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Abstract—Network alignment, which integrates multiple net-
work resources by identifying anchor nodes that exist in different
networks, is beneficial for conducting comprehensive network anal-
ysis. Although there have been many studies on network alignment,
most of them are limited to static scenarios and only can achieve
acceptable top-a (a« > 10) results. In the absence of considering
dynamic changes in networks, accurate network alignment (i.e.,
top-1 result) faces two problems: 1) Missing information: focusing
solely on aligning networks at a specific time leads to low top-1
performance due to the lack of information from other time pe-
riods; 2) Confusing information: ignoring temporal information
and focusing on aligning networks across the entire time span
leads to low top-1 performance due to inability to distinguish the
neighborhood nodes of anchor nodes. In this paper, we propose a
dynamic network alignment method, which aims to achieve better
top-1 alignment results with consider changing network structures
over time. Towards this end, we learn the representations of nodes in
the changing network structure with time, and preserve the consis-
tency of anchor node pairs during the time-evolution process. First,
we employ a Structure-Time-aware module to capture network
dynamics while preserving network structure and learning node
representations that incorporate temporal information. Second,
we ensure the global and local consistency of anchor node pairs
over time by utilizing linear and similarity functions, respectively.
Finally, we determine whether two nodes are anchor node pairs
by maintaining consistency between global, local, and node repre-
sentations. Experimental results obtained from real-world datasets
demonstrate that the proposed model achieves performance com-
parable to several state-of-the-art methods.

Index Terms—Network alignment, network evolution, global
consistency, local consistency.
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1. INTRODUCTION

ETWORK alignment is a process that compares two net-

works to identify common nodes. It has gained attention
for its broad applications, such as comparing gene networks or
protein-protein interaction networks in biology [1], [2], collect-
ing the accounts belonging to the same person in different online
platforms in sociology [3], [4], inferring the cross-layer align-
ment of wired and wireless networks in computer science [5],
[6], inferring relationships among entities from different sources
and to facilitate transfer learning in knowledge graphs [7], [8],
[9], [10]. The common nodes found in different networks are
referred to as anchor nodes [11]. Anchor nodes represent entities
such as the accounts of the same person across different social
networks. The correspondence between pairs of anchor nodes,
which represent the same entity, is known as anchor links.

Network alignment tasks have been thoroughly investigated
and many methods have been proposed [11], [12], [13], [14],
[15], [16], [17], [18], [19], [20], [21], [22], [23], [24]. When
predicting anchor links, a majority of these methods hold a
consistency assumption, i.e., the higher the percentage of shared
nodes, the more likely two nodes are corresponding anchor
nodes. However, most existing research focuses on the alignment
between static networks, ignoring the dynamic evolution of the
network structure in real-world scenarios.

The dynamic evolution of network structures refers to the
appearance of new nodes and/or edges and the disappearance of
existing nodes and/or edges over time. Typically, the dynamic
evolution of network structures can be represented by a series
of static networks: G = {G,G?,...,G*,...,GT}, G* can be
interpreted as a snapshot captured at a specific moment in time
t. While executing static network alignment methods directly
on G or G* can produce respectable top-co (ov > 10 generally)
prediction accuracy, achieving satisfactory top-1 accuracy is
often challenging. This is due to the following factors:

1) Missing information. Static alignment methods usually
have poor top-1 accuracy on snapshot network pairs due to
snapshots only retaining part of the network information.
As shown in Fig. 1(a), the consistency-based method
will misalign v} and v7 at the timestamps ¢ = t, and

t3, because vil and v? share more anchor node pairs as
neighbors between snapshot networks of G and G? at
t=1o and t3.

Confusing information. When ignoring the timing infor-
mation of dynamic networks and merging all snapshot

2)
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‘ Onodes with the same color are corresponding anchor nodes —— edges in current snapshot - — - —edges not in current snapshot

Merge all snapshots in dynamic network

GZ

Fig. 1.

(b)

Illustration of network alignment with/without dynamic evolution of network structures. Nodes with different colors are corresponding anchor nodes that

are known in advance. (a) In the dynamic scenario, it can determine the corresponding anchor node of vil is vf at t3 according to their similar neighborhood change
pattern. (b) In the static scenario, it is difficult to determine the corresponding anchor node of 'Uil since v? and sz both have a similar neighborhood with vl.l.

networks as a static network, directly applying static
alignment methods may have poor top-1 accuracy due
to confusing local structure. As shown in Fig. 1(b), it is
confusing for v} in G! to judge whether its corresponding

anchor node is v? or v? in G?. Since v, and v} have
1 and ’UJQ-, and v?

J

the same number of shared nodes as v;
and vjz have similar local structures, it is difficult to make
a distinction between v; and v without more auxiliary
information.

In order to achieve better top-1 performance, it is crucial to
implement a more effective strategy for differentiating neighbor-
ing nodes. The dynamic evolution of the network can provide
more information. As shown in Fig. 1(a), v} and v? share anchor
nodes at three timestamps (¢1, £, and £3) in the networks G'* and
G?. The shared anchor nodes change over time from (v}, v2),
(v, v2), (vl,02) to (vh,v2), (v}, v?). Therefore, at t = t3, it
can be determined that the corresponding anchor node of v} is
v instead of v. Therefore, leveraging the evolution informa-
tion of networks can effectively distinguish nodes within the
network and consequently achieve superior network alignment
performance.

To improve the top-1 performance of network alignment,
we propose a novel alignment model called GLDyNA. This
model takes into account not only the dynamic evolution of the
network structure but also the consistent evolution of anchor
node pairs in both global and local neighborhoods. For local
consistency, its implication is similar to the common assump-
tion in static network alignment methods, i.e., in each pair of
snapshot networks, anchor node pairs need to maintain a similar
local structure. For global consistency, it reveals the inherent
evolution pattern of anchor node pairs over time and imposes
constraints at a higher structural level in network alignment,
i.e., it determines the number of neighbors an entity should
maintain relationships with across different networks. Due to
the evolution of network scale over time, there are fluctuations
in the number of first-order neighbors, denoted as ¢, of anchor
nodes across different networks, as shown in Fig. 2. Despite the

C 1 © cofvlinGt € cofv?inG?
time
| | | >
t-2 t-1 t
Fig. 2. Illustration of the global consistency of anchor node pairs. c is the

number of the first-order neighbors of nodes. With the evolution of G* and G2,
the neighbor number of nodes vil and v? in G! and G? changes differently,

but the total neighbor number of vil and v? in the two networks obeys a certain
pattern.

dissimilar variations in the number of first-order neighbors of
anchor nodes within networks G and G2, there exists a latent
regularity in the total number of first-order neighbors of anchor
nodes in these networks.

Specifically, to model the dynamics and preserve the network
structure within a single network, we introduce a Structure-
Time-aware module. This module randomly samples sub-
networks of a given node v;, which include the neighbors of
v; from different snapshots. It then learns representations of v;
by maximizing the probability of co-occurrence of two nodes
within these sub-networks. In order to capture the global consis-
tency of anchor node pairs, we define a linear function that relates
to the total number of neighbors of anchor node pairs across
different networks. This function imposes constraints on how
the neighborhood scale of the anchor node pair evolves with the
network. To capture the local consistency of anchor node pairs,
we define a similarity equation based on structural equivalence.
Finally, we combine the global and local consistency, along with
the similarity of node representations learned from different
networks, to predict anchor node pairs.

The main contributions of this paper could be summarized as
follows:
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® We analyze why static network alignment methods cannot
be directly applied in dynamic scenarios. Additionally, we
explain the factors contributing to the poor performance of
existing methods in terms of top-1 precision.

e We propose a novel dynamic network alignment method
GLDyNA, which takes into account both the influence
of network evolution and the global-local consistency of
anchor node pairs.

® We evaluate the proposed GLDyNA on different real-world
datasets. Extensive experiments demonstrate the effec-
tiveness of our method against state-of-the-art methods,
especially in top-1 precision.

II. RELATED WORK

Many fields can benefit from network alignment, such as
user anonymous identification in social networks [11], com-
paring schemas between databases [25], linking entities among
multiple knowledge graphs [26] and aligning proteins between
species [27]. Research on static network alignment has seen
much development, and numerous approaches have been pro-
posed. In the past two years, researchers have also begun to
focus on dynamic network alignment. According to different
scenarios, we introduce existing network alignment methods
in two parts: static network alignment and dynamic network
alignment.

Static network alignment: is mostly based on learning net-
work structure and node attributes to judge whether two nodes
represent the same entity. Recent network alignment methods
mostly use network embedding [28], [29] since that can map the
network structure to a low-dimensional space and is beneficial
to maintain network structure and learned node representation
could be used for comparing the similarity between nodes [13],
[14], [15], [16], [17], [18], [19], [24], [301, [31], [32], [33], [34],
[35], [36]. According to whether the two networks are merged
into one network through known anchor nodes for representation
learning, the existing methods can be roughly divided into the
following two categories:

1) The first category of alignment methods learns node em-
beddings in different networks respectively, then construct
constraints [13], [14], [18], [35] or utilize adversarial
learning [17], [19], [31], [34], [36] to make the embedding
of the anchor nodes or the distributions of the two net-
works similar. The former is generally supervised utilizing
known anchor nodes as constraint information. The latter
is generally unsupervised, and most utilize generative
adversarial networks to approximate the distribution of
the two networks. For example, GINA [14] utilizes two
different encoders to learn reliable spatial features of
networks first, then uses anchor nodes to constrain learned
node representations for following anchor link prediction.
DANA [31] learns node embeddings via maximizing the
posterior probability distribution of anchor nodes which
is based on the parameter space of graph convolutional
networks.

2) The second category of alignment methods utilizes an-
chor nodes forming a unified space and then learns

their embeddings for alignment [15], [16], [24], [32],
[33]. For example, DHNA [32] learns node embeddings
of different networks by a variational autoencoder in the
same embedding space and uses a dual constraint mech-
anism to balance the consistency and heterogeneity in
network alignment. BRIGHT [33] uses the one-hot vectors
of anchor links to form the bases of common embedding
space, and other initial embeddings of non-anchor nodes
are obtained by a random walk with the restart. Then it
uses a shared linear layer to train the weights of scores
from different anchor links by keeping node embeddings
of different networks in the same embedding space.

Although these static network alignment methods have
demonstrated good performance, ignoring the temporal infor-
mation of the network makes them unable to accurately model
real-world scenarios to achieve more accurate performance,
usually having poor top-1 precision.

Dynamic network alignment focuses more on how to use
time information to improve the alignment effect in contrast to
static network alignment. DNA [37] uses an LSTM encoder to
learn evolvement neighborhood of nodes, and puts a consistency
regularization onto the heart of the LSTM to keep the repre-
sentation similarity with the neighbors of the node. DGA [38]
expands based on DNA that uses an attentive graph convolution
to model the structural information of nodes and the LSTM unit
to incorporate the temporal evolvement pattern of nodes in the
dynamic network. Unlike DNA and DGA which focus on the
evolution of the entire network, HDyNA [39] only focuses on
newly emerging nodes in the network. As a new node is added,
its weights are learned heuristically, and then second-order
proximity is preserved in updating the local network. CTSA [40]
aligns the same entity across different snapshots in one dynamic
network, which differs from our work that aligns snapshots in
two different networks.

Compared with existing methods, our method not only fo-
cuses on the evolution of the local structure of nodes in the
network, but also pays attention to the global-local evolution
patterns of anchor node pairs and keeps its consistency changing
over time, which is important for predicting potential anchor
links.

III. FORMAL DEFINITION

Referring to Fig. 1(a), in dynamic scenarios, we focus solely
on the structure of a time-stamped network. We partition the
network into slices, as depicted in Fig. 1(a), and construct a
series of snapshots in the time domain. Each snapshot repre-
sents the network’s characteristics in the corresponding time
slice. Thus, a network with time-stamped can be defined as
G={G"G? ...,G" ... ,GT}. T is the number of snapshots.
Each G' = (V*, E') is an undirected and unweighted network
snapshot at time ¢. V' is the set of nodes and E? is the set
of edges at t. Considering that we align two time-stamped
networks, we use superscripts to distinguish them, i.e., G! =
{GH1,G12, ... GYTY and G? = {G*1,G?2,...,G*T}. In
general, these two networks are partially overlapped by an-
chor nodes, which appear in both G and G2. Anchor nodes
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The overview architecture of GLDyNA: For each dynamic network, the snapshots are sampled and trained to learn node representations. Then, the node

representations of G'* are reconciled with the embedding space of G’s node representations. Finally, we perform network alignment based on dynamic similarity

and Global-Local Consistency.

of network snapshot ¢ are stored in set A* = {(v; ’t,vf’t)}.
Each element in .A* represents an anchor link, i.e., the element
(v;",v7") describes v;"* in G1+* corresponds to v} in G2,

Dynamic Network Alignment: Given two partially over-
lapped networks G' and G? with anchor link set A =
{AL, A% ..., AT}, the dynamic network alignment task is to
find all potential anchor links in each network snapshot, i.e., we
aim to learn a predictive function for each network snapshot:
fro(GY G A = Y, Y represents the probability that
l-l’t and vf’t are predicted to be a pair of potential anchor nodes
across networks G+* and G**.

%

IV. METHODOLOGY

In this section, we introduce the details of the proposed
GLDyNA. As shown in Fig. 3, GLDyNA includes three mod-
ules, i.e., Structure-Time-aware module, Spatial Transfor-
mation module, and Network Alignment module. Through
the Structure-Time-aware module, we first learn the node rep-
resentations of the two networks separately so that we can cap-
ture information about the network structure and the temporal
information for the following alignment. Then, we utilize a
Spatial Transformation module to map the node representations
of G into the node representation space of G2. The Network
Alignment module performs network alignment based on the
inter-nodes similarity measures, which include dynamic simi-
larity and global-local consistency of nodes.

A. Structure-Time-Aware Module

In the Structure-Time-aware module, we design a method
based on random walks to encode node representations that

consider the changes in node behavior over time. As shown in
Fig. 3, the behavior of a node (e.g., vil ’t) can be influenced by
its nearby nodes in the current snapshot network as well as the
preceding self-nodes (e.g., vil 1 and vil =2y and their first-level
neighbors in previous snapshot networks. Therefore, we conduct
the following steps to sample Spatial-Temporal sub-networks
starting from the given node to learn the node representations:
For a given node vil " in snapshot GV, we consider the
influence of the nodes in the current snapshot and the nodes
of the previous 7 historical snapshots on it. For each snapshot
GYk, k€ {0,1,..., 7}, we sample the first-order neighborhood

nodes of vz-l "~ and denote the sampled sub-network as G-

sample*
1.t 1,t—k 1k
Then we merge G, all v; and all Gmmple
1,k

Spatial-Temporal sub-network G g of vt

After obtaining the Spatial-Temporal sub-network Gé; of
vil . the representations of nodes in Gls;f are learned by per-
forming random walks on G g; Specifically, for each given node
vil’t we generate a random walk sequence of length [ and denote
the sequence as W, 1... When two nodes have many edges or
neighbors, they will ‘be visited more frequently during random
walks, showing that their network structures are similar. As a
result, representations of these two nodes in the embedding space
should be close to each other. Given a random walk sequence
W, 1.1, it is now possible to formulate learning spatial-temporal-
pregerving node embeddings as an optimization problem as
follows:

to get the

m’?X Z IOgPr(Ww - {vjfww--vvj—i-w}\vj ‘ h(vj))v

viEW 1t
v
i

ey
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where h : V' — R%is the embedding function that maps a given
node to a d-dimensional representation, h(v;) is the represen-
tation of v;. w is the context window size for optimization. We
assume conditional independence between the nodes of a context
window when observed with respect to the source node v;:

{Uj—wa cee 7Uj+w} \ Uj | h’(v]))

I Pr(vx | h(v))). 2)

UV EWa

Pr(W, =

The probability could be calculated as follows:

exp(h(vg)h(v)))
D oneN (o) EXP(R(vn)h(v)))’

where N (v;) represents the neighbors set of node v;. To learn
such a representation that captures the relationship of a node
with other co-occurring nodes in a window, we use a similar
Skip-Gram algorithm as proposed in [41] to learn the node
representations from random walks of a network.

Therefore, through (1) which maximizes the co-occurrence
of neighborhood nodes at snapshot ¢ and in previous (¢ — 7)
snapshots together, the Structure-Time-aware module learns
node representations in G and G2 respectively. We denote h! as
the representations of nodes in G 1 and h? as the representations
of nodes in G2.

Pr(vg | h(vy)) = (3)

B. Spatial Transformation Module

Across different networks, the same nodes may exhibit vary-
ing characteristics and interaction relationships due to semantic
distinctions of networks. As a consequence, the embedding
spaces of node representations differ, making it infeasible to di-
rectly utilize the learned representations for similarity measure-
ment of nodes and network alignment. Therefore, we propose a
method to reconcile the embedding spaces of networks G'' and
G?. To accomplish nonlinear spatial transformations, we employ
a feed-forward neural network to map node representations from
G to the embedding space of node representations in G*:

(b(h‘Wh W, b) = 0'(th + b)WQ, 4)

where o(+) is an activation function and we use the Sigmoid
function in this paper. W1, W, and b are trainable parameters.

In the reconciled embedding space, the representations of
the same entity (i.e., anchor nodes) should be as similar as
possible, and even be the same ideally. Therefore, we use labeled
anchor links to constrain the representation of anchor nodes and
conduct the training of the above-mentioned feed-forward neural
network to obtain the ideal spatial transformation function ¢(-):

O¢ == ZOZ', (5)

. { 0 (¢ (h\( ,1) 2(v2)) (v;,v7) € A
P {max (0,0 (¢ (' (v})) h2(v3>)—e) (vi,v7)

where (-, -) is the cosine value of two node representations, &
is a hyperparameter, and we adopt SGD [42] to minimize (5). In
this way, the representations of the corresponding anchor nodes

are almost identical. Meanwhile, the representations of other
non-anchor nodes in the two networks can maintain their own
structural features.

C. Network Alignment Module

The Network Alignment module includes three parts:

Dynamic Similarity: With the node representation ¢(h') and
h? that in the same embedding space, a direct way of determining
the alignments for a node is to calculate pairings of similarity
between the representations that contain dynamics, i.e., nodes
dynamic similarity:

simg (v, ", v?’t)

=0(6 (k' (v)) , R*(7)). (D)
As we introduced in Section IV-A, the Structure-Time-aware
module focuses on the dynamic evolution of nodes in one
network over time, simy reflects the evolution similarity of two
nodes in their respective networks. The larger the simg value, the
higher the probability that v} and v? are corresponding anchor
nodes.

When aligning nodes between different networks, in addi-
tion to considering the evolution process of nodes in different
networks, we also consider patterns (global and local) between
node pairs over time.

Global Consistency: At the global level, for the dynamic
network, its scale usually evolves with obvious distributions over
time at the global level, such as a sigmoid curve [43] or a power-
law distribution [44]. For each anchor node pair, there also exists
a similar pattern. As shown in Fig. 2, when the network evolves,
the first-order neighbors number ¢} and ¢? of an anchor node pair
(v}, v?) vary over time in different networks respectively, and
their sum (i.., c}+c?) obeys a certain underlying pattern, such as
linear increasing. Such a global evolutionary pattern is common
in real network alignment scenarios. For example, a scholar who
collaborates with other scholars to publish papers in journals
and conferences, respectively, will have different propensities
in the journal and conference collaboration over time, but the
total number of people he keeps collaborating with generally
remains the same or even increases. Hence, we use a linear
neural network to learn the sum collaboration (i.e., first-order
neighbors number) of anchor node pairs at snapshot ¢ as shown
in the top rightmost side of Fig. 3:

G(c| Wy, b) = Wy + b, (8)

where ¢ = {%, ¢!, ..., c!"1} is a vector composed of the sum
of first-order neighbors number of an anchor node pair before
snapshot¢. W, and b are trainable parameters. c; is the predicted
sum first-order neighbors number of an anchor node pair at
snapshot t.

Thus, for an arbitrary node pair (vil,v?), we use the dif-

ference between the predicted sum first-order neighbors num-

ber ¢, (vj,v7) and the true sum first-order neighbors number

c (v}, vj) at snapshot ¢ as the global consistency measure to

determine the probability that two nodes are the corresponding
anchor nodes at snapshot ¢:

simg(v)t, v>)

et (ml 02) et (o] 52
V7 = exp ‘cp(ui,vj) c (vl,fuj)‘. 9)
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The larger the sim, value, the higher the probability that v} and
’UJQ- are corresponding anchor nodes.

Local Consistency: At the local level, nodes in networks usu-
ally exist homophily equivalence [45]. Homophily equivalence
refers to the phenomenon in which adjacent nodes in a network
display similar characteristics or attributes. This concept bears
resemblance to the main idea behind the Word2Vec method in
natural language processing, where words that frequently co-
occur are likely to possess similar meanings or representations.
As shown in the top rightmost side of Fig. 3, according to the

homophily equivalence hypothesis, nodes U,L-l’t, vh!, and v,i’t

J
exhibit greater similarity in the embedding space of G, and

2t 2t 2.t - .
the same for v;™", v, and v;" in the embedding space of G2t
1t 1.t

J
The existence of significant similarities among nodes v; ", v e
and v,i’t in a network can result in confusion when comparing
node v? " with node vil & by calculating nodes dynamic similarity
stmy. Furthermore, this can lead to incorrect alignment of node
v? * with nodes v;"t or vi’t. Inspired by the principle of struc-
tural equivalence [46], i.e., if two nodes share many common
neighbors in the network, then they are structural equivalence,
we define the following measurement to calculate the local
similarity between two nodes across networks to alleviate the

impact of node homophily:

t log (‘N(vl’t) NN (@)
. 1,6t 2.ty g J
simy (v, v;") = g =<t D)

S

+ 1) o)

where N(v;") and N (vf’t) denote the set of all the first-

3

order neighbour of node vil’t and v?’t, respectively. |A (vz1 ’t) N
N (vft)| is the number of known pairs of anchor nodes existing
in their neighborhood. ¢ is the hyperparameter that determines
the number of previous snapshots, that GLDyNA considers for
up to (¢ — ¢ + 1) local neighborhood information when enforc-
ing local consistency constraints. The larger the sim; value, the
higher the probability that v} and 1)]2» are corresponding anchor
nodes.

Finally, we compare the similarity of cross-network nodes
based on the aforementioned introduced dynamic similarity and
global-local consistency of nodes:

o1t 24
sim(v;"", vj

1,

1,6 2t
b )

,vf’t) + Ak simg(v;", v

) = simg(v P

+ oy * siml(vil’t, vf-’t),

an

where A and ~ are the weight of global consistency and local
consistency respectively. Based on sim(-, -), we obtain pairwise
similarities Y;; between nodes to be aligned in two networks
and sort them according to their similarity scores. Since not all
nodes have corresponding nodes in the other network, we set a
threshold €. When sim(+,-) > &, we consider the node pair with
the highest sim(-, -) value as a potential anchor node pair.

D. Time Complexity

The time complexity of GLDyNA primarily lies in the node
representation learning process. GLDyNA involves sampling
and generating Spatial-Temporal sub-networks for each node,
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which has a time complexity of O(NM). Here, N represents
the total number of nodes across all snapshots in the network,
and M denotes the average number of first-order neighbors for
these nodes. Additionally, conducting random walks on the gen-
erated Spatial-Temporal sub-networks incurs a time complexity
of O(nl), where [ is the length of the random walk, and n is
the number of walk iterations. Moreover, the time complexity
of model training based on the obtained sequences is O(m),
where m represents the number of training iterations. Therefore,
the overall time complexity of GLDyNA can be expressed as
O(NM +nl+m)=O(NM).

V. EXPERIMENTS

This section introduces the datasets and describes the set
of experiments conducted to validate the proposed GLDyNA.
Additionally, we analyze the validity of each component of the
model and the influence of model parameters.

A. Experimental Settings

1) Datasets: The following two datasets are used to verify
the effectiveness of GLDyNA.

e Social Networks: This data set includes users and their

followers from Twitter and Foursquare (TF), respectively.
The snapshots are at equal intervals of the network, and
there exist new nodes in each snapshot [39].

® Academic Networks: This data set includes researchers and
their collaborators from DBLP. Depending on the publica-
tion channels of researchers’ papers, academic networks
are divided into journal-paper cooperation networks and
conference-paper cooperation networks (JC). And each
snapshot represents a year.

Details are illustrated in Table I. We have expanded based
on the above two datasets, referred to as TF+ and JC+. The
extension rule is that except for the snapshot network at ¢, all
other snapshot networks are merged by themselves, along with
all snapshots at all previous times.

2) Baseline Methods: The proposed method is compared
with the seven state-of-the-art methods listed below.

e BRIGHT [33]: a static network alignment method that
creates a space by RWR whose bases are anchor node
encoding vectors, followed by a shared linear layer to learn
node representations.

e NetTrans [30]: a static network alignment method that uses
graph convolutional network to learn node representations
at different resolutions for alignment from the network
transformation view.

® DANA [31]: a static network alignment method that uses
GCN to learn node embeddings and train an adversarial
domain classifier supervised by the anchor nodes to obtain
domain-invariant features for alignment.

e NeXtAlign [24]: a static network alignment method that
uses a special graph convolutional network to balance the
consistency and disparity in alignment through the learning
process.

e DHNA [32]: a static network alignment method that uses
a variational autoencoder to learn node embeddings, and
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TABLE I
STATISTICS OF THE DATASETS
Networks
Dataset
Twitter Foursquare Anchor Links
Snapshots | #nodes # edges #nodes # edges #total #added # disappeared
to 4,709 107,528 4,836 54,586 596 - -
TF t1 4,809 124,585 4,936 60,330 854 440 182
to 4,909 140,338 5,036 67,044 987 312 179
t3 5,009 152,434 5,136 72,732 1,078 207 116
t4 5,109 164,936 5,236 76,874 1,282 204 0
journal-paper cooperation | conference-paper cooperation Anchor Links
Snapshots | #nodes # edges #nodes # edges #total #added # disappeared
to 2,832 11,164 4,343 15,354 1,013 - —
t1 2,997 11,900 4,755 24,055 1,036 570 540
JC to 3,259 11,911 5,203 26,216 1,141 684 579
t3 3,708 12,658 6,333 44,099 1,352 827 616
t4 4,153 16,467 6,343 48,965 1,359 741 734
ts 4,687 20,851 6,573 41,612 1,401 773 731
te 5,885 27,200 7,134 41,580 1,799 1,099 701

considers the different anchor nodes’ degrees across net-
works.

® DGA [38]: adynamic network alignment method that uses
a dynamic graph autoencoder to learn user embeddings in
each network, and constructs a common subspace for user
alignment across different networks.

e HDyNA [39]: a dynamic network alignment method that
learns the local influence weight of new nodes in a single
network environment using an attention mechanism and
anchor nodes are used as supervised information.

3) Evaluation Metrics: For each matching pair (vl1 * U?’t) in
the test set, we rank the target nodes in the result according to
ng To quantify the ranking at snapshot ¢, we use the two eval-
uation metrics which are commonly used in network alignment
tasks.

.. M,@1
e Precision = 291

U
match occurs in‘ t(‘)p—l candidates, where |M;@1] is the
count of the correct alignments between networks G and
G*'in top-1 choices, and |U; | is the number of anchor links
in the train set.

o MRR= gy it otyer momirs
is the rank of true anchor target in the sorted list of anchor
candidates. 7 is the test set that includes correct alignments
between G1* and G2,

4) Implementation Details: To create our training and testing
datasets, we randomly partitioned the anchor nodes into two sets.
The ratio of the number of anchor nodes in the training set to that
in the testing set was 4:1, with the specific numbers randomly
sampled. For a fair comparison, hyper-parameters except for
node embedding dimension are set to default for all baselines.
We set the hyper-parameters of GLDyNA as follows unless
otherwise specified:

e For the Structure-Time-aware module, We set the number
of historical snapshots considered during sampling 7 = 1,
and the random walk length [ = 15, the node representation
dimension d = 64.

indicates whether the true positive

2,
, where rank(v;™")

¢ For the Network Alignment module, we set the ¢ = 0 in
local consistency measurement, i.e., we consider the local
consistency of all previous snapshots. We set the weight
of global consistency A = 0.15 and are the weight of local
consistency 7 = 0.1. The threshold ¢ for aligning potential
anchor node pairs is set as the average similarity of anchor
node pairs in the training set.

The experimental environment uses Python 3.7 languages as
the basic development language, and GLDyNA is implemented
based on the open-source Pytorch framework. Experiments
are performed on a workstation equipped with NVIDIA RTX
1080Ti 20 GB video memory. In each experiment, we repeated
it 10 times and reported the mean with a 95% confidence interval.

B. Model Performance Analysis

Precision Improvement: We first compare GLDyNA with
all baselines in four datasets, and results are reported in Ta-
bles IT and III. Results show that the proposed GLDyNA mostly
outperforms the baselines on both Precision and M RR. On
Precision, GLDyNA achieves the best performance on all
snapshot networks of four datasets, improving by at least 9.97%,
4.17% compared with the best competitors on dataset TF (TF+),
and JC (JC+) respectively. On M RR, GLDyNA achieves the
best performance on all snapshot networks except for o snap-
shot of JC and JC+, improving by an average 17.63%, 5.65%
compared with the best competitors on dataset TF (TF+), and
JC (JC+) respectively.

Compared with the static network alignment method, GL-
DyNA has achieved a very significant improvement in alignment
accuracy, which demonstrates the effectiveness of considering
the evolution characteristics of nodes over time. The suboptimal
performance of these static methods on JC and TF datasets
suggests that relying solely on one snapshot for alignment may
overlook valuable information. When temporal information is
disregarded and multiple snapshots are merged, as in the JC+
and TF+ datasets, the performance of static methods does not
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TABLE II
EXPERIMENTAL RESULTS ON TF AND TF+ DATASETS AT DIFFERENT SNAPSHOT ¢

t1 t2 t3 tq
Precision MRR | Precision MRR | Precision MRR | Precision MRR
BRIGHT 0.1111 0.1779 0.1515 0.2036 0.1481 0.2127 0.1167 0.1819
NetTrans 0.1462 0.1935 0.1263 0.1764 0.1203 0.1710 0.1323 0.1926
TF DANA 0.1521 0.2187 0.1313 0.1897 0.1412 0.2188 0.1498 0.2373
NeXtAlign 0.0702 0.1272 0.0808 0.1321 0.0694 0.1256 0.0739 0.1344
DHNA 0.1022 0.1100 0.1154 0.1327 0.0912 0.1035 0.1159 0.1677
DGA 0.6233 0.6419 0.6800 0.6921 0.7301 0.7622 0.8117 0.8337
HDyNA 0.5246 0.5721 0.6311 0.6871 0.7200 0.7596 0.7657 0.8003
GLDyNA 0.7045 0.7059 0.8871 0.8872 0.9024 0.9025 0.9500 0.9500
A% 13.03 9.97 30.46 28.19 23.60 18.41 17.04 13.95
BRIGHT 0.0936 0.1543 0.1060 0.1527 0.1574 0.2263 0.1712 0.2393
NetTrans 0.1403 0.1871 0.1212 0.1733 0.1157 0.1684 0.1361 0.1947
TF+ DANA 0.1462 0.2173 0.1288 0.1932 0.1412 0.2221 0.1537 0.2386
NeXtAlign 0.0819 0.1297 0.0657 0.1285 0.0648 0.1265 0.0895 0.1253
DHNA 0.1092 0.1156 0.1054 0.1335 0.1029 0.1147 0.1377 0.1691
DGA 0.6233 0.6419 0.6800 0.6921 0.7301 0.7622 0.8117 0.8337
HDyNA 0.5246 0.5721 0.6311 0.6871 0.7200 0.7596 0.7657 0.8003
GLDyNA 0.7045 0.7059 0.8871 0.8872 0.9024 0.9025 0.9500 0.9500
A% 13.03 9.97 30.46 28.19 23.60 18.41 17.04 13.95

The best and second-best results are highlighted in boldface and underlined, respectively. N% denotes the improvement of GLDyNA compared to
the best baseline methods results.

TABLE III

EXPERIMENTAL RESULTS ON JC AND JC+ DATASETS AT DIFFERENT SNAPSHOT ¢

t1 1) i3 ty ts te

Preciston MRR | Precision MRR | Preciston MRR | Precision MRR | Precision MRR | Precision MRR

BRIGHT 0.2836 0.4115 0.2794 0.4247 0.2693 0.4018 0.3014 0.4152 0.2419 0.3898 0.2611 0.3921
NetTrans 0.1352 0.1818 0.1271 0.1575 0.1037 0.1404 0.0774 0.1185 0.1142 0.1697 0.0612 0.1025
JC DANA 0.4589 0.5497 0.4276 0.4691 0.3963 0.4566 0.3856 0.4568 0.3732 0.4468 0.3481 0.4177
NeXtAlign 0.3188 0.4310 0.2456 0.3514 0.2815 0.3795 0.2583 0.3487 0.2500 0.3833 0.2256 0.2882
DHNA 0.2907 0.3011 0.3270 0.3609 0.2571 0.2834 0.2279 0.2630 0.2800 0.3107 0.2112 0.2971
DGA 0.5022 0.5500 0.4729 0.5273 0.5000 0.5388 0.4992 0.5236 0.5235 0.5700 0.6122 0.6503
HDyNA 0.4304 0.4972 0.4641 0.5210 0.4090 0.5319 0.4175 0.5100 0.5010 0.5541 0.5399 0.6110
GLDyNA 0.5702 0.5743 0.4926 0.4969 0.6126 0.6070 0.5608 0.5605 0.5974 0.6100 0.7078 0.7057

A% 13.54 4.42 417 -5.77 22.52 12.66 12.34 7.05 14.12 7.02 15.62 8.52
BRIGHT 0.2711 0.3900 0.2807 0.4166 0.2702 0.4110 0.3158 0.4252 0.2700 0.3961 0.2600 0.3851
NetTrans 0.1357 0.1899 0.1193 0.1496 0.1201 0.1370 0.1022 0.1257 0.1100 0.1636 0.0895 0.1103
C+ DANA 0.4402 0.5152 0.4270 0.4672 0.4117 0.4983 0.4000 0.4794 0.4457 0.5029 0.3665 0.4570
NeXtAlign 0.2901 0.3510 0.2500 0.3766 0.3011 0.4067 0.2594 0.3499 0.3143 0.4402 0.3147 0.3800
DHNA 0.2801 0.2900 0.3206 0.3551 0.2764 0.3004 0.2300 0.2719 0.2807 0.3233 0.2410 0.3306
DGA 0.5022 0.5500 0.4729 0.5273 0.5000 0.5388 0.4992 0.5236 0.5235 0.5700 0.6122 0.6503
HDyNA 0.4304 0.4972 0.4641 0.5210 0.4090 0.5319 0.4175 0.5100 0.5010 0.5541 0.5399 0.6110
GLDyNA 0.5702 0.5743 0.4926 0.4969 0.6126 0.6070 0.5608 0.5605 0.5974 0.6100 0.7078 0.7057

A% 13.54 4.42 417 -5.77 22.52 12.66 12.34 7.05 14.12 7.02 15.62 8.52

The best and second-best results are highlighted in boldface and underlined, respectively. N% denotes denotes the improvement of GLDyNA compared to the best baseline

methods results.

improve and some even degrade. This highlights the detrimental
impact of disregarding the evolution of the nodes on alignment,
as confusing information may introduce additional confusion
into the alignment process, as discussed in Section I.
Compared to the dynamic network alignment method
HDyNA and DGA, GLDyNA still demonstrates better align-
ment performance. HDyNA solely considers the scenario where
new nodes are added to the evolving network over time while
disregarding the situation where certain nodes may also vanish
over time. As aresult, it fails to roundly capture the temporal dy-
namics of node features and consequently impairs the accuracy
of network alignment. DGA utilizes graph attention convolu-
tional units and an LSTM-based encoder to learn representa-
tions that capture the dynamic information within nodes from
two networks individually. It then aligns the embedded spaces
of the two networks by mapping them to a shared subspace.
The mechanism employed for learning node representations
requires aligned nodes to exhibit similar neighbor evolution

characteristics. However, the effectiveness of DGA diminishes
when nodes demonstrate divergent evolutionary behaviors. In
such scenarios, our method alleviates the challenges posed by
limited local consistency in alignment by incorporating global
consistency, thereby maintaining a favorable alignment perfor-
mance. While GLDyNA has achieved promising Precision
and M RR alignment results overall, it falls slightly behind
DGA in certain snapshot networks. This could be attributed to
an imbalanced distribution of anchor nodes in those specific
snapshots, where the global consistency negatively affects the
alignment performance in those cases.

In addition to evaluating the top-1 accuracy of alignment re-
sults, we also compared the alignment accuracy of each method
at top-a (o > 1) levels. The results, as shown in Fig. 4, indicate
that as « increases, the accuracy of all comparative methods
improves. However, our method consistently maintains a sta-
ble performance. This observation suggests that our approach
effectively distinguishes correctly aligned nodes from others,
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TABLE IV
EXPERIMENTAL RESULTS ON TF AND JC DATASETS WITH DIFFERENT ANCHOR NODE PERCENTAGE AT LAST SNAPSHOT OF EACH DATASET (L.E., SNAPSHOT 4 OF
TF AND SNAPSHOT 6 OF JC)

0.5 0.6 0.7 0.8
Precision MRR | Precision MRR | Precision MRR | Precision MRR
BRIGHT 0.0874 0.1498 0.1150 0.1816 0.1351 0.1966 0.1167 0.1819
NetTrans 0.1310 0.1853 0.1306 0.1931 0.1377 0.1926 0.1323 0.1926
TF DANA 0.0926 0.1504 0.1131 0.1799 0.1286 0.1980 0.1498 0.2373
NeXtAlign 0.0562 0.1180 0.0897 0.1282 0.0857 0.1196 0.0739 0.1344
DHNA 0.0925 0.1137 0.1009 0.1286 0.1143 0.1602 0.1159 0.1677
DGA 0.6800 0.6904 0.7101 0.7400 0.7581 0.7720 0.8117 0.8337
HDyNA 0.6533 0.6894 0.7003 0.7220 0.7129 0.7466 0.7257 0.7503
GLDyNA 0.8431 0.8431 0.7901 0.7901 0.8525 0.8525 0.9500 0.9500
BRIGHT 0.1722 0.2805 0.1875 0.3021 0.2241 0.3364 0.2611 0.3921
NetTrans 0.0690 0.1049 0.0737 0.1062 0.0761 0.1131 0.0612 0.1025
JC DANA 0.3054 0.3296 0.3255 0.3693 0.3516 0.4092 0.3481 0.4177
NeXtAlign 0.1580 0.2577 0.1892 0.2894 0.2171 0.3036 0.2256 0.2882
DHNA 0.1997 0.2234 0.2217 0.2534 0.2550 0.2796 0.2112 0.2971
DGA 0.5733 0.5891 0.5900 0.6092 0.6205 0.6331 0.6122 0.6503
HDyNA 0.5022 0.5571 0.5430 0.5756 0.5402 0.6018 0.5399 0.6110
GLDyNA 0.6266 0.6259 0.6583 0.6783 0.6778 0.6783 0.7078 0.7057
—e— BRIGHT —¥— DANA —+— DHNA  —— HDyNA EEE GLDyNA EEE BRIGHT mmm DANA B DHNA
NetTrans —e— NeXtAlign —<— DGA GLDyNA HDyNA . DGA N NetTrans EEE NeXtAlign
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(a) TF dataset. (b) JC dataset.
Fig.4. Experimental results on TF and JC datasets with different top-a metrics

at last snapshot of each dataset (i.e., snapshot 4 of TF and snapshot 6 of JC).

whereas other methods struggle to make clear differentiations,
resulting in lower top-1 accuracy but relatively better top-«
(v > 1) accuracy.

Effect of Anchor Node Percentage: Based on previous meth-
ods, the more anchor nodes in the training set, the better the
network alignment performance. We analyze the impact of
anchor node percentage in the training set from 0.5 to 0.8. As
shown in Table IV, the effectiveness of all methods increases
with an increasing proportion of anchor nodes in the training
set. We observe that GLDyNA outperforms other methods even
when the proportion of anchor nodes in the training set is low.
This result is due to its consideration of dynamic changes in
node behaviors, which increases the separability of candidate
node pairs, and its incorporation of global consistency, which
excludes candidate node pairs that do not conform to the overall
evolutionary pattern.

Time for Searching Anchor Node Pairs: In Fig. 5, we com-
pare the computational efficiency of each method. The running
time of most methods is comparable, except for NeXtAlign.
Despite NeXtAlign achieving satisfactory alignment results, it
utilizes a complex negative sampling method to calculate node
attention, resulting in a longer running time. Compared to static
methods, although GLDyNA considers information from dif-
ferent snapshots, it reduces its running time through a sampling
approach.

Fig. 5.

Model running times on TF and JC datasets.

C. Ablation Study

In this subsection, we conduct ablation studies to validate
the effectiveness of global-level and local-level consistency. Six
variants are designed:

e GLDyNA-WG does not consider the global consistency of

node pairs, i.e., performs alignment without simg (-, -);

o GLDyNA-WG(L-) does not consider global consistency of
node pairs and only considers local consistency between
the current snapshot and the previous snapshot, i.e., per-
forms alignment without simg(-,-) and set ¢ =¢ — 1 in
simy(+,+);

e GLDyNA-WL does not consider local consistency of node
pairs, i.e., performs alignment without sim; (-, -);

e GLDyNA-WGL does not consider global and local con-
sistency of node pairs, i.e., performs network alignment
without simg(-,-) and simy(-,-);

o GLDyNA-WS does not perform spatial transformation,
i.e., uses the node representations learned by Structure-
Time-aware module directly;

®* GLDyNA-G uses a nonlinear neural network to learn the
sum collaboration of anchor node pairs as a replacement
for (8).

Tables V and VI compare the different variants of GLDyNA

on TF and JC datasets, respectively. Global and local consistency
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TABLE V
RESULTS OF ABLATION STUDY ON TF DATASET AT DIFFERENT SNAPSHOT ¢
t1 to t3 ta
Precision MRR | Precision MRR | Precision MRR | Precision MRR
GLDyNA-WG 0.3750 0.3628 0.3549 0.3855 0.3283 0.3244 0.3000 0.2910
GLDyNA-WG(L-) 0.3295 0.3045 0.3871 0.3845 0.2683 0.3193 0.2750 0.2546
GLDyNA-WL 0.6959 0.6906 0.8387 0.8395 0.8926 0.8926 0.9250 0.9250
GLDyNA-WGL 0.2455 0.2658 0.2806 0.2837 0.2732 0.2915 0.3250 0.3303
GLDyNA-WS 0.2219 0.2370 0.2511 0.2466 0.2501 0.2422 0.2991 0.3009
GLDyNA-G 0.6992 0.7059 0.8822 0.8875 0.8906 0.9000 0.9436 0.9461
GLDyNA 0.7045 0.7059 0.8871 0.8872 0.9024 0.9025 0.9500 0.9500
TABLE VI
RESULTS OF ABLATION STUDY ON JC DATASET AT DIFFERENT SNAPSHOT ¢
t1 to t3 ta ts te
Precision MRR | Precision MRR | Precision MRR | Precision MRR | Precision MRR | Precision MRR
GLDyNA-WG 0.5263 0.4827 0.4820 0.4704 0.4364 0.4530 0.3649 0.3825 0.4091 0.3986 0.4373 0.4293
GLDyNA-WG(L-) 0.5251 0.5206 0.4706 0.4470 0.4606 0.4483 0.3649 0.4034 0.4156 0.4351 0.3470 0.3460
GLDyNA-WL 0.5263 0.5377 0.4368 0.4398 0.5333 0.5382 0.5149 0.5180 0.5404 0.5379 0.6758 0.6709
GLDyNA-WGL 0.4439 0.4670 0.4515 0.4703 0.4364 0.4562 0.4338 0.4446 0.4519 0.4626 0.4046 0.4144
GLDyNA-WS 0.4011 0.4318 0.4366 0.4419 0.4052 0.4338 0.4216 0.4288 0.4361 0.4423 0.4000 0.3903
GLDyNA-G 0.5701 0.5699 0.4871 0.4799 0.6112 0.5973 0.5603 0.5500 0.5900 0.5927 0.7000 0.6977
GLDyNA 0.5702 0.5743 0.4926 0.4969 0.6126 0.6070 0.5608 0.5605 0.5974 0.6100 0.7078 0.7057
plays a crucial role in network alignment, which is demonstrated —— ty ety e i
by the significant drop in the performance of GLDyNA-WGL. — —
The superior performance of GLDyNA-WGL compared tomost ~ _ 0.9
static network alignment baseline methods indicates that the 3 o.s
. . . . . . O
consideration of dynamic node behaviors is beneficial for net- 2 0.7
work alignment. ' \’\,\ \'\\'
The advantage of our global consistency can be quantified by 0.6 5 3 s 967 5 3 4
the reduced performance of GLDyNA-WG. The advantage of K K
our local consistency can be quantified by the reduced perfor-  gig 6. Experimental results of considering different K-order neighbors in the

mance of GLDyNA-WL. Comparing the results of GLDyNA-
WG on two datasets reveals that the impact of global consistency
is more significant on the TF dataset compared to the JC dataset.
This discrepancy arises due to the reliance of global consistency
on changes in the total number of neighbors for nodes in both
networks. In the TF dataset, there is a notable increase in the
number of edges between different snapshots, resulting in an
overall trend of increasing neighbor count for nodes. This trend
facilitates the differentiation of nodes using global consistency.
Conversely, the JC dataset demonstrates unstable relationships
in the changes of edge count across different snapshots, indicat-
ing indistinct variations in neighbor count for nodes. This makes
it challenging to differentiate nodes using global consistency,
resulting in a relatively limited impact of global consistency in
this dataset.

Compared to GLDyNA-WG, GLDyNA-WG(L-)’s perfor-
mance exhibits a slight decline in both Precision and M RR,
indicating that when disregarding global consistency, the consid-
eration of local consistency with a limited number of snapshots
cannot effectively constrain the node pairs. The significant re-
duction in the performance of GLDyNA-WS indicates that, in
the absence of spatial transformation, the learned node repre-
sentations of the two networks exhibit certain differences due to
their semantic disparities, rendering them unsuitable for direct
alignment. The performance of GLDyNA-G is comparable to
that of GLDyNA, indicating that for the dataset used in the
experiments, the majority of changes in the number of neighbors

global consistency on the TF dataset.

—— by ty —¥— t3 —— Iy —*— 15 —<— tg
0.71 % 0.71
- *
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Fig.7. Experimental results of considering different K-order neighbors in the

global consistency on the JC dataset.

for anchor node pairs still adhere to linear patterns. This finding
aligns with reality, where both in social networks and academic
collaboration networks, most individuals experience gradual and
non-disruptive changes in the number of their connections or
friends under normal circumstances.

Furthermore, to investigate whether the sum of first-order
neighbors is the optimal feature for computing global consis-
tency, we conducted experiments to validate the use of differ-
ent order neighbor counts as features for global consistency.
The experimental results are shown in Figs. 6 and 7, which
indicate that considering the sum of higher-order neighbors
does not improve the effectiveness of alignment. The sum of
higher-order neighbors of a node no longer solely represents its
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Fig. 8. Experimental results of different model parameters (the weight of

global consistency A, local consistency -y, random walk length [, and node
representation dimension d) on the TF dataset.

intrinsic characteristics but rather reflects the characteristics of
its neighbors. As a result, they provide limited useful informa-
tion for alignment and may even introduce interference. This
observation further supports the rationale behind our approach
of utilizing only the sum of first-order neighbors to compute
global consistency.

D. Hyperparameter Sensitivity

To understand the effect of hyperparameters, we analyze
accuracy by varying hyperparameters in several experiments.
When analyzing each hyperparameter, all other parameters are
held constant at their default values. The results on TF and JC
datasets are shown in Figs. 8 and 9 respectively.

1) Impact of the weight of global consistency A. We exam-
ine the impact of varying the global consistency weight
across the range of [0.05,0.1,0.15,0.2], and our results
reveal that GLDyNA achieves superior performance with
A = 0.15 in most snapshots. Although anchor node pairs
maintain global consistency between them over time, there
may be some deviations from global consistency during
the evolution process. Therefore, there are some snapshots
where A = 0.15 does not achieve the best performance.

2) Impact of the weight of local consistency . We exam-
ine the impact of varying the local consistency weight
across the range of [0.05,0.1,0.15,0.2], and our results

0.65/ b
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©0.55
045 5 10 15 20
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Fig. 9. Experimental results of different model parameters (the weight of

global consistency A, local consistency -, random walk length [, and node
representation dimension d) on the JC dataset.

reveal that GLDyNA achieves superior performance with
~ = 0.1. In comparison to global consistency, the perfor-
mance of v = 0.1 across different snapshots is consis-
tently stable, exhibiting negligible occurrences of anchor
nodes deviating from local consistency within any given
snapshot.

3) Impact of the random walk length /. We examine the
impact of varying the random walk length across the range
of [5,10,15,20], and our results reveal that GLDyNA
achieves superior performance with [ = 15. The walk
length [ affects the length of the sampled paths and the
coverage of the network, thus influencing the learned
node representations. A smaller [ leads to denser path
sampling, capturing local structure better, but may ignore
global structure. A larger [ can traverse the network more
comprehensively but may overlook local dependencies
between nodes. Therefore, we choose [ = 15 considering
abalance between the desired representation accuracy and
computational efficiency.

4) Impact of the dimension of node representations d. We
examine the impact of varying the dimension of node
representations across the range of [32, 64, 128, 256], and
our results reveal that GLDyNA achieves superior perfor-
mance with 64-dimension node representations. In gen-
eral, higher node representation dimensions can better
preserve the features of nodes in a network. However,
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in dynamic network alignment tasks, increasing node di-
mensions may introduce irrelevant information from the
evolutionary process, leading to decreased performance.

VI. CONCLUSION

This paper mainly investigates the problem of network align-
ment in dynamic scenarios. The dynamic nature of networks
harbors distinctive patterns that can aid in network alignment.
To efficiently utilize the dynamics of networks, we propose a
method called GLDyNA to improve the accuracy of network
alignment. In the proposed GLDyNA, to capture the intra-
network dynamics, we design a Structure-Time-aware mod-
ule to learn the node representations with network dynamics.
To address the inter-network alignment, we ensure the con-
sistency of anchor node pairs from global and local views,
respectively. Compared to the STOA alignment methods on
real-world datasets, GLDyNA can achieve comparable accuracy
performance in dynamic scenarios.

In further research, we endeavor to investigate the intrinsic
mechanism of the neighborhood structures of a pair of anchor
nodes across disparate networks. Specifically, we aim to gener-
ate the neighborhood structure of an anchor node in one network
based on its neighborhood structure and historical evolution in
another network. By examining the intrinsic mechanism, we
can gain a deeper understanding of how these structures are
formed and how they evolve. It can not only improve the network
alignment but also enhance the interpretability of the results.
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