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a b s t r a c t

Convolutional Neural Network (CNN) has been an important breakthrough in pattern recognition in recent years.
Nevertheless, with the increase in complexity, CNN becomes more difficult to train. To alleviate the problem of
training difficulties, we propose a novel nonlinear unit, called Nonlinear Competitive Unit (NCU). By comparing
the elements from different network layers and selecting the larger signals element-wisely, it can not only
strengthen feature propagation but also accelerate the convergence of CNN. This unit can be regarded as a
feature fusion method as well as a kind of activation function. We evaluate our NCU-based models for face
verification task and visual classification task on four benchmark datasets. The experimental results demonstrate
the superior performance of our models over many state-of-the-art methods, which shows the advantage and
potential of the NCU in networks.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Since AlexNet [1] was introduced by Hinton in 2012, convolutional
neural network (CNN) has received extensive attention. A number of
vision tasks, such as image classification [2,3], face recognition [4,5]
and face verification [6], have benefited from the robust and discrimi-
native representation learnt via CNN models [7–9,5,10–12]. Compared
with traditional feature extraction methods [13,14], CNN models mainly
take advantage of the large-scale training data and the end to end
learning framework. In recent years, a large number of skills have
been introduced to promote the performance of CNN. They are mainly
along two directions: (a) presenting effective training strategies, for
example, the well-designed initialization strategies [2] and effective
regularization techniques [15]; (b) creating more effective models, such
as increasing the depth of the CNNs [6,11,12], expanding the width [16]
and the use of nonlinear activation functions [17–19].

Depth and width are two crucial components for the diversification
of network architecture. Nevertheless, training deep or wide networks
would also suffer several difficulties, such as time consuming and
exploding/vanishing gradient or degradation. Actually, it needs lots of
effects to learn a deep hierarchical structure effectively and efficiently.

In some works, instead of drawing the representational power from
extremely deep or wide architecture, some researchers try their best
to explore different connectivity patterns. GoogLeNet [8] concatenates
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the outputs of several subnetworks with different length, which can
be seen as a feature fusion method. Highway Networks [20] provide
a means, the shortcut connection along with gating functions [21],
to effectively train CNN models with more than 100 layers. Indeed,
shortcut connection [22], a feature fusion method, has been studied for
a long time in many works [22,23]. Residual Networks (ResNets) further
support the point that shortcut connection is a key factor that eases the
training of deep CNN models. Instead of excepting each stacked layers
directly fit a desired underlying mapping, ResNets explicitly generate
the residual mapping.

In this paper, we propose a new nonlinear unit, named Nonlinear
Competitive Unit (NCU). It can be regarded as a feature fusion method
or an activation function. As a feature fusion method, the NCU aims at
competing the intermediate representations of subnetworks, where the
fused output serves as the input of the remaining part of network. From
the view of activation function, the most popular activation function
is ReLU [17], which keeps the identity of positive elements and zeros
otherwise. Although it overcomes the problem of vanishing gradient,
it might loss some information, especially in the first several layers. In
the NCU, the activation threshold is learnt, which means one of the
competitive representations can act as the base threshold. Compared
with ReLU, the NCU’s final result holds the reasonable activation signals
but with a certain of sparsity lost. Another similar unit− the maxout [24]
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can also hold a good fitting ability by adaptively adjusting the activation
threshold. The difference between the NCU and maxout are:

∙ maxout feature map is constructed by taking the maximum across
𝑘 affine feature map with a large number of parameters, while
our NCU is parameter-free.

∙ maxout is used in conjunction with dropout, and the NCU can be
used independently.

The main contributions of this paper are three fold:

1. A novel nonlinear unit is proposed, named Nonlinear Competi-
tive Unit, which can be regarded as a feature fusion method as
well as an activation function.

2. Compared with the benchmark network models, the convergence
speed of our model is improved accompanied with higher stabil-
ity.

3. The experiments validate that NCU-based models can effectively
boost the performance in both face verification task and visual
classification task.

The remainder of the paper is organized as follows. In Section 2,
we first give a brief introduction of residual block, then present a clear
definition of the NCU and study a competitive structure, i.e. competitive
block. We provide the experimental setups and results in Section 3.
Finally, the paper is concluded in Section 4.

2. Nonlinear competitive unit

The intuitive inspiration for our nonlinear competitive unit comes
from the residual block of ResNets [12]. In this section, the residual
block, the proposed nonlinear competitive unit and the corresponding
competitive block will be illustrated.

2.1. Residual block

ResNets improve the classification performance significantly by
constructing many stacked residual blocks. Here, set the input of a
residual block as x, the basic mapping as 𝐻(𝐱), and the output 𝐹 (𝐱)
satisfies the following equation:

𝐹 (𝐱) ∶= 𝐻(𝐱) + 𝐱, (1)

the detailed operation about 𝑘th residual block in ResNet can be written
as follows:

𝐱𝑘+1 = ℎ(𝑓 (𝐱𝑘,𝐖𝑘𝑖) +𝐖𝑠𝐱𝑘), 𝑖 ≥ 1, (2)

where 𝐱𝑘 and 𝐱𝑘+1 are the input and output of the 𝑘th residual block,
respectively; ℎ is the activation function ReLU, which is of great essential
to the successes of CNN models; the function 𝑓 represents the residual
mapping; 𝐖𝑘𝑖 is the weight parameter associated with the 𝑘th residual
block, where parameter 𝑖 represents the number of weight layer that
commonly designed as 2 or 3; 𝐖𝑠 is a linear projection by the shortcut
connections to match the dimension.

Especially, when 𝐱𝑘 and 𝐱𝑘+1 share the same size, the shortcut
connection simply performs identity mapping, which adds neither extra
parameter nor computational complexity. In [25], it shows that not
only the use of identity mapping is sufficient to address the degradation
problem but also achieve the fastest error reduction and lowest training
loss among all variants, and thus we do not use 𝐖𝑠 when the dimensions
of 𝐱𝑘 and 𝑓 are equal. Without loss of generality, the activation functions
Batch Normalization(BN) [19] and ReLU are inserted immediately after
the weight layer as post-activation. In contrast to this conventional
wisdom, BN and ReLU are put in front of weight layer in [25], called
pre-activation.

The architecture of residual block about the number of weight layers
and the size of convolutional kernel size have been discussed in [26].
Fig. 1 shows the rough structure of basic block B(3,3) — residual block
with two consecutive 3 × 3 convolutions.

Fig. 1. Residual Block. Longer thick arrow indicates a more direct way for propagating
information, which adds neither extra parameter nor computational complexity. Two
weight layers represent two convolution operations.

2.2. Nonlinear competitive unit

In this part, we propose our Nonlinear Competitive Unit (NCU),
which is designed to reformulate the output as a competitive result of the
inputs specifically. For two inputs 𝐼1, 𝐼2 ∈ 𝑅𝑝×𝑞×𝑛, the output 𝑂 ∈ 𝑅𝑝×𝑞×𝑛

satisfies the equation:

𝑂 = 𝐼1
⨀

𝐼2, (3)

where ⨀ can be described as follows:

𝑂𝑘(𝑖, 𝑗) ∶= max(𝐼𝑘1 (𝑖, 𝑗), 𝐼
𝑘
2 (𝑖, 𝑗)) (4)

where 1 ≤ 𝑘 ≤ 𝑛, 1 ≤ 𝑖 ≤ 𝑝, 1 ≤ 𝑗 ≤ 𝑞. According to Eq. (4), we
can obtain a representation with the same size of the inputs, while the
elements are the larger ones between two inputs. For a specified 𝑘, the
structure of the NCU can be showed in Fig. 2(a).

As described above, the NCU can be considered as not only a feature
fusion method, but also an activation function. And the fusion result or
activate value is the competitive winner, i.e. the larger element in the
same location.

To verify its advantage in extracting discriminative representation,
we implement a specific framework of the NCU called competitive block
in the network, as shown in Fig. 2(b). Similar to residual block, the
competitive block can be given in a general form:

𝐱𝑘+1 = ℎ(𝑓 (𝐱𝑘,𝐖𝑘𝑖)
⨀

𝐖𝑠𝐱𝑘), 𝑖 ≥ 1 (5)

where 𝐱𝑘 and 𝐱𝑘+1 are the input and the output of 𝑘th competitive block.
It can be found that the structure of competitive block is similar

to residual block except the operation on layer’s output. Actually,
residual block learns residual mapping while competitive block learns
competitive mapping.

3. Experiments

We evaluate the performance of the NCU in two typical vision
applications: face verification and visual classification. In face ver-
ification, we evaluate our NCU-based models on two widely used
datasets, i.e. Labeled Faces in the Wild (LFW) [27] and YouTube Faces
(YTF) [28]. In visual classification, we use the standard benchmark
datasets: MNIST [29] and CIFAR-10 [30].
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(a) NCU.

(b) Competitive block.

Fig. 2. The structure of the NCU and the competitive block. (a) NCU. 𝐼1(𝑖, 𝑗) and 𝐼2(𝑖, 𝑗)
come from different feature layers, respectively. 𝑂(𝑖, 𝑗) is the corresponding output. (b)
Competitive block. The competitive framework of the NCU.

3.1. Datasets

∙ CASIA-WebFace contains about 500,000 images of 10,575 sub-
jects and all face images are proposed by face detection, face
landmarking and alignment.

∙ LFW provides a set of labeled face images spanning the range
of conditions typically encountered by people in daily life, and
it contains 13,233 web-collected images from 5749 different
identities. The dataset has been organized into two ‘‘Views’’ [27],
we select View 2 to evaluate the performance of our models, and
use the training part of View 1 to learn covariance matrix for
PCA.

∙ YTF is a video dataset. The quality of images is much worse
than web photos due to motion blur and high compression ratio.
In experiments, we follow the unrestricted labeled outside data
protocol and report the results on 5000 video pairs.

∙ MNIST has a training set of 60k examples and a test set of 10k
examples. The digits have been size-normalized and centered as
a 28 × 28 image.

∙ CIFAR-10 consists of 60k 32 × 32 color images from 10 classes,
with 6k images per class. The dataset is divided into five training
batches and one test batch, each with 10k images. The test batch
contains exactly 1k randomly selected images from each class,
and the training batches contain the remaining images in random
order.

3.2. Face verification

For face verification task, the protocol we use to build the training
dataset (CASIA-WebFace) is:

∙ all face images are aligned by the proposed algorithm [31] and
tailored into 256 × 256;

∙ the false positive images (i.e. images not properly clipped) are
discarded conservatively;

∙ in order to data augmentation, each tailored image is flipped
horizontally, then the images are randomly cropped from the
original image and the flipped one, rather than heavy data
augmentation as presented in [32].

In the testing stage, all the images in LFW and YTF datasets are dealt
with the same protocol as the training dataset.

3.2.1. Implementation details
The hyperparameters’ setup and the optimal configuration are de-

scribed in this part.
Unless explicitly stated, otherwise models are trained using the

stochastic gradient descent algorithm [33] with a mini-batch size of
100. The learning rate is initialized with 0.05 and multiplied by 0.5
after every 20,000 iterations. The momentum and weight decay are
designed as 0.9 and 0.0001, respectively. The weights in networks are
initialized from zero-mean gaussian distribution while the bias terms
are initialized with zero. We implement our system on widely used Caffe
infrastructure [34].

The structure of our baseline (BaseNet) is similar with the 18-layer
ResNet with pre-activation residual blocks. Specifically, we incorporate
an additional fully-connected layer to map a representation space of
dimension 1024 before the last softmax regression classifier. Comp-𝑚
is the network that replaces the last 𝑚 residual block of baseline into
competitive block, and retains the number of parameters and the layers.
The architectures of networks are shown in Table 1. The dimension of
input is 224 × 224 × 3. There is an initial convolutional layer followed by
a 3 × 3 max-pooling and 4 blocks conv-𝑘 (𝑘=2,3,4,5). The size of filters
in each block is 3 × 3. In face verification stage, the deep representations
are taken from the output of the first inner product layer. And we choose
cosine distance as the discriminant standard.

3.2.2. Test on LFW and YTF
In this part, the experiments are conducted as following methods:

∙ A: DR + Cosine
∙ B: DR + PCA1 + Cosine
∙ C: DR + PCA2 + Cosine.

DR is an abbreviation of deep representation extracted by deep
models. PCA1 means covariance matrix directly learned by extracted
features. PCA2 means that covariance matrix is learned by the View1’s
training part of LFW in the first step, and then the performance is
evaluated on View 2. Here we set the ratio of PCA as 0.98.

Fig. 3 shows convergence curves of BaseNet, Comp-2, Comp-4,
Comp-6 and Comp-8 networks. We can find that the networks with
competitive block have lower training error and higher accuracy ac-
companied by a faster and more stable convergence. During the training
process, the training speeds of BaseNet, Comp-2, Comp-4, Comp-6 and
Comp-8 are recorded, respectively, which is 25.2 s, 17.8 s, 19.2 s, 20.0 s,
21.8 s for one training iteration, indicating that competitive block is
easier to be optimized than residual block.

We investigate the performance related to 𝑘, which represents the
number of competitive block in networks. Here we select the representa-
tive structures Comp-𝑘 (𝑘 = 2,4,6,8). More intuitively, the verification
accuracies of these models on LFW are illustrated in the form of bar
graphs in Fig. 4. The horizontal axis shows different feature extraction
methods. The blue bars represent the verification results of the BaseNet.
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Table 1
The architecture of networks. 𝐵(3, 3) × 2 denotes two cascaded residual block, and 𝐂(𝟑, 𝟑) × 𝟐 denotes two cascaded competitive
block.

Layer name Output size BaseNet Comp-2 Comp-4 Comp-6 Comp-8

conv1 109 × 109 7 × 7, 64 , 𝑠𝑡𝑟𝑖𝑑𝑒2
max pool 55 × 55 3 × 3, 𝑠𝑡𝑟𝑖𝑑𝑒2
conv-2 55 × 55 𝐵(3, 3) × 2, 64 𝐵(3, 3) × 2, 64 𝐵(3, 3) × 2, 64 𝐵(3, 3) × 2, 64 𝐂(𝟑, 𝟑) × 𝟐, 𝟔𝟒
conv-3 28 × 28 𝐵(3, 3) × 2, 128 𝐵(3, 3) × 2, 128 𝐵(3, 3) × 2, 128 𝐂(𝟑, 𝟑) × 𝟐, 𝟏𝟐𝟖 𝐂(𝟑, 𝟑) × 𝟐, 𝟏𝟐𝟖
conv-4 14 × 14 𝐵(3, 3) × 2, 256 𝐵(3, 3) × 2, 256 𝐂(𝟑, 𝟑) × 𝟐, 𝟐𝟓𝟔 𝐂(𝟑, 𝟑) × 𝟐, 𝟐𝟓𝟔 𝐂(𝟑, 𝟑) × 𝟐, 𝟐𝟓𝟔
conv-5 7 × 7 𝐵(3, 3) × 2, 512 𝐂(𝟑, 𝟑) × 𝟐, 𝟓𝟏𝟐 𝐂(𝟑, 𝟑) × 𝟐, 𝟓𝟏𝟐 𝐂(𝟑, 𝟑) × 𝟐, 𝟓𝟏𝟐 𝐂(𝟑, 𝟑) × 𝟐, 𝟓𝟏𝟐

1 × 1 𝑎𝑣𝑔 − 𝑝𝑜𝑜𝑙𝑖𝑛𝑔 , 1024 − 𝑓𝑐, 𝑠𝑜𝑓𝑡𝑚𝑎𝑥

(a) Training loss. (b) Training accuracy.

Fig. 3. Training on CASIA-Webface. (a) The training error change along the iterations. (b) The change of training accuracies.

Fig. 4. Face verification accuracies on LFW dataset. The horizontal axis shows different feature extraction methods. Particularly, ‘‘fc1’’ represents the output features of the first inner
product layer. ‘‘pool2’’ is the input feature of the layer ‘‘fc1’’. ‘‘fc1+fc1’’ refers to the sum of the feature ‘‘fc1’’ and its corresponding horizontal mirror element-wisely.

From the verification accuracies on LFW, the following conclusions can
be obtained: (a) For each test methods (A, B or C), the NCU-based models
always achieve the highest accuracy. For method B, Comp-6 achieves
an accuracy rate of 97.22%, about 0.9 percent higher than BaseNet. The
accuracy of each NCU-based models hold higher test accuracies than
BaseNet for method A; (b) As noticed, 𝑘 = 6 turns out to be the best
performance. It is probably dues to the higher level feature competition
in network layer has a better capacity to represent the variations of the
complex face images.

In the following experiments, the network models are trained with
the joint supervision of softmax and center loss [35]. The experimental
results are shown in Table 2. CompNet-4 represents the network that
replaces the last 4 residual blocks of ResNet18 (18 layer ResNet with an
additional 1024 fully-connected layer) as competitive blocks. CenterNet
is the network architecture mentioned in [35], keeping the same training
details described in that article. Center-𝑘 represents the network that

Table 2
The performance on LFW and YTF with joint supervision of softmax and center loss.

Datasets LFW YTF

Models Methods

A B C A B

ResNet18 96.97% 97.12% 97.3% 89.04% 91.44%
CompNet-4 97.1% 97.18% 97.32% 89.7% 91.5%
CenterNet 98.28% 98.33% 98.35% 91.22% 93.0%
Center-1 98.22% 98.47% 98.55% 91.40% 92.8%
Center-2 98.38% 98.45% 98.55% 91.38% 93.04%
Center-3 98.30% 98.75% 98.78% 91.56% 93.22%

replaces the residual block after the last 𝑘th pool layer of CenterNet
as competitive block. By training on CASIA-WebFace, the NCU-based
models hold higher accuracy in most test standards, especially, Center-3
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Fig. 5. Face verification on LFW. In positive pairs, the two images (Image I and II) are from the same person, but in negative paris, they are from different persons.

Table 3
The architecture of networks. (5, 20)∕1,0 denotes the convolutional layer with 20 filters of size 5 × 5, where the stride and padding are 1 and 0, respectively. 𝑚𝑎𝑥(𝑎𝑣𝑔) − 22,0 denotes the
max(avg)-pooling layers with grid of 2 × 2, where the stride and padding are 2 and 0, respectively.

Layer conv pool conv pool conv pool NCU FC

LeNet (5, 20)∕1,0 𝑚𝑎𝑥 − 22,0 (5, 50)1,0 𝑚𝑎𝑥 − 2∕2,0 – – No fc-500/fc1-10
LeNet(avg) (5, 20)∕1,0 𝑚𝑎𝑥 − 22,0 (5, 50)1,0 𝑎𝑣𝑔 − 2∕2,0 – – No fc-500/fc1-10
LeNet-NCU (5, 20)∕1,0 𝑚𝑎𝑥 − 22,0 (5, 50)1,0 𝑚𝑎𝑥, 𝑎𝑣𝑔 − 2∕2,0 – – Yes fc-500/fc1-10
Cifar-Net (5, 32)∕2,1 𝑚𝑎𝑥 − 32,0 (5, 32)2,1 𝑎𝑣𝑔 − 3∕2,0 (5, 64)∕2,1 𝑎𝑣𝑔 − 32,0 No fc-10
Cifar-Net(max) (5, 32)∕2,1 𝑚𝑎𝑥 − 32,0 (5, 32)2,1 𝑎𝑣𝑔 − 3∕2,0 (5, 64)∕2,1 𝑚𝑎𝑥 − 32,0 No fc-10
Cifar-Net_NCU (5, 32)∕2,1 𝑚𝑎𝑥 − 32,0 (5, 32)2,1 𝑎𝑣𝑔 − 3∕2,0 (5, 64)∕2,1 𝑎𝑣𝑔, 𝑚𝑎𝑥 − 32,0 Yes fc-10

Table 4
Classification accuracies on MNIST. LeNet(avg) denotes that the last max-pooling in LeNet
is replaced by average pooling. LeNet(norm) represents norm and relu are added immedi-
ately after the convolutional layer.

Method Accuracy

LeNet 98.92%
LeNet(avg) 98.79%
LeNet_NCU 99.05%
LeNet(norm) 98.88%
LeNet(avg+norm) 99.13%
LeNet_NCU(norm) 99.24%

shares a verification accuracy of 98.78% on LFW and 93.22% on YTF. We
owe the superiority of our network to competitive block which extracts
the last competitive representations.

In theory, features with better generalization would lead to a less
gap between the verification scores in positive pairs and a larger gap be-
tween negative pairs. Fig. 5 shows the scores of ResNet18 and CompNet-
4 in face verification task. Compared with the ResNet18, CompNet-4
obtains higher scores in positive pairs, and lower scores in negative
pairs, which proves the effective of our model in face verification.
Indeed, for CompNet-4, 0.28 can be selected as an appropriate threshold,
which is greater than the threshold for positive pairs and less than the
threshold for negative pairs. However there is no reasonable threshold
for ResNet18 that could separate the positive and negative pairs very
well.

3.3. Visual classification

3.3.1. Implementation details
For experiments, we set the batch size as 100. The weight decay

is 0.0005 and 0.004, respectively for MNIST and CIFAT-10 datasets.
For MNIST, we start with a learning rate of 0.001, the change policy
holds ‘‘inv’’. The gamma and power are designed as 0.0001 and 0.075,
and eventually terminate training at 20k iterations. For CIFAR-10, the
learning rate is fixed at 0.001, and eventually terminate training at 60k.

3.3.2. Test on MNIST and CIFAR-10
The network architectures are shown in Table 3, LeNet(avg) denotes

the last max-pooling in LeNet is replaced by avg-pooling, and Cifar-
Net(max) denotes the last avg-pooling in Cifar-Net is replaced by max-
pooling. In NCU-based networks, avg-pooling and max-pooling are
compared to strengthen feature propagation. Table 4 shows the results
of the original and our NCU-based models on MNIST. From the results,
NCU-based models outperform the original network obviously, which
validates the effectiveness of the competition among signals. The results
on CIFAR-10 shown in Table 5 further illustrate the generalization of our
NCU-based models.

4. Conclusion

In this paper, we proposed a new nonlinear unit named NCU,
which could be regarded as a method of feature fusion as well as a
crucial activation function. It strengthened the feature propagation by
comparing the elements from different network layers and selecting the
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Table 5
Classification accuracies on CIFAR-10 datasets.

Method Accuracy

Cifar-Net 78.70%
Cifar-Net(max) 75.00%
Cifar-Net_NCU 78.97%

larger signals element-wisely. Experimental results demonstrated that
by strengthening feature propagation in networks, NCU-based models
effectively boosted the performance in both face verification task and
visual classification task.

References

[1] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convo-
lutional neural networks, in: Advances in Neural Information Processing Systems,
2012, pp. 1097–1105.

[2] K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification, in: Proceedings of the IEEE International
Conference on Computer Vision, 2015, pp. 1026–1034.

[3] L. Wan, M. Zeiler, S. Zhang, Y.L. Cun, R. Fergus, Regularization of neural networks
using dropconnect, in: Proceedings of the 30th International Conference on Machine
Learning, ICML-13, 2013, pp. 1058–1066.

[4] D. Yi, Z. Lei, S. Liao, S.Z. Li, Learning face representation from scratch, 2014. arXiv
preprint arXiv:1411.7923.

[5] Y. Sun, X. Wang, X. Tang, Deep learning face representation from predicting 10,000
classes, in: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2014, pp. 1891–1898.

[6] Y. Taigman, M. Yang, M. Ranzato, L. Wolf, Deepface: Closing the gap to human-
level performance in face verification, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2014, pp. 1701–1708.

[7] C.C. Pham, J.W. Jeon, Robust object proposals re-ranking for object detection in
autonomous driving using convolutional neural networks, Signal Process., Image
Commun. 53 (2017) 110–122.

[8] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V.
Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1–9.

[9] R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchies for accurate
object detection and semantic segmentation, in: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2014, pp. 580–587.

[10] R.K. Srivastava, K. Greff, J. Schmidhuber, Training very deep networks, in: Advances
in Neural Information Processing Systems, 2015, pp. 2377–2385.

[11] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image
recognition, 2014. arXiv preprint arXiv:1409.1556.

[12] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition,
in: Proceedings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 770–778.

[13] T. Ahonen, A. Hadid, M. Pietikäinen, Face recognition with local binary patterns,
in: European Conference on Computer Vision, Springer, 2004, pp. 469–481.

[14] P. Viola, M. Jones, et al., Robust real-time object detection, Int. J. Comput. Vis. 57 (2)
(2001) 137–154.

[15] N. Srivastava, G.E. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: a
simple way to prevent neural networks from overfitting, J. Mach. Learn. Res. 15 (1)
(2014) 1929–1958.

[16] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, Y. LeCun, Overfeat:
Integrated recognition, localization and detection using convolutional networks,,
in: International Conference on Learning Representations (ICLR2014), CBLS, April
2014, 2014.

[17] V. Nair, G.E. Hinton, Rectified linear units improve restricted boltzmann machines,
in: Proceedings of the 27th International Conference on Machine Learning, ICML-10,
2010, pp. 807–814.

[18] R.K. Srivastava, J. Masci, S. Kazerounian, F. Gomez, J. Schmidhuber, Compete to
compute, in: Advances In Neural Information Processing Systems, 2013, pp. 2310–
2318.

[19] S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by
reducing internal covariate shift, in: International Conference on Machine Learning,
2015, pp. 448–456.

[20] R.K. Srivastava, K. Greff, J. Schmidhuber, Highway networks, 2015. arXiv preprint
arXiv:1505.00387.

[21] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput. 9 (8)
(1997) 1735–1780.

[22] C.M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press,
1995.

[23] B.D. Ripley, Pattern Recognition and Neural Networks, Cambridge University Press,
2007.

[24] I.J. Goodfellow, D. Warde-Farley, M. Mirza, A.C. Courville, Y. Bengio, Maxout
networks, in: ICML (3) 28, 2013, pp. 1319–1327.

[25] K. He, X. Zhang, S. Ren, J. Sun, Identity mappings in deep residual networks,
in: European Conference on Computer Vision, 2016, pp. 630–645.

[26] S. Zagoruyko, N. Komodakis, Wide residual networks, 2016. arXiv preprint arXiv:
1605.07146.

[27] G.B. Huang, M. Ramesh, T. Berg, E. Learned-Miller, Labeled faces in the wild: a
database for studying face recognition in unconstrained environments, Tech. rep.,
Technical Report 07-49, University of Massachusetts, Amherst, 2007.

[28] L. Wolf, T. Hassner, I. Maoz, Face recognition in unconstrained videos with matched
background similarity, in: 2011 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), IEEE, 2011, pp. 529–534.

[29] Y. LeCun, C. Cortes, C.J. Burges, The MNIST database of handwritten digits, 1998.
[30] A. Krizhevsky, G. Hinton, Learning multiple layers of features from tiny images,

2009.
[31] S. Wu, M. Kan, Z. He, S. Shan, X. Chen, Funnel-structured cascade for multi-view

face detection with alignment-awareness, Neurocomputing 221 (2017) 138–145.
[32] B. Graham, Fractional max-pooling, 2014. arXiv preprint arXiv:1412.6071.
[33] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to

document recognition, Proc. IEEE 86 (11) (1998) 2278–2324.
[34] Y. Jia, An open source convolutional architecture for fast feature em- bedding, 2013.
[35] Y. Wen, K. Zhang, Z. Li, Y. Qiao, A discriminative feature learning approach for

deep face recognition, in: European Conference on Computer Vision, Springer, 2016,
pp. 499–515.

198

http://refhub.elsevier.com/S0923-5965(17)30171-6/sb1
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb1
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb1
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb1
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb1
http://arxiv.org/1411.7923
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb7
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb7
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb7
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb7
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb7
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb10
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb10
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb10
http://arxiv.org/1409.1556
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb12
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb12
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb12
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb12
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb12
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb13
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb13
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb13
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb14
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb14
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb14
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb15
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb15
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb15
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb15
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb15
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb16
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb16
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb16
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb16
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb16
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb16
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb16
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb18
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb18
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb18
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb18
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb18
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb19
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb19
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb19
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb19
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb19
http://arxiv.org/1505.00387
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb21
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb21
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb21
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb22
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb22
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb22
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb23
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb23
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb23
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb25
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb25
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb25
http://arxiv.org/1605.07146
http://arxiv.org/1605.07146
http://arxiv.org/1605.07146
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb27
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb27
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb27
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb27
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb27
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb28
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb28
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb28
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb28
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb28
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb31
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb31
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb31
http://arxiv.org/1412.6071
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb33
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb33
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb33
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb35
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb35
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb35
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb35
http://refhub.elsevier.com/S0923-5965(17)30171-6/sb35

	Convolutional neural network with nonlinear competitive units
	Introduction
	Nonlinear competitive unit
	Residual block
	Nonlinear competitive unit

	Experiments
	Datasets
	Face verification
	Implementation details
	Test on LFW and YTF 

	Visual classification
	Implementation details
	Test on MNIST and CIFAR-10


	Conclusion
	References


