAN
solutions for scheduling. PreGAN aligns closely with our
work however, it does not entertain model-switching and
dynamic scaling. GARLSched worked on improving task
waiting time in the simulated settings and overlooked signif-
icant orchestration parameters. Most of the works employed
prediction algorithms in computationally heterogeneous clus-
ters. Objectives include fault avoidance, cost, accuracy,
utilization, etc. where only [6], [7] offered dynamic model-
switching. However, both of these works not only overlooked
vertical scaling but also employed the default Kubernetes
orchestrator. Vertical scaling is offered by [26], [27], [30] but
these works address specific objectives without considering
multiple ones together. The cost metric represents the cost con-
sidered in terms of CPU cores, energy, or nodes consolidated
by the considered works. It can be seen that none of the works
have considered a diverse range of parameters and objectives
together accounting for both the end users and edge service
provider interests simultaneously.

Given the heterogeneous and resource-constrained edge
environment, there is a need for a framework capa-
ble of responding to dynamic workload, SLA violations,
and user-experienced accuracy avoiding edge server faults.
Furthermore, it should cope with the limited available training
data to generate quality resource predictions. Therefore in
this work, we are proposing GAIKube which offers threefold
contributions. It employs DGAN to augment CPU usage data
for heterogeneous edge cluster nodes. Utilizing the extended
dataset GAIKube produces quality CPU usage predictions
using TimesFM. Finally, it exploits pipelined predictions to
produce container scheduling, migration, YOLO application
model-switching, and dynamic vertical scaling decisions.

III. PROBLEM FORMULATION

This section formally describes the problem of accuracy,
cost, and utilization of heterogeneous edge server nodes.
We consider a computationally heterogeneous edge cluster
with nodes N = {n1(θ, η),n2(θ, η), . . . ,nK (θ, η)} offering
distinct CPU (θ) and memory (η) resources. Containers
can request dynamic CPU (θr) and memory (ηr) resources
from edge nodes to host ML/DL applications. Let P =

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 09,2025 at 02:17:45 UTC from IEEE Xplore. Restrictions apply.

936 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 11, NO. 2, APRIL 2025

{p1(θr , ηr), p2(θr , ηr), . . . , pJ (θr , ηr)} be this set of pods
representing distinct and heterogeneous resource requests. At
each point in time i, every node has a certain utilization
of its resources and a set of all the nodes utilization be
U = {u1(θ, η), u2(θ, η), . . . , uK (θ, η)}. CPU and memory
utilization of a node k at time i come from the total requested
to the maximum allocatable resources [24].

uk (i , θ, η) =

(∑
nk (θ

r)

nk (θ
max)

,

∑
nk (η

r)

nk (η
max)

)
. (1)

DL applications can have multiple model versions differing
in accuracy. Let m ∈ {1, 2, . . . ,M } be the set of model
versions and each version has unique associated accuracy am .
At any time interval i, there can be only one active model in
a given container p by:

M∑
m=1

xm,p(i) = 1, (2)

where xm ∈ {0, 1}. The accuracy is subjected to the active
version for a container p and the accuracy of the system at
time i be:

A(i) =
∑
p∈P

M∑
m=1

amxm,p(i). (3)

Active model in any container can be switched to another
version subjected to system state and requirements and it can
be stated as:

s(i) =

{
1 if xm,p(i − 1) �= xm,p(I),
0, otherwise .

(4)

While all the model switches in interval i in total containers
P can be:

SP (i) =
∑
p∈P

∣∣xm,p(i)− xm,p(i − 1)
∣∣. (5)

To measure the overall average accuracy of the system, user
traffic served by each model is required. Each container p
entertains a fraction user traffic λp of total traffic λ. Since
the model may be switched at intervals on each container,
this leads to the possibility that traffic λp is further split
between model versions λm,p . Thus, the average accuracy aap
of container p over all the intervals I comes from the traffic
entertained by each model to its accuracy [6].

aap =
∑
i∈I

M∑
m=1

(
λm,p(i)

λp

)
amxm,p(i). (6)

Now the average or Mean Accuracy (MA) of the system
over all the containers, models, and the traffic of each model
can be estimated using Eq. (6):

MA =
∑
p∈P

(
λp
λ
aap

)
. (7)

As stated earlier each container requests for resources from
edge server nodes. Thus, the total system cost C at i comes
from the number of CPUs requested by containers [7].

C (i) =

P∑
p=1

p(ηr). (8)

Each application model responds to user queries and returns
the response. Considering this scenario of varying model
accuracy and their requirement for dynamic CPU, this work
estimates the SLA Violations (SLAV) to improve end-user
experience. SLA is violated when a request processing time
Te exceeds the threshold SLAth . SLA Violation of a given
model in container p is calculated by:

SLAVm,p =

{
1 if Te > SLAth ,
0 otherwise .

(9)

The SLAV Rate (SVR) of a given container for interval i
can be estimated using the number of violations to the traffic
observed in this interval.

SVRm,p(i) =
SLAVm,p(i)

λm,p(i)
. (10)

At the end of time interval i − 1, metrics are carried forward
to interval i including the cost of the system, current utilization
of edge server nodes, violation rate observed for each of the
containers, and accuracy of active models. Considering these,
the objective is to maximize accuracy A, maximize edge server
CPU utilization U, and minimize the violation rate VR in each
interval i given by:

max : MA+ U − SVR (11)

s.t.: Te ≤ SLAth , (11a)

θr ≤ max(N (θ)), (11b)

θr ≤ θth , (11c)

A(i) ≤
∑
p∈P

max
m∈M

(
amxm,p(i)

)
, (11d)

∑
p∈P

p(θrr , η
r
r) ≤ N (θ, η), ∀k . (11e)

The first constraint ensures SLA violation does not occur while
the second constraint states that a container can never request
CPU than the maximum available CPU in the cluster. The
third constraint limits the container requested CPU from the
defined CPU threshold θth . The accuracy can never exceed
the maximum achievable. Lastly, the resources used by all the
containers in a node should stay below the node capacity.

IV. THE GAIKUBE FRAMEWORK

This section describes the system architecture, machine
learning employed models, and techniques used at each stage
of this framework.

A. System Architecture

Fig. 2 shows the system architecture highlighting the
DGAN generator, TimesFM predictor, GAIKube scheduler,
GKE heterogeneous edge datacenter, IoT users, and the frame-
work flow. GAIKube framework entertains computationally
heterogeneous edge servers and containers hosting a variety
of YOLO images shown in the data center module of Fig. 2.
Beginning with decoupling historical CPU usage data into
individual series followed by DGAN training. The trained
models generate new records followed by custom metadata

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 09,2025 at 02:17:45 UTC from IEEE Xplore. Restrictions apply.

ALI et al.: GAIKube: GAI-BASED PROACTIVE KUBERNETES CONTAINER ORCHESTRATION FRAMEWORK 937

Fig. 2. GAIKube System Architecture representing DGAN, TimesFM
Predictor, Scheduler, GKE Heterogeneous Testbed.

(MDT) creation. Both the DGAN data and MDT are concate-
nated for individual series and appended to the original dataset
in step 5 of Fig. 2. These extended records are pipelined to
the TimesFM predictor to generate Multi Timestep Ahead
(MTA) predictions for heterogeneous edge servers. TimesFM
differentiates the input dataset on unique cores. Moreover,
TimesFM is tuned with the desired prediction length followed
by MTA predictions pipelined to the GAIKube scheduler in
step 9. MTA predictions are conducted in an auto-regressive
mode where the predicted timesteps are appended to the
training data to extract forecast CPU usage for the next step.

The scheduler is responsible for producing proactive
migration, scaling, and model-switching decisions leveraging
TimeFM predictions and YOLO profiled dataset. In addition, it
leverages the edge data center state including container place-
ments, selected YOLO models, provisioned container cores,
observed SVR, and edge server utilization. The scheduler
produces the latest decision D ′ followed by its implementation
in the edge data center. Possible migration, model-switching,
and scaling are shown in the data center in Fig. 2. Finally,
public traffic is directed to the IP and port exposed by
containers.

B. Datasets

This section describes the Bitbrains and custom YOLO
datasets employed in this research work. GAIKube leverages
heterogeneous 2, 4, and 6 core machine records of Bitbrains
for edge servers CPU prediction. The YOLO profiled dataset
enriches the scheduler offering processing time of distinct
versions hosted in 0.5, 1, and 2 cores containers.

1) Bitbrains: Bitbrains [24] is an open-source dataset
comprising CPU, memory, disk, and network features of
distributed data center-hosted financial applications of banks,
credit card operators, and insurance companies. It is commonly
employed for edge/ fog settings [33] subjected to dynamic

Fig. 3. Real and Doppler GAN CPU usage data of 2, 4 and 6 core VMs.

TABLE II
SYMBOLS AND DEFINITIONS

workload characteristics. Accounting for the requirement of
highly dynamic workloads of heterogeneous servers, we ana-
lyzed 1250 VMs from fastStorage class and selected machines
983, 980, and 943 of 2, 4, and 6 cores, respectively. These
selected machines showed regular patterns of CPU usage per-
centage over a month as shown in Fig. 3. 2 core VM exhibits
regular spikes, while 4 and 6 core VMs show balanced and
consistent usage patterns. The rest of the machines are either
underutilized or exhibit non-uniform spikes. Considering CPU
as the key factor in Google Cloud platform cost calcula-
tion [34], we considered CPU Usage [%] in this work. Initial
data analysis showed records are logged at irregular intervals
with missing values at certain timestamps for each core. We
addressed these limitations by resampling and forwardfill at a
5-minute interval. These processed records of 2, 4, and 6 core
VMs are concatenated, sorted, and ingested to the TimesFM.

2) Yolo Profiling: We employed You Look Only Once 5
(Yolo5) [35] DL application, which performs detection and
classification on images and live video streams, identifies
objects by drawing bounding boxes, and shows confidence
using probability. Yolo5 has multiple versions including

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 09,2025 at 02:17:45 UTC from IEEE Xplore. Restrictions apply.

938 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 11, NO. 2, APRIL 2025

Algorithm 1 DGAN Data Generation
1: Input: Historical Bitbrains Data ρ
2: Output: Combined New and Historical Records ρ
3: procedure DATA GENERATION

4: ρ = load data
5: ρ = clean(ρ)
6: f [1, 2, . . . ,F] = ρ[θ], ρ[θ], ρ[θ], . . . ρ[θ]
7: for j = 1, j++, while j ≤ F do
8: f = f [j]
9: φ = train(f ,H)

10: f ∗ = φ(f)
11: mdt = datetime(begin, end)
12: f ∗ = f ∗[mdt]
13: f = f + f ∗
14: ρ∗[f] = f
15: end for
16: ρ = ρ∗[1] + ρ∗[2]+, · · · , ρ∗[F]
17: return ρ
18: end procedure

Yolo5n (nano), Yolo5s (small), Yolo5m (medium), etc. dif-
fering in accuracy and computational resources requirements.
Considering the constrained resources at the edge and the
timely response requirement of end users, we adopted nano,
small, and medium versions for conducting inferences in less
than a second. Given that CPU cores substantially influence
task processing time, we profiled a custom dataset of the
YOLO model version and hosted container CPU cores. A
Docker1 image for each nano, small, and medium version is
created and deployed in 0.5, 1, and 2 cores containers hosted
in the GKE London region. These containers can receive
public traffic on port 5000 using Flask,2 detect and label the
provided image employing the model version, and return the
results to the user. Finally, the received response is stored
on the client side. The response includes the detected image,
processing time, propagation time, model version, container
core, etc. These profiled metrics are utilized by the scheduler
for decision-making shown in step 9 of Fig. 2. Details related
to the working of Kubernetes are given in our previous
work [4].

C. AI/ML Models

This section details DGAN and TimesFM models utilized
in the GAIKube framework.

1) DoppelGANger CPU Generator: DGAN [15] is a novel
time series data generation model aiding the traditional gen-
erator and discriminator with per-feature scaling to mitigate
mode collapsing in GANs. It incorporates multi-step RNN
predictions capturing temporal sequences to produce long-
term data. However, DGAN fails to generalize multiple series
simultaneously. Despite MDT generation claims, it was unable
to capture time series MDT patterns and produced MDT
at irregular timestamps. Finally, DGAN is sensitive to the
frequency and number of future samples. Experimental anal-
ysis with 72, 144, 288, and 2016 future samples showed that
DGAN collapses with prolonged future sample generation.
On the contrary, short-term future samples resulted in high
fluctuations failing to grasp the trend.

Considering these challenges, we split the Bitbrains dataset
into individual 2, 4, and 6 core series shown in Algorithm 1

1https://www.docker.com/
2https://flask.palletsprojects.com/en/3.0.x/

TABLE III
DGAN HYPERPARAMETERS

step 6 and Fig. 2 step 1. GAIKube trains a separate model
for each server core shown in Algorithm 1 step 9, where H is
the DGAN hyperparameter given in Table III. Moreover, we
already had decoupled the date-time MDT. Leveraging future
sample analysis, we tuned DGAN to generate one-day data
f ∗ comprising 288 CPU usage samples for each core at a
5-minute interval. To make freshly generated logs consistent
with the Bitbrains, GAIKube generates MDT for the number
of samples per day and the number of days followed by
logs concatenation represented in steps 11-13 of Algorithm 1.
Finally, all the core logs are combined to produce an extended
single dataset ρ in Algorithm 1 step 15 and Fig. 2 step 5.
Fig. 3 exhibits original and DGAN generated data of employed
2, 4, and 6 cores heterogeneous servers from Bitbrians. It can
be seen that the DGAN data follows similar trends for each
core.

2) TimesFM CPU Predictions: Leveraging tokens, posi-
tional encoding, and self-attention in the decoder-only mode,
Times Foundation Model (TimesFM) [25] addresses RNN
limitations of mishandling long-term past temporal depen-
dencies. It equates tokens as the input time series data
patch and implements positional encoding to capture temporal
dependencies followed by self-attention enabling the model to
learn the relation among different patches. GAIKube pipelines
Bitbrains extended dataset from DGAN for heterogeneous
VMs. To better capture the trends, TimesFM’s internal archi-
tecture enables each core to be processed as a unique series.
Addressing the limited visibility into the future given the
uncertain and dynamic edge computing paradigm, GAIKube
exploits TimesFM long-horizon forecasts producing half-hour
or six timesteps ahead CPU usage predictions for each server.

TimesFM prediction procedure is shown in Algorithm 2.
TimesFM requires historical data ρ, prediction length ω, and
unique VM cores. As stated earlier, we utilize the DGAN
returned dataset. After loading and splitting the dataset into
80% and 20% training and testing sets, we calculate the
number of iterations for auto-regressive model predictions
in step 6. Predictions μ are made using hyperparameters H
given in Table VI. TimesFM employs previous outputs in
an auto-regressive mode requiring predicted timesteps to be
incorporated into the training data to generate predictions for
the next iteration as shown in step 10. Finally, TimesFM
CPU usage predictions of edge servers are ingested into the
scheduler for informed decision-making as shown in Fig. 2
step 9.

D. Scheduler

GAIKube scheduler is responsible for container migration,
scaling, and YOLO model-switching decisions to achieve
contrasting accuracy, utilization, and SVR objectives given

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 09,2025 at 02:17:45 UTC from IEEE Xplore. Restrictions apply.

ALI et al.: GAIKube: GAI-BASED PROACTIVE KUBERNETES CONTAINER ORCHESTRATION FRAMEWORK 939

Algorithm 2 TimesFM Prediction
1: Input: Historical Data ρ, Prediction Window ω, Unique VM Cores vm_core
2: Output: Predictions μ
3: procedure TIMESFM

4: ρ = load data
5: trainset, testset = train_test_split()
6: iter = (|testset|/ω × vm_core)
7: μ∗ = []
8: for j = 1, j++, while j ≤ iter do
9: μ = timesfm.predict(trainset,H)

10: trainset = trainset + trainset[μ]
11: μ∗[j] = μ
12: end for
13: μ = μ∗[1] + μ∗[2], . . .
14: return μ
15: end procedure

Algorithm 3 GAIKube Scheduler
1: Input: Logs Path, SLA Threshold SLAth , CPU Threshold θth , Previous Decision

D
2: Output: New Scheduling Decision D′
3: procedure PLACEMENT

4: for i = 1, i++, while i ≤ I do
5: μ = Timesfm(ρ)
6: Θ = logs[i − 1]
7: V = SLA-Violations(Θ)
8: if O = ∃ μ ≥ θth then
9: V ′,D′ = Overload(O,V)

10: else
11: V ′,D′ = Normal − Load(V)
12: end if
13: D′ = Model − Switching(V ′)
14: Calculate C (i), Y (i)
15: return D′, C (i), Y (i)
16: end for
17: end procedure

in Eq. (11) for underlined heterogeneous edge clusters. This
scheduler is classified into sub-categories to respond to
dynamic workloads leveraging Times FM predictions and
observed latency metrics. Algorithm 3 presents a schedul-
ing procedure responsible for managing overload, normal
load, and SVR using Algorithms 4, 5 and 6, respectively.
Moreover, containers hosted in forecasted overloading servers
are proactively migrated to mitigate server faults. GAIKube
scheduler extracts MTA TimesFM predictions μ at each
interval. In addition, it reads public traffic YOLO statistics
of the previous iteration for each container in the system to
calculate SVR. Violations are calculated from execution time
Te of user requests as each model version exhibits different
processing times for distinct container cores. Algorithm 3
step 8 leverages predictions to detect overloading nodes. In
case of a non-empty response, Algorithm 4 is invoked with
overloaded nodes indices O. There are possible migrations
or container vertical downscaling from predicted overload
servers O. Otherwise, the predicted load is in control where
GAIKube strives for accuracy hosting improved accuracy
YOLO model using Algorithm 5. Algorithm 6 entertains the
non-altered containers and switches hosted YOLO versions to
either maximize accuracy or reduce SLA violations. System
cost in terms of containers CPU cores, migration count, model
switches count, and the rest of the metrics are updated in
step 13. New decision D ′ with possible migrations, vertical
scalings, and model-switches is implemented in the GKE
heterogeneous edge server as shown in steps 10-11 of Fig. 2.

1) Predicted Overload: Algorithm 4 presents GAIKube
procedure responding to predicted overload situations. Fig. 3

Algorithm 4 Overload Handler
1: procedure OVERLOAD(O, V)
2: for o = 1, o++, while o ≤ |O| do
3: P[o] =

∑
p∈o p

4: end for
5: P̂ = descend_sort(P)
6: N̂free = descend_sort(N̂)
7: for o = 1, o++, while o ≤ |O| do
8: for p = 1, p++, while p ≤ |P̂o | do
9: placed = False

10: while |N̂free | > 1 do
11: h = N̂free .pop()
12: θ = p(θ)
13: while θ >= min(p(θr)) do
14: if ((h(θ) + θ)/halloc) ∗ 100 ≤ θth then
15: D′[p] = (hid , θ,mi)
16: V [p][pass] = True
17: placed = True
18: break
19: else
20: θ = θ/2
21: end if
22: end while
23: if placed = True then
24: break
25: end if
26: end while
27: if outil ≤ θth then
28: break
29: end if
30: end for
31: end for
32: return V ,D′
33: end procedure

presents the CPU usage of employed core VMs and it is visible
that 2 core has regular CPU usage exceeding the threshold
of 80%. The overload handler identifies and sorts containers
P̂ on each of the predicted overloaded nodes in descending
order of their requested resources as shown in Algorithm 4
step 5. In search of a new destination for these containers, edge
cluster nodes N̂ are shortlisted offering at least 0.5 cores of
CPU followed by descending order sorting. P̂ and N̂ given in
scheduler section are subsets of original P and N, respectively.

Exploiting the sorted available edge nodes with predicted
normal load N̂ , GAIKube attempts to migrate each container
without CPU downscale in the first place if the new node stays
under the 80% threshold as shown in steps 7-17 Algorithm 4.
If the server usage condition fails in step 13, GAIKube cuts
down the container CPU and repeats the search. Container
CPU cutdown stops at 0.5 cores considering the base case
for hosting the YOLO application. In a successful search,
subjected container location, YOLO image mi, and CPU core
are modified given in Algorithm 4 step 15. If the requested
CPU resources on given overloaded nodes fall under the
threshold confirmed in step 22 Algorithm 4, GAIKube leaves
the rest of the containers on this node and moves to the next
overloaded node in the list. Finally, updated decision D ′ and
SLA violation list V are returned for further processing.

2) Predicted Normal Load: GAIKube Algorithm 3 invokes
Normal Load Algorithm 5 when MTA predicted CPU usage of
heterogeneous edge servers is under the threshold for all edge
servers. In such times, GAIKube strives for higher accuracy
with possible upscaling. Differing from overload, Algorithm 5
selects containers P̂ hosting less accuracy YOLO versions
and sorts them in ascending order of CPU cores. Moreover,
edge servers are sorted in the descending order of remaining

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 09,2025 at 02:17:45 UTC from IEEE Xplore. Restrictions apply.

940 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 11, NO. 2, APRIL 2025

Algorithm 5 Normal Load Handler
1: procedure NORMAL-LOAD(V)
2: P̂ = ascend_sort(P̂)
3: N̂free = descend_sort(N̂)

4: for p = 1, p++, while p ≤ |P̂| do
5: placed = False
6: pod = P̂.pop()
7: while |N̂free | > 1 do
8: h = N̂free .pop()
9: θ = max(p(θr))

10: while θ > pod(θr) do
11: if ((h(θ) + θ)/halloc) ∗ 100 ≤ θth then
12: D′[p] = (hid , θ,mi)
13: V [p][pass] = True
14: placed = True
15: break
16: else
17: θ = θ/2
18: end if
19: end while
20: if placed = True then
21: break
22: end if
23: end while
24: end for
25: return V, D’
26: end procedure

Algorithm 6 Model-Switching
1: procedure MODEL-SWITCH(V ′)
2: for p = 1, p++, while p ≤ |P| do
3: row = V [p]
4: if row [p][pass] = True then
5: continue
6: end if
7: _curr_vio = row [violation]
8: if _curr_vio > 0.1 then
9: Model version down

10: else
11: Model version up
12: end if
13: N̂free = sort(N̂)
14: placed = True
15: while |Hfree | > 1 and placed = False do
16: h = N̂free .pop()
17: θ = p(θ)
18: if ((h(θ) + θ)/halloc) ∗ 100 ≤ θth then
19: D′[p] = (hid , θ,mi)
20: placed = True
21: break
22: end if
23: end while
24: end for
25: return D′
26: end procedure

resources. For each container, GAIKube begins the search with
the highest CPU core and model version based on the YOLO
profiled dataset to select a new server capable of hosting this
container without violating the CPU usage threshold checked
in step 11 Algorithm 5. In success, container location, CPU
cores, and YOLO image are modified along with locally man-
aged cluster metrics. However, the failure leads to container
CPU cutdown shown in step 17 followed by a repeating
cycle on the same server node. This cycle breaks when CPU
cutdown reaches the currently provisioned cores with the threat
of possible scale-down instead of up. Algorithm 5 returns
decision D ′ and modified SLA violation list V of containers
to Algorithm 3.

3) Model Switching: In either of the load situations
explained before, the model-switching Algorithm 6 is called
at each iteration given in step 12 of Algorithm 3 with the

modified violation list V ′. This modified list has the SVR of
unaffected containers in the system so far where Algorithm 6
modifies their YOLO models. GAIKube downgrades the
YOLO model for the container offering a 10% violation rate
for public traffic entertained in the previous iteration otherwise
the model is upgraded in steps 7-10 of Algorithm 6. In either
case, a new container has to be started with the updated YOLO
image and edge server node. Algorithm 6 search edge server
for this container in steps 13-19 with 80% threshold condition.

4) Complexity Analysis: Beginning with DGAN being
responsible for data augmentation exploiting limited avail-
able historical records by creating synthetic samples. Among
data preprocessing, DGAN training, new sample generation,
and concatenation, training is the dominant factor with the
complexity of O(M · R · T) where M, R, and T represent
unique servers (each core has an individual model), number of
employed records, and training steps, respectively. TimesFM
predictor is the second significant component offering auto-
regressive inferences with the computational complexity O(I ·
R) where I is the predictions iteration count shown in step
6 of Algorithm 2. Finally, the scheduler component poses
more complexity for its sub-modules to handle dynamic work-
load and accuracy objectives producing container migration,
dynamic scaling, and model-switching decisions. Scheduler
Algorithm 3 calls either Algorithm 4 or 5 with a set of
predicted overloaded nodes O where each of these sub-
modules deals with modified pods list P̂ and nodes list N̂ . The
model-switching algorithm is mandatory with an additional
complexity of pods P and modified nodes N̂ . Thus, the
scheduler yields an overall complexity of O(O ·P̂ ·N̂ +P ·N̂).

Combining the complexities of DGAN, TimesFM predictor,
and the GAIKube scheduler, the worst-case complexity of this
framework can be calculated by O(M ·R ·T+I ·R+O ·P̂ ·N̂+
P ·N̂). It is important to note that the actual runtime may vary
due to implementation details, parallel processing capabilities,
network latency, and the specific algorithms employed for
model training, prediction, and decision-making.

V. PERFORMANCE EVALUATION

This section details the GKE experimental testbed, evalua-
tion metrics, and workload module. In addition, we analyzed
the performance of compared predictors and schedulers sep-
arately to signify their contributions in terms of respective
evaluation metrics.

A. Experimental Setup

GAIKube evaluates the performance of the proposed work
and its counterparts in the GKE-based real testbed Europe-
West2-b London regional cluster. It is a three heterogeneous
nodes cluster of 2, 4, and 6 cores VMs with 50 GB of fixed
storage for each VM. Due to budget limitations, one node from
each core category is considered. Furthermore, we employed
two 0.5 cores, one of 1 core and one of 2 cores containers in
the experimentation. Table IV represents GKE cluster config-
urations considered in this work. After cluster creation, these
machines are warmed up by pulling each Docker image in
every node/ VM as image pulling poses significant delays that

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 09,2025 at 02:17:45 UTC from IEEE Xplore. Restrictions apply.

ALI et al.: GAIKube: GAI-BASED PROACTIVE KUBERNETES CONTAINER ORCHESTRATION FRAMEWORK 941

TABLE IV
SERVER NODES AND CONTAINERS CONFIGURATIONS

TABLE V
99TH PERCENTILE PROCESSING TIME (MS) COMPARISON

can substantially influence experimentation. Beginning with
the deployment of all the containers in the optimized mode
(explained in Section I-B), the scheduler is activated from
iteration 1 as it requires metrics for decision-making.

Table V presents the 99th percentile (P99) of processing
time for each container core and model version extracted from
the YOLO profiled dataset. Considering 700ms SLA as shown
in the Motivation section, nano can meet SLA for one and
two-core containers, small is better suitable for two-core, and
medium is highly likely to violate SLA for all the cores
given these results. Considering these insights 0.5, 1, and 2
core containers begin with nano, small, and medium versions,
respectively while the container CPU cores and YOLO model
versions are dynamically modified.

Each of the experiments is set to run for 43 iterations of
5-minute intervals from the testing set of Bitbrains, making
it 3 hours and 40-minute trace. Due to time and resource
limitations, we rescaled Bitbrains at 5-minute to 1-minute
intervals. After each scheduling decision, there is a 1-minute
of public traffic to each container generated by the workload
module excluding container recreation overhead. At the end of
an interval, the scheduler extracts various metrics, TimesFM
predictions, and SVR to produce a new decision for the next
iteration.

B. Evaluation Metrics

This section describes the evaluation metrics of both the
prediction models and the edge cluster, used in this work to
evaluate the performance of compared techniques.

1) Perdition Models Metrics: We have evaluated the
performance of GAIKube using time series metrics such as
Root Mean Square Error (RMSE) and Mean Absolute Error
(MAE), and their details are given in previous works [36].

2) Edge Cluster Metrics: The following metrics are used
to evaluate the performance of the GAIKube framework:

• SLA Violation Percentage (VP) [33]: SLA violation is
defined as the workload request exceeding the 700ms
threshold given by Eq. (9). For a given container over the

total time intervals of I, VP comes from:

VP =

∑I
i=1 Te > SLAth

|I | × 100%. (12)

• Average Migrations [7]: Migration is the case when a
container location changes in comparison to the previous
interval location. Average migrations over the total time
interval I comes from:

AM =

∑I
i=1Y (i)

|I | , (13)

where Y (i) shows the migration count in interval i.
• Mean Accuracy (MA [%]): Mean accuracy of Yolo

models can be calculated by Eq. (7).
• Average Cost [7]: Cost comes from the CPU cores

requested by containers given in Eq. (8) and the mean
cost is the sum of cost over the total time intervals.

AC =

∑I
i=i C (i)

|I | . (14)

• CPU Utilization Percentage (CUP): CPU utilization [37]
of a server node can be calculated using Eq. (1):

CUP =

∑
nk (θ

r)

nk (θ
max)

× 100%. (15)

C. Baselines

This section describes all the baselines considered in the
GAIKube framework. We evaluated time series prediction
models for CPU usage, followed by schedulers including
default Kubernetes configured in optimized mode and the
combination of Pod level VPA along with Model-Switching.

1) Prediction Baselines: This section presents the baselines
compared to the TimesFM to highlight the justification of
its employment. We aimed to leverage long-term predictions
for proactive decision-making to improve cluster nodes’
health and avoid over-usage. For LSTM and Bi-LSTM, we
added time series features of minute, hour, day, month, year,
etc. into the Bitbrains dataset followed by normalization to
[0, 1]. For the fair comparison with TimesFM 6 timesteps
ahead predictions, we created data sequences for LSTM and
Bi-LSTM, comprising the last two hours of data as input
and target CPU Usage [%] of the next 18 values making
6 timesteps for each core. As stated in Section IV-C2 that
TimesFM entertains each core as an individual series, we
followed the same approach for both LSTM and Bi-LSTM by
creating a separate model for each core. Table VI shows the
hyperparameters of TimesFM and compared models.

• LSTM [30], [38]: LSTM is an RNN model commonly
used for time series predictions based on its feature of
holding memory for past intervals. It uses input, forget
and output gates for traversing input data and weights to
minimize the error by learning the data patterns.

• Bi-LSTM [31], [39]: It is an extended version of LSTM
and it creates two LSTM models i.e., forward and
backward to update model weights using backpropagation
aiming to minimize error.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 09,2025 at 02:17:45 UTC from IEEE Xplore. Restrictions apply.

942 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 11, NO. 2, APRIL 2025

TABLE VI
MODEL HYPERPARAMETERS

2) Scheduler Baselines: As GAIKube offers model-
switching, dynamic scaling, and container scheduling
simultaneously leveraging TimesFM pipelined predictions.
Thus, the counterparts are required to be equipped with similar
features for fair comparison. We selected two counterparts
comprised of industry-standard composite features.

• The first scheme called Single model VPA GKE (SVG)
offers no model-switching employing industry-standard
GKE Vertical Pod Autoscaling (VPA) [27] and the GKE
optimized mode scheduler [26].

• Model-switching [6], GKE VPA [27] and GKE optimized
scheduler [26] combines together to create MVG scheme.
Unlike SVG, MVG dynamically updates the YOLO
model.

The scheduling and vertical container scaling decisions are
the responsibility of GKE VPA and GKE scheduler for both
SVG and MVG. GKE produces these decisions by exploiting
its internal decision engine, monitoring, and historical records.

D. Workloads

Workload is the real-world traffic directed to Yolo applica-
tions serving public users. In each experiment interval i, public
traffic exploiting FLASK API is directed for one minute to all
the active pods/ containers in a sequential manner followed
by storing the logs. These insights are employed for container
resource management in the next iterations subjected to the
SLA violation rate.

E. Experimental Results

This section compares the performance of prediction models
and the edge cluster schedulers.

1) Prediction Models Comparison: Fig. 4 shows the
prediction results of baselines LSTM and Bi-LSTM against
TimesFM. This figure presents a comparison of compared
models on concatenated Bitbrains (left) and DGAN (right)
data split by a vertical line. Each of these models is employed
to predict CPU Usage [%] for the next half an hour as
stated earlier. It can be seen that all three compared models
captured the trend with LSTM a bit shy to detect peaks for 2
core machines. However, TimesFM and Bi-LSTM have better
performance in detecting trends and peaks. Moreover, the auto-
regressive mode enables TimesFM to handle the Bitbrains to
DGAN data transition very well where LSTM and Bi-LSTM
can be seen of the beat for 4 cores at a few times.

Fig. 4. TimesFM, Bi-LSTM, LSTM CPU predictions on testing & DGAN
data of 48 hours for 2, 4 and 6 Core VMs. Bitbrains Testing data is at the
left while DGAN is at the right of the vertical line.

TABLE VII
PROPOSED AND BASELINES MODELS COMPARISON

Two cores server has CPU usage between 20-85% with
regular spikes exceeding the 80% threshold. 4 and 6 cores
server show stable usage. Prior ranges between 30-70% while
later has CPU usage between 30-50%. TimesFM outperforms
both LSTM and Bi-LSTM for 4 core VM where it can
be seen that both counterparts get off the pattern but later
cover the loss. The auto-regressive mode data feeding enables
TimesFM to predict more accurate results due to fresh data.
Finally, 6 core VM has the most stable usage among the
other 2 VMs. Similar results are shown by each model where
TimesFM is staying in the middle, missing a few short peeks
but these are not critical in comparison to 2 core where
CPU usage hits 80% critical point. LSTM stays closer to
TimesFM and Bi-LSTM attempts to detect peaks at few points.
Table VII presents RMSE, MAE error scores, and the average
prediction or inference time for a single prediction. We are
presenting RMSE and MAE on the Bitbrains testing data and
concatenated Bitbrains and DGAN data. TimesFM has the
lowest RMSE and MAE, closely followed by LSTM while
Bi-LSTM has a poor score for both metrics. We have similar
results for Bitbrains and DGAN data RMSE and MAE where
TimesFM has the lead followed by LSTM and Bi-LSTM
validating Fig. 4 results. Furthermore, TimesFM has the worst
inference time of 645ms which is more than 10 times the
baselines for reasons. Firstly, both the LSTM and Bi-LSTM
are provisioned well-processed data while TimesFM requires
non-normalized data and a few hyperparameters performing
the processing itself. Secondly, baselines are once trained
while TimesFM requires auto-regressive data. These reasons
are responsible for highly accurate predictions of TimesFM at
the cost of inference time.

Analyzing the RMSE and MAE errors of TimesFM on
the concatenated dataset, two conclusions can be drawn.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 09,2025 at 02:17:45 UTC from IEEE Xplore. Restrictions apply.

ALI et al.: GAIKube: GAI-BASED PROACTIVE KUBERNETES CONTAINER ORCHESTRATION FRAMEWORK 943

Fig. 5. Requested CPU Percentage of 2, 4 and 6 core VMs.

Firstly, DGAN can produce quality time series synthetic
data to address the data limitations with significantly low
errors. Secondly, auto-regressive logs appending enables the
Transformer family TimesFM to produce significant accurate
predictions. Thus, we employed TimesFM in the GAIKube
framework.

2) Cluster Metrics Comparison: This section presents the
comparison of GAIKube and the baselines mentioned in
Section V-C2 in terms of metrics defined in Section V-B.

Fig. 5 presents the CPU utilization of each of the 2,
4, and 6 cores GKE edge servers. These are the results
of 43 timesteps approximately 3 hours 40 minutes from
the Bitbrains dataset. Exploiting the TimesFM predictions,
GAIKube improves utilization and successfully avoids faults
by not letting any server violate the CPU 80% threshold. It
emptied 2 cores server and maximally utilized the 4 and 6
cores servers. Dynamic upscaling of containers in response to
higher accuracy exploiting P99 latency given in Table V with
the CPU threshold condition eliminates 2-core VM from the
race. On the contrary, both SVG and MVG utilize the same
GKE-optimized scheduler and it can be seen that 2 and 4-core
VMs are over-utilized by each of them, while the 6-core VMs
are under-loaded. GKE optimized mode strives to maximize
utilization without any limitation on resource usage raising
faults and damage probability by a higher magnitude. Results
analysis shows that GAIKube efficiently utilizes available
resources while avoiding over-utilization at the heterogeneous
cluster.

Fig. 6(a) shows the comparison of average accuracy given in
Eq. (6) achieved by each container. Max shows the maximum
achievable accuracy of Yolo5 offered by the medium version
while Min is the lowest bound by the nano version. Containers
0, 1, 2, and 3 are initialized with nano, small, small, and
medium versions, respectively based on P99 latency compari-
son in Table V. Model-switching capability subjected to SVR
and higher accuracy hunger, results in the best performance for
GAIKube. Despite starting with 0.5 core, container 0 upscales
in the initial phase and stays at this CPU core to maximize
accuracy for GAIKube while SVG and MVG fail to upscale.
Both of these employ the same GKE scaling mechanism.
Despite enabled vertical scaling, GKE VPA fails to upscale
for two reasons. Firstly, it can scale utilizing monitored CPU

and memory resources only. Secondly, GKE VPA is offered
for the Deployment level, not the individual Pod level. These
limitations left container 0 with a 0.5 core hosting nano model
for each SVG and MVG. Yolo5 small version offers 56.8%
of accuracy and SVG achieves this at containers 1 and 2
as it never changes the model. While GAIKube and MVG
model switching resulted in slightly lesser accuracy to SVG.
Finally, all of GAIKube, SVG, and MVG achieve the highest
accuracy at container 3. SVG never changes the model, while
MVG and GAIKube have the same model-switching logic.
With this logic, the model is only switched to low accuracy
if there is at least a 10% violation rate in the last interval,
which never happened for GAIKube and MVG. Given the
highest achievable accuracy of 64.1% for Yolo5 medium,
GAIKube acquires 60.21%, SVG 55.85%, and MVG 54.7%
mean accuracy at cluster level as shown in Table VIII.

SLA violation percentage for each container is shown in
Fig. 6(b) given by Eq. (12). GAIKube offers the lowest VP
for containers 0 and 1 while, there are 8.23% and 1.14%
violations for containers 2 and 3, respectively. In conjunction
with container 0 accuracy in Fig. 6(a), GAIKube has the
lowest VP while the failed scaling of SVG and MVG results
in almost 50% VP. GAIKube has the lowest violations for
container 1 because of model switching followed by MVG
for the same reason. SVG hosts the same small version for
both containers 1 and 2 and it has 8.74% violations for
container 1 and 0% for container 2. As the SLA violations
are subjected to execution time Te of user requests, some
unforeseen background CPU usage can lead to such cases.
As expected container 3 has the lowest violations for all
the compared techniques. Further, Table VIII presents cluster-
wide VP where GAIKube has 3.43%, SVG has 14.77% and
MVG has 15.30% VP. GAIKube and MVG are offering higher
SLA violations for container 2 subjected to switching logic
which shows the requirement for a fine-tuned logic. Cost is
presented in Fig. 6(c) for each time interval. As stated earlier
container 0 is upscaled in the initial phase and it stays at this
scale throughout the lifetime which resulted in higher cost for
GAIKube in comparison to SVG and MVG. The experiment is
initialized with 0.5, 1, 1, and 2 cores for containers 0, 1, 2, and
3, respectively. It sums up the cost to 4.5 cores. This cost is
constant for SVG and MVG for its vertical scaling limitation.
However, GAIKube scales containers 0, 1, 2, and 3 to 2, 1, 1,
and 2 cores respectively offering the highest cost. Table VIII
presents the AC of each technique. Finally, Fig. 6(d) shows
the container migrations in each iteration. SVG has zero
migrations as it never scales and does not change the model
version. There are frequent migrations for MVG for its model
switching and the GKE-optimized mode scheduling. On the
contrary, there are fewer migrations for GAIKube but these are
significant ones. As GAIKube moves from nano to small and
medium versions in all containers. Thus, there is a possibility
of container migration subjected to SLA VP of 10% in the last
iteration. However, the available resources in the 4 and 6 core
machines are not enough to host more containers while 2 core
is predicted to be overloaded, thus there is no migration after
the 13th interval for GAIKube. AM presented in Table VIII
shows that SVG conducted no migrations and scaling while

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 09,2025 at 02:17:45 UTC from IEEE Xplore. Restrictions apply.

944 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 11, NO. 2, APRIL 2025

Fig. 6. YOLO mean accuracy, SLA VP, CPU cores cost, and migration count comparison of GAIKube, SVG, and MVG.

TABLE VIII
VIOLATION PERCENTAGE, MEAN ACCURACY, AVERAGE MIGRATIONS

AND AVERAGE COST COMPARISON

there is an average of 0.34 migrations for GAIKube and
0.84 migrations for MVG.

VI. CONCLUSION AND FUTURE WORK

We presented GAIKube to address the challenges of data
limitation, poor time series predictions, and beyond the safe
threshold CPU usage by industry-standard GKE scheduler.
GAIKube employs DGAN to generate new CPU usage data
for heterogeneous edge servers. Google TimesFM exploits
this data to produce MTA predictions for informed decision-
making. RMSE and MAE errors for concatenated Bitbrians
and DGAN data demonstrate the quality of DGAN synthetic
data and the significance of TimesFM predictions. Finally,
GAIKube proposed a proactive and efficient Kubernetes con-
tainer orchestrator to maximize resource utilization, reduce
SLA VP, improve user-experienced accuracy, and avoid
server faults for the hosted Yolo5 DL application. CPU
usage-oriented proactive container management and SLA
violation-oriented reactive model switching enable GAIKube
to achieve contrasting accuracy, SLA, and cost objectives.
GAIKube offers a reduced 3.43% SLA violations and 3.89%
accuracy drop at 1.46 CPU core expense. The industry-
standard GKE SVG scheduler offers 14.77% SLA violations
and 8.25% MA loss while MVG has 15.30% and 9.4% SLA
violations and MA loss, respectively, where both schemes
failed to avoid server faults. There are a few possible directions
to explore in the future. Firstly, TimesFM performed the best
however, the higher inference time can be a bottleneck that
should be reduced. Secondly, GAIKube addressed computa-
tionally heterogeneity for CPU servers leaving room to explore
a mix of CPU and GPU heterogeneous edge clusters. Finally,
we employed the YOLO application and these IoT applications
can be increased to produce an extensive framework.

SOFTWARE AVAILABILITY

GAIKube framework code is publicly available for the
researchers at https://github.com/BabarAli93/GAIKube.

REFERENCES

[1] X. Shao, G. Hasegawa, M. Dong, Z. Liu, H. Masui, and Y. Ji, “An
online orchestration mechanism for general-purpose edge computing,”
IEEE Trans. Services Comput., vol. 16, no. 2, pp. 927–940, Mar./Apr.
2023.

[2] F. Zantalis, G. Koulouras, S. Karabetsos, and D. Kandris, “A review
of machine learning and IoT in smart transportation,” Future Internet,
vol. 11, no. 4, p. 94, 2019.

[3] L. M. Al Qassem, T. Stouraitis, E. Damiani, and I. M. Elfadel,
“Containerized microservices: A survey of resource management
frameworks,” IEEE Trans. Netw. Service Manag., vol. 21, no. 4,
pp. 3775–3796, Aug. 2024.

[4] B. Ali, M. Golec, S. S. Gill, H. Wu, F. Cuadrado, and S. Uhlig,
“EdgeBus: Co-simulation based resource management for heterogeneous
mobile edge computing environments,” Internet Things, vol. 28, Dec.
2024, Art. no. 101368.

[5] S. S. Gill et al., “Edge AI: A taxonomy, systematic review and future
directions,” Clust. Comput., vol. 28, no. 1, pp. 1–53, 2025.

[6] J. Zhang, S. Elnikety, S. Zarar, A. Gupta, and S. Garg,
“Model-switching: Dealing with fluctuating workloads in machine-
learning-as-a-service systems,” in Proc. 12th USENIX Workshop Hot
Topics Cloud Comput. (HotCloud), 2020, pp. 1–8.

[7] M. Salmani et al., “Reconciling high accuracy, cost-efficiency, and low
latency of inference serving systems,” in Proc. 3rd Workshop Mach.
Learn. Syst., 2023, pp. 78–86.

[8] G. T. Francis, A. Souri, and N. Inanç, “A hybrid intrusion detec-
tion approach based on message queuing telemetry transport (MQTT)
protocol in Industrial Internet of Things,” Trans. Emerg. Telecommun.
Technol., vol. 35, no. 9, 2024, Art. no. e5030.

[9] S. Tuli, G. Casale, and N. R. Jennings, “PreGAN+: Semi-supervised
fault prediction and preemptive migration in dynamic mobile edge envi-
ronments,” IEEE Trans. Mobile Comput., vol. 23, no. 6, pp. 6881–6895,
Jun. 2024.

[10] T. Zonta, C. A. Da Costa, R. da Rosa Righi, M. J. de Lima,
E. S. da Trindade, and G. P. Li, “Predictive maintenance in the industry
4.0: A systematic literature review,” Comput. Ind. Eng., vol. 150, Dec.
2020, Art. no. 106889.

[11] A. Halevy, P. Norvig, and F. Pereira, “The unreasonable effectiveness
of data,” IEEE Intell. Syst., vol. 24, no. 2, pp. 8–12, Mar./Apr. 2009.

[12] I. Goodfellow et al., “Generative adversarial nets,” in Proc. Adv. Neural
Inf. Process. Syst., vol. 27, 2014, pp. 1–9.

[13] J. Gui, Z. Sun, Y. Wen, D. Tao, and J. Ye, “A review on generative
adversarial networks: Algorithms, theory, and applications,” IEEE Trans.
Knowl. Data Eng., vol. 35, no. 4, pp. 3313–3332, Apr. 2023.

[14] E. Brophy, Z. Wang, Q. She, and T. Ward, “Generative adversarial
networks in time series: A systematic literature review,” ACM Comput.
Surveys, vol. 55, no. 10, pp. 1–31, 2023.

[15] Z. Lin, A. Jain, C. Wang, G. Fanti, and V. Sekar, “Using GANs for
sharing networked time series data: Challenges, initial promise, and open
questions,” in Proc. ACM Internet Meas. Conf., 2020, pp. 464–483.

[16] J. Yoon, D. Jarrett, and M. Van der Schaar, “Time-series generative
adversarial networks,” in Proc. Adv. Neural Inf. Process. Syst., vol. 32,
2019, pp. 1–11.

[17] E. Ayanoglu, K. Davaslioglu, and Y. E. Sagduyu, “Machine learning
in NextG networks via generative adversarial networks,” IEEE Trans.
Cogn. Commun. Netw., vol. 8, no. 2, pp. 480–501, Jun. 2022.

[18] M. Allen, U. Naeem, and S. S. Gill, “Q-Module-Bot: A generative
AI-based question and answer bot for module teaching support,” IEEE
Trans. Educ., vol. 67, no. 5, pp. 793–802, Oct. 2024.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 09,2025 at 02:17:45 UTC from IEEE Xplore. Restrictions apply.

ALI et al.: GAIKube: GAI-BASED PROACTIVE KUBERNETES CONTAINER ORCHESTRATION FRAMEWORK 945

[19] C. Liang et al., “Generative AI-driven semantic communication
networks: Architecture, technologies and applications,” IEEE
Trans. Cogn. Commun. Netw., early access, Jul. 29, 2024,
doi: 10.1109/TCCN.2024.3435524.

[20] M. Xu et al., “Unleashing the power of edge-cloud generative AI in
mobile networks: A survey of AIGC services,” IEEE Commun. Surveys
Tuts., vol. 26, no. 2, pp. 1127–1170, 2nd Quart., 2024.

[21] M. Golec et al., “CAPTAIN: A testbed for co-simulation of scalable
serverless computing environments for AIoT enabled predictive mainte-
nance in industry 4.0,” IEEE Internet Things J., early access, Oct. 30,
2024, doi: 10.1109/JIOT.2024.3488283.

[22] S. Ghafouri, S. Abdipoor, and J. Doyle, “Smart-Kube: Energy-aware
and fair kubernetes job scheduler using deep reinforcement learn-
ing,” in Proc. IEEE 8th Int. Conf. Smart Cloud (SmartCloud), 2023,
pp. 154–163.

[23] S. Tuli et al., “HUNTER: AI based holistic resource management for
sustainable cloud computing,” J. Syst. Softw., vol. 184, Feb. 2022,
Art. no. 111124.

[24] S. Shen, V. Van Beek, and A. Iosup, “Statistical characterization of
business-critical workloads hosted in cloud datacenters,” in Proc. 15th
IEEE/ACM Int. Symp. Cluster, Cloud Grid Comput., 2015, pp. 465–474.

[25] A. Das, W. Kong, R. Sen, and Y. Zhou, “A decoder-only foundation
model for time-series forecasting,” in Proc. 41st Int. Conf. Mach. Learn.,
2024, pp. 1–21.

[26] “Optimized GKE scheduling.” 2024. [Online]. Available:
https://cloud.google.com/kubernetes-engine/docs/concepts/cluster-
autoscaler

[27] “Vertical pod autoscaling.” 2024. [Online]. Available: https://cloud.
google.com/kubernetes-engine/docs/concepts/verticalpodautoscaler

[28] S. Tuli, G. Casale, and N. R. Jennings, “PreGAN: Preemptive migration
prediction network for proactive fault-tolerant edge computing,” in Proc.
IEEE Conf. Comput. Commun., 2022, pp. 670–679.

[29] B. K. Ray, A. Saha, S. Khatua, and S. Roy, “Proactive fault-tolerance
technique to enhance reliability of cloud service in cloud federation
environment,” IEEE Trans. Cloud Comput., vol. 10, no. 2, pp. 957–971,
Apr.–Jun. 2022.

[30] T. Wang, S. Ferlin, and M. Chiesa, “Predicting CPU usage for proactive
autoscaling,” in Proc. 1st Workshop Mach. Learn. Syst., 2021, pp. 31–38.

[31] M.-N. Tran, X. T. Vu, and Y. Kim, “Proactive Stateful fault-tolerant
system for kubernetes containerized services,” IEEE Access, vol. 10,
pp. 102181–102194, 2022.

[32] J. Li, X. Zhang, J. Wei, Z. Ji, and Z. Wei, “GARLSched: Generative
adversarial deep reinforcement learning task scheduling optimization
for large-scale high performance computing systems,” Future Gener.
Comput. Syst., vol. 135, pp. 259–269, Oct. 2022.

[33] S. Tuli, S. R. Poojara, S. N. Srirama, G. Casale, and N. R. Jennings,
“COSCO: Container orchestration using co-simulation and gradient
based optimization for fog computing environments,” IEEE Trans.
Parallel Distrib. Syst., vol. 33, no. 1, pp. 101–116, Jan. 2022.

[34] “Pricing compute engine: Virtual machines (VMS) | Google cloud,”
2024. [Online]. Available: https://cloud.google.com/compute/all-pricing

[35] G. Jocher, “YOLOv5 by Ultralytics.” 2020. [Online]. Available:
https://github.com/ultralytics/yolov5

[36] S. Velu, S. S. Gill, S. S. Murugesan, H. Wu, and X. Li, “CloudAIBus:
A testbed for AI based cloud computing environments,” Clust. Comput.,
vol. 27, pp. 11953–11981, Jun. 2024.

[37] K. Mason, M. Duggan, E. Barrett, J. Duggan, and E. Howley, “Predicting
host CPU utilization in the cloud using evolutionary neural networks,”
Future Gener. Comput. Syst., vol. 86, pp. 162–173, Sep. 2018.

[38] L. Nashold and R. Krishnan, “Using LSTM and SARIMA models to
forecast cluster CPU usage,” 2020, arXiv:2007.08092.

[39] F. Ullah, M. Bilal, and S.-K. Yoon, “Intelligent time-series forecasting
framework for non-linear dynamic workload and resource prediction in
cloud,” Comput. Netw., vol. 225, Apr. 2023, Art. no. 109653.

Babar Ali is currently pursuing the Ph.D. degree
with the School of Electronic Engineering and
Computer Science, Queen Mary University of
London. He has published his research findings
in journals such as Internet of Things (Elsevier)
and International Journal of Network Management
(Wiley). His research interests include cloud com-
puting, IoT, edge computing, and wireless sensor
networks.

Muhammed Golec received the M.Sc. (Distinction)
degree in computer science through the Ministry
of Education Scholarship from the Queen Mary
University of London, where he is currently pursuing
the Ph.D. degree. His research interests include
cloud computing, serverless computing, AI, and
security and privacy.

Subramaniam Subramanian Murugesan received
the master’s degree in big data science from
the Queen Mary University of London, where he
is currently pursuing the Ph.D. degree in elec-
tronic engineering. He has published his research
findings in journals such as IEEE JOURNAL OF

BIOMEDICAL AND HEALTH INFORMATICS and
Cluster Computing (Springer). His research focuses
on AI/ML/DL applications, cloud & IoT, software
engineering, and edge AI technologies.

Huaming Wu (Senior Member, IEEE) received
the B.E. and M.S. degrees in electrical engineering
from the Harbin Institute of Technology, China,
in 2009 and 2011, respectively, and the Ph.D.
(Highest Honor) degree in computer science from
Freie Universität Berlin, Germany, in 2015. He is
currently a Professor with the Center for Applied
Mathematics, Tianjin University, China. His research
interests include mobile cloud computing, edge com-
puting, Internet of Things, deep learning, complex
networks, and DNA storage.

Sukhpal Singh Gill is an Assistant Professor of
cloud computing with the School of Electronic
Engineering and Computer Science, Queen Mary
University of London, U.K. His research interests
include cloud computing, edge computing, IoT, and
energy efficiency. He is serving as an Editor-in-Chief
for International Journal of Applied Evolutionary
Computation (IGI Global) and an Area Editor for
Cluster Computing Journal (Springer), also serving
as an Associate Editor for IEEE INTERNET OF

THINGS JOURNAL, Internet of Things (Elsevier),
Wiley SPE, Transactions on Emerging Telecommunications Technologies
(Wiley), and IET Networks Journals.

Felix Cuadrado received the Ph.D. degree
in telecommunications engineering from the
Universidad Politécnica de Madrid, Spain, in 2009,
where he is an Associate Professor with the School
of Telecommunications Engineering. He is also the
Visiting Reader with the Queen Mary University
of London. He has numerous publications in top-
tier journals and conferences, including the IEEE
TRANSACTIONS ON SERVICES COMPUTING, the
IEEE TRANSACTIONS ON CLOUD COMPUTING,
Journal of Systems and Software, Future Generation

Computer Systems (Elsevier), IEEE ICDCS, and Scientific Reports (Nature).
He is a Fellow of the Alan Turing Institute.

Steve Uhlig received the Ph.D. degree in applied
sciences from the University of Louvain, Belgium,
in 2004. Prior to joining Queen Mary, he
was a Senior Research Scientist with Technische
Universität Berlin/Deutsche Telekom Laboratories,
Berlin, Germany. He has been the Professor of
Networks and the Head with the Networks Research
Group, Queen Mary University of London, since
January 2012. From 2012 to 2016, he was a
Guest Professor with the Institute of Computing
Technology, Chinese Academy of Sciences, Beijing,

China. His current research interests include Internet measurements, software-
defined networking, and content delivery.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 09,2025 at 02:17:45 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TCCN.2024.3435524
http://dx.doi.org/10.1109/JIOT.2024.3488283

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

