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A B S T R A C T

Representation learning for dynamic networks is designed to learn the low-dimensional embeddings of nodes
that can well preserve the snapshot structure, properties and temporal evolution of dynamic networks.
However, current dynamic network representation learning methods tend to focus on estimating or generating
observed snapshot structures, paying excessive attention to network details, and disregarding distinctions
between snapshots with larger time intervals, resulting in less robustness for sparse or noisy networks. To
alleviate these challenges, this paper proposes a contrastive mechanism for temporal representation learning
on dynamic networks, inspired by the success of contrastive learning in visual and static network representation
learning. This paper proposes a novel Dynamic Network Contrastive representation Learning (DNCL) model.
Specifically, contrast objective functions are constructed using intra-snapshot and inter-snapshot contrasts to
capture the network topology, node feature information, and network evolution information, respectively.
Rather than estimating or generating ground-truth network features, the proposed approach maximizes mutual
information between nodes from different time steps and views generated. The experimental results of link
prediction, node classification, and clustering on several real-world and synthetic networks demonstrate the
superiority of DNCL over state-of-the-art methods, indicating the effectiveness of the proposed approach for
dynamic network representation learning.
1. Introduction

Real-world complex systems such as social networks (Huang, Shang,
Lin, Fu, & Wang, 2018), co-authorship networks (Gehrke, Ginsparg, &
Kleinberg, 2003), and protein-protein interaction networks
(Theocharidis, Van Dongen, Enright, & Freeman, 2009) can be ren-
dered into networks where the representation of individual entities
occurs as nodes and interactions between nodes signify links. These
networks display dynamic characteristics — both their structure (topol-
ogy) and attributes of nodes demonstrate mutations over time (Jiao
et al., 2021). For example, in social networks, events of communication
like emails and texts transpire recurrently, whilst friendships transition.
Co-authorship networks mirror a similar dynamism, as changes happen
in the patterns of collaboration periodically among authors. Thus, the
investigation of dynamic networks becomes critical to comprehend the
evolution process of complex systems.

There is a pertinent need to efficiently represent dynamic networks
in a manner that captures the structural and evolutionary information
at hand. Network representation learning, which uses its topology and
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node attributes to map a network onto a low-dimensioned Euclidean
space, is a prevalent technique. This mapping allows for the usage
of machine learning methods in network analysis. It has proven to
be successful across various applications in the real world, such as in
node/edge classification and predictive modeling for links. While static
networks have seen significant advancements in representation learn-
ing (Grover & Leskovec, 2016; Kipf & Welling, 2016, 2017a; Perozzi,
Al-Rfou, & Skiena, 2014; Tang et al., 2015), dynamic networks present
a unique set of challenges due to their complexity and continuously
shifting nature. These challenges encompass nodes that join or leave,
links that appear or disintegrate, and communities that merge or divide.
All of these demand the creation of effective algorithms aimed at the
representation learning of dynamic networks (see Fig. 1).

In order to address the aforementioned challenges, an array of
dynamic network representation learning methodologies have been
proposed (Chen, Jiao, Tang, & Wu, 2023; Goyal, Chhetri, & Canedo,
2020; Goyal, Kamra, He, & Liu, 2018; Han et al., 2021; Jiao, Li, et al.,
2022; Zhou, Yang, Ren, Wu, & Zhuang, 2018) in recent times. These
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Fig. 1. An illustration of a dynamic network.

approaches intend to utilize the temporal information in processes that
vary with time. As illustrated in Fig. Fig. 1, a dynamic network can
be depicted as a sequence of network snapshots

{

𝐺𝑡
}𝑇
𝑡=1, where each

snapshot 𝐺𝑡 represents the state of the network at a particular point
in time. The objective of dynamic network representation learning
is the estimation or generation of the present network snapshot 𝐺𝑇 ,
based on the snapshots available

{

𝐺𝑡
}𝑇−1
𝑡=1 . Existing dynamic network

representation methods which capture the evolving characteristics of
dynamic networks can be broadly divided into two primary categories:
random walk-based methods (Du, Wang, Song, Lu, & Wang, 2018; Qiu
et al., 2020; Wang, Chang, Liu, Leskovec, & Li, 2021) and Graph Neural
Network (GNN)-based methods (Manessi, Rozza, & Manzo, 2020; Pareja
et al., 2020; Sankar, Wu, Gou, Zhang, & Yang, 2020). Random walk-
based methodologies generate node embeddings by sampling random
walks in a sequential manner, and then use the normalized inner
products of corresponding node embeddings to model transition proba-
bilities. On the other hand, GNN-based methods employ GNN to encode
topological or attribute information and Recurrent Neural Network
(RNN) or Transformer networks to capture temporal patterns.

Despite these methods achieving success with dynamic networks,
a majority concentrate on the local topology or attribute characteris-
tics and learn network embedding following the time sequence. This
scenario poses two significant challenges to dynamic network rep-
resentation learning. (i) The local topology, attribute, and temporal
characteristics become less significant as the scale of the network
grows, and the estimated or generative objective function of existing
techniques tends to rely overly on these local characteristics. Overre-
liance on local characteristics could lead to representation models that
are non-robust. (ii) Techniques that consider

{

𝐺𝑡
}𝑇
𝑡=1 as a sequence

and process
{

𝐺𝑡
}𝑇
𝑡=1 sequentially could result in the accumulation

of errors. Furthermore, most methods only take into account the
difference between adjacent snapshots, ignoring the distinction be-
tween snapshots with larger time intervals, and therefore leading to
information loss in modeling the network evolutionary process. To
overcome these challenges, a proposed solution is the employment
of contrastive learning to obtain network representations in dynamic
networks. Contrastive Learning (CL) (Chen, Kornblith, Norouzi, & Hin-
ton, 2020; He, Fan, Wu, Xie, & Girshick, 2020; van den Oord, Li, &
Vinyals, 2018) has risen as an effective approach for representation
learning, particularly in computer vision (Chen et al., 2020). Previous
work has successfully applied contrastive learning to static network
representation learning, where the purpose is to maximize Mutual
Information (MI) between nodes and the network (Hassani & Ahmadi,
2020; Velickovic et al., 2019) or between node representations (Peng
et al., 2020). This strategy aids in retaining macro-level network in-
formation, lessening the dependency on local topology or attributes
and reducing non-robustness as the network scale expands. In addition,
developing effective contrast strategies between nonadjacent snapshots
can help mitigate error accumulation over time. Nonetheless, extending
contrastive learning to dynamic networks remains a challenge due
to the necessity for an appropriate contrastive strategy that takes
into account network structure, attributes, and temporal evolution.
The static network contrastive representation learning methods have
2

achieved state-of-the-art results in node and network classification
tasks, making the extension to dynamic networks a compelling subject.
The contrastive strategy needs an effective capturing of the network’s
temporal evolution along with its structure and attributes.

To capture both the network characteristics and network evolution
characteristics, we propose a novel Dynamic Network Contrastive rep-
resentation Learning (DNCL) model that comprises an inter-snapshots
view and an intra-snapshots contrastive view. The intra-snapshots
contrastive view allows DNCL-learned representations to retain the
topological and attribute characteristics of each snapshot within the
dynamic network, while the inter-snapshots view facilitates DNCL-
learned representations to maintain the temporal characteristics span-
ning across various snapshots during network evolution, in addition to
capturing non-sequential characteristics. More specifically, the DNCL
model initiates by producing two correlated views of the dynamic
network through the application of stochastic corruption onto the input
snapshot sequence. The model is then trained using a joint contrastive
loss, with the aim of maximizing agreement among node embeddings
within the same views across different snapshots (inter-snapshot), as
well as between the two views of the same snapshot (intra-snapshot).
Consequently, the DNCL model learns representations that proficiently
capture both the local characteristics within snapshots and the temporal
patterns across snapshots. Extensive experiments conducted on real-
world datasets evaluate the efficacy of the proposed DNCL model. The
outcomes demonstrate superiority of our model over existing state-
of-the-art models in three commonly executed tasks, which include
link prediction, node classification, and node clustering. These results
underscore the effectiveness of the DNCL model in learning compre-
hensive representations for dynamic networks, amplifying its potential
to augment various network analysis tasks.

The main contributions of this paper are as follows:

• We propose a novel approach to dynamic network represen-
tation learning by applying contrastive learning. Our proposed
Dynamic Network Contrastive representation Learning (DNCL)
model effectively contains the temporal and topological attributes
of dynamic networks, providing a promising trajectory for the
accuracy enhancement in network analysis tasks.

• We introduce a dynamic contrastive aim that encapsulates the
topology, attributes, and temporal characteristics of dynamic net-
works. This objective comprises both inter-snapshot contrast and
intra-snapshot contrast, serving as vital components in our DNCL
model. Our proposed method empowers effective representation
learning in dynamic networks, augmenting their analysis prowess.

• We conduct comprehensive experiments on tasks such as link
prediction, node classification, and clustering to evaluate the
performance of our DNCL model. The outcomes validate our ap-
proach’s effectiveness in dynamic network representation learn-
ing by outperforming state-of-the-art methods in these tasks.

The remainder of the paper is delineated as follows. Section 2
offers an extensive review of pertinent literature and historic work in
the field. Section 4 explicates our proposed DNCL model for dynamic
network representation learning in a detailed manner. The experimen-
tal setup, evaluation metrics, utilized datasets, and the performance
comparison of our model with baselines are presented in Sections 5
and 6. Lastly, Section 7 concludes the paper, summarizing vital findings
and contributions, and simultaneously discussing potential avenues for
future research.

2. Related work

2.1. Dynamic network representation learning

Networks in practical applications, such as social networks and
transportation networks, often evolve continuously, exhibiting dynamic
behaviors. Traditional static network representation learning method-

ologies (Hamilton, Ying, & Leskovec, 2017; Jiao, Guo, et al., 2022;
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Jiao et al., 2023; Kipf & Welling, 2017b; Veličković et al., 2018) have
overlooked this evolution, resulting in their ineffectiveness on dynamic
networks. To address this issue, dynamic network representation learn-
ing has gained considerable attention, leading to the proposal of various
dynamic network representation learning methodologies (Kazemi et al.,
2020; Liu, Huang, Yu, & Dong, 2021; Ma, Guo, Ren, Tang, & Yin, 2020).

The primary aim of most dynamic network representation learn-
ing methodologies is to approximate or generate observed network
characteristics. For instance, NetWalk (Yu et al., 2018) implements a
specialized autoencoder model to learn vector representations for nodes
in a dynamic network. It aspires to reduce the pairwise distance among
nodes in each random walk, efficaciously capturing the structural infor-
mation of the network. Furthermore, it integrates a dynamic clustering
algorithm to detect network deviations. VGRNN (Hajiramezanali et al.,
2019) maps each node in the network to a random vector in the
latent space, representing an efficient dynamic network representation
learning method that superiorly captures the potential variabilities
in dynamic networks. Using generative adversarial networks (GAN)
and recurrent networks, DynGAN (Maheshwari, Goyal, Hanawal, &
Ramakrishnan, 2019) is capable of capturing both the temporal and
structural information of dynamic networks. Employing GANs, it is ca-
pable of generating realistic dynamic network snapshots that preserve
crucial network characteristics. DySAT (Sankar et al., 2020) generates
dynamic node representations by applying joint self-attention mecha-
nisms that operate on two dimensions: structural neighborhoods and
temporal dynamics. It uses multiple attention heads in both structural
and temporal attention layers to enable joint attention across different
latent subspaces, thereby capturing variations in network structure.
EvolveGCN (Pareja et al., 2020) employs RNN to enact temporal evo-
lution of the graph model, embodying a model-focused adaptation
strategy, diverging from conventional node-centric methodologies, and
introducing greater versatility in input assimilation. The HNIP em-
bedding model (Qiu et al., 2020) integrates a time exponential decay
model to estimate the temporal proximity between nodes, exploring
network historical information; it aspires to preserve high-order nonlin-
ear information in dynamic networks. DGCN (Gao, Zhu, Zhang, Wang,
& Li, 2022) uses RNN for the temporal adaptation of GCN’s weight
parameters, thereby effectively capturing global structural information
across the dynamic graph’s time steps. To counteract the reduced
influence of directed neighbors, Dice similarity is invoked, offering
a robust solution. HyperDNE (Huang et al., 2023) employs a dual-
output sequential hypergraph, enabling the exploration of nodes and
edges’ collective characteristics and with a line graph neural network,
assisting in the consolidation of social influence arising from social
convergence degrees. Moreover, Pham et al. (2022) and Chen et al.
(2021) introduce a method specifically tailored for link prediction,
accounting for local structures in dynamic networks.

2.2. Contrastive learning on static network

Drawing inspiration from CL methods employed in image represen-
tation learning, certain CL methods for static network representation
learning have been proposed (You et al., 2020; Zhu et al., 2021a). Deep
Graph InfoMax (DGI) (Velickovic et al., 2019) fuses the potency of GNN
with InfoMax-centric methods. It enhances the network by rearranging
the nodes’ features, thereby formulating a specific contrastive-based
objective to amplify the mutual information (MI) between the node
embeddings and a global summary embedding. Diverging from the uti-
lization of the readout or corruption function to augment the network
explicitly, GMI (Peng et al., 2020) extends DGI via the introduction of
two contrastive objectives. These directly assess the MI between inputs
and their respective representational nodes and edges. MVGRL (Hassani
& Ahmadi, 2020), on the other hand, proficiently retains the global
information of the input network by propagating the adjacency matrix
from the original network. It constructs network views via uniformly
3

Table 1
The qualitative comparison of the current literature.

Method Data type of graph Contrastive objective Task level

DGI Static Node–global Node
MVGRL Static Node–global Node/Graph
GCA Static Node–node Node
VGRNN Dynamic – Node/Link
DySAT Dynamic – Node/Link
E-GCN Dynamic – Node/Link
HNIP Dynamic – Node/Link
DGCN Dynamic – Node/Link
HyperDNE Dynamic – Node/Link
DNCL Dynamic Node–node Node/Link

sampling subgraphs and learns both node and graph-level represen-
tations by contrasting node representations with augmented network
summary representations. Both DGI and MVGRL augment the original
network in a fixed pattern, which might not be efficient when the
attributes or the topology of nodes in the network are sparse. To
overcome this, GCA (Zhu et al., 2021b) creates two network views
through an adaptive network augmentation based on topology and
attribute information, using contrastive-based loss to maximize the MI
of node embeddings learned from the two augmented views.

Table 1 identifies and juxtaposes crucial elements of related works
with our DNCL model, including the data type of the graph, contrastive
objective, and task-level properties. While some studies have explored
the potential of contrastive learning for graphs, the majority concen-
trate on static graphs. Contrarily, our proposed method alleviates the
challenges by implementing an intra-snapshots contrastive view and
an inter-snapshots view. The former preserves the topological and
attribute characteristics of each snapshot of the dynamic network, and
the latter retains the temporal characteristics across snapshots during
network evolution, also capturing non-sequence characteristics.

3. Preliminaries

In this segment, we furnish the formal characterization of the dy-
namic network and dynamic network representation learning. A sum-
marization of major notations impacting this paper is enclosed in
Supplementary Materials (Appendix. A).

3.1. Problem definition

A dynamic network is described as a network wherein the intercon-
nections between nodes are not static, rather they evolve with time.
It is predominantly demonstrated as a sequence of network snapshots
procured at regular time intervals. In the scope of this study, we per-
ceive any alterations in the network as changes in the edges, inclusive
of scenarios when nodes are annexed or eliminated. Specifically, when
nodes are freshly inducted or discarded, we regard them as isolated
nodes void of interactions with other nodes. Consequently, for the
entirety of this paper, we operate under the assumption of a consistent
node quantity across all network snapshots.

Definition 1 (Dynamic Network). A dynamic network, denoted as ,
can be represented as a sequence of network snapshots:  = ( , ) =
{𝐺1, 𝐺2,… , 𝐺𝑇 }. Here, 𝐺𝑡 = ( , 𝐸𝑡) represents the network snapshot at
time step 𝑡 of , where 𝑡 ranges from 1 to 𝑇 . The set of all nodes in  is
enoted as  = {𝑣1, 𝑣2,… , 𝑣𝑁}, where 𝑁 represents the total number

of nodes. The set of all links in  is given by  =
⋃𝑇

𝑡=1 𝐸
𝑡, where 𝐸𝑡

represents the set of links at time step 𝑡.
The adjacency matrix of 𝐺𝑡 is represented by 𝐀𝑡, where each element

𝑎𝑡𝑖,𝑗 represents the presence or absence of a link between nodes 𝑣𝑖 and
𝑣𝑗 at time 𝑡. If a link exists, then 𝑎𝑡𝑖,𝑗 = 𝑎𝑡𝑗,𝑖 = 1, otherwise 𝑎𝑡𝑖,𝑗 = 𝑎𝑡𝑗,𝑖 = 0.
n addition, when considering node attributes, the attribute matrix of
𝑡 is denoted by 𝐗𝑡, which is an 𝑁 × 𝑀 matrix, with 𝑁 representing
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Fig. 2. An overview of our proposed DNCL model. We first create two dynamic network views by augmenting the network structure and node attributes. Then, both views are
input into a shared Graph Neural Network (GNN) encoder, which learns representations of the nodes. The model is trained using contrastive objectives, including the inter-snapshot
contrast of node representations within the same views of different snapshots (red arrows) and the intra-snapshot contrast of node representations between two views of the same
snapshots (blue arrows).
the number of nodes and 𝑀 representing the dimension of the node
attributes. It is important to note that the value of 𝑀 is constant across
time.

Definition 2 (Dynamic Network Representation Learning). Given a dy-
namic network  = ( , ) with the corresponding adjacency matrix
sequence  =

{

𝐀1,𝐀2,… ,𝐀𝑇 } and attribute matrix sequence  =
{

𝐗1,𝐗2,… ,𝐗𝑇 }, the purpose of dynamic network representation learn-
ing is to learn a mapping function 𝑓 (,) ∈ R𝑁×𝑑 , which receives the
graph structure sequence and feature sequence as input, and generates
node embedding in low dimensionality, where 𝑑 is the embedding
dimension. Let 𝐇 = 𝑓 (,) denote the learned representations of
nodes, where 𝐡𝑖 is the embedding of node 𝑣𝑖.

4. Methodology

4.1. Dynamic contrastive learning model

The proposed DNCL model follows the common graph contrastive
learning paradigm and seeks to maximize the agreement of represen-
tations between different views (Hassani & Ahmadi, 2020; Zhu et al.,
2021b). As shown in Fig. 2, unlike static networks, which only produce
different views for a single network, we augment the dynamic network
sequence to produce two different view snapshot sequences. Then, we
adopt a GNN encoder to obtain the embeddings of the two dynamic net-
work views, respectively. After that, we employ a contrastive objective
to achieve the following three purposes:

1. Enforce the encoded embedding of each node in the same view
but different snapshots (inter-snapshot) to agree with each other
to maintain the local topology characteristics during the network
evolution, and the correlation not limited to adjacent snapshots;

2. Enforce the encoded embedding of each node in the different
views but the same snapshot (intra-snapshot) to agree with each
other to maintain the local topology characteristics at the same
time;

3. Ensure that the encoded embedding of each node is distinct from
the embeddings of other nodes in different views and snapshots,
allowing for discrimination between nodes and preserving the
unique characteristics of each view and snapshot.

In our temporal multi-view network, each node 𝑣𝑖 has an embedding
𝐡𝑗𝑖;1 in view 1 at snapshot 𝑗 that serves as the anchor. The embedding 𝐡𝑗𝑖;2
of the same node in view 2 at snapshot 𝑗 serves as the positive sample,
4

while the embeddings of other nodes in both views are considered
negative samples. To model the temporal relationships between the two
views, we adopt the InfoNCE objective from van den Oord et al. (2018)
and define an intra-snapshot pairwise objective for each positive pair.
It can be defined as follows:

𝓁(𝐡𝑗𝑖;1,𝐡
𝑗
𝑖;2) =

− log e𝜃
(

𝐡𝑗𝑖;1 ,𝐡
𝑗
𝑖;2

)

∕𝜏

e𝜃
(

𝐡𝑗𝑖;1 ,𝐡
𝑗
𝑖;2

)

∕𝜏

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
positive pair

+
∑

𝑞≠𝑖

[

e𝜃
(

𝐡𝑗𝑖;1 ,𝐡
𝑗
𝑞;2

)

∕𝜏 + e𝜃
(

𝐡𝑗𝑖;1 ,𝐡
𝑗
𝑞;1

)

∕𝜏
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
negative pairs

, (1)

where 𝜏 is a temperature hyper-parameter. We define the critic function
𝜃(𝐡1,𝐡2) = 𝑠(𝑔(𝐡1), 𝑔(𝐡2)), where 𝑠(⋅, ⋅) is the L2 normalized dot product
similarity and 𝑔(⋅) is a nonlinear projection to strengthen the expressive
power of the critic function. In DNCL, the projection function 𝑔(⋅) is
implemented with a two-layer perception model.

Considering the information shared between snapshots at different
time steps may decrease as the time interval in the dynamic network
increases, we further add an exponential decay function in our contrast
objective to simulate the quantity of information sharing decays. Sim-
ilarly, for any given node 𝑣𝑖, we consider its embedding 𝐡𝑗𝑖;1, which is
generated in one particular view at snapshot 𝑗, as the anchor. Here, 𝑗
ranges from 1 to 𝑇 −1. The embedding 𝐡𝑘𝑖;1 of the same node generated
at a subsequent snapshot 𝑘 within the same view, with 𝑘 ranging from
𝑗 + 1 to 𝑇 , serves as the positive sample. On the other hand, the
embeddings of the remaining nodes are treated as negative samples.
This way, we can establish the inter-snapshot pairwise objective for
each positive pair, which can be defined as follows:

𝓁(𝐡𝑗𝑖;1,𝐡
𝑘
𝑖;1) =

− log e(1−|𝑘−𝑗|𝛾) ⋅ e𝜃
(

𝐡𝑗𝑖;1 ,𝐡
𝑘
𝑖;1

)

∕𝜏

e𝜃
(

𝐡𝑗𝑖;1 ,𝐡
𝑘
𝑖;1

)

∕𝜏 +
∑

𝑞≠𝑖

[

e𝜃
(

𝐡𝑗𝑖;1 ,𝐡
𝑘
𝑞;1

)

∕𝜏 + e𝜃
(

𝐡𝑗𝑖;1 ,𝐡
𝑗
𝑞;1

)

∕𝜏
]
, (2)

where 𝛾 is the temporal decay constant.
When the embeddings of nodes in two different views are used as

anchors, 𝓁
(

𝐡𝑖;1,𝐡𝑖;2
)

and 𝓁
(

𝐡𝑖;2,𝐡𝑖;1
)

are defined similarly since two
views are symmetrical. The contrastive objective to be maximized is
defined as the average over all positive pairs. Therefore, the intra-
snapshot loss of the same snapshot between two views can be formally
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defined as:

𝑖𝑛𝑡𝑟𝑎 =
𝑇
∑

𝑗=1

1
2𝑁

𝑁
∑

𝑖=1

[

𝓁
(

𝐡𝑗𝑖;1,𝐡
𝑗
𝑖;2

)

+ 𝓁
(

𝐡𝑗𝑖;2,𝐡
𝑗
𝑖;1

)]

. (3)

he inter-snapshot loss of the same view but different snapshots can be
ormally defined as:

𝑖𝑛𝑡𝑒𝑟 =
𝑇−1
∑

𝑗=1

𝑇
∑

𝑘=𝑗+1

1
2𝑁

𝑁
∑

𝑖=1

[

𝓁
(

𝐡𝑗𝑖;1,𝐡
𝑘
𝑖;2
)

+ 𝓁
(

𝐡𝑘𝑖;2,𝐡
𝑗
𝑖;1
)

]

. (4)

Therefore, the overall dynamic network contrastive loss is defined
s:

= 𝛼 ⋅
(

𝑖𝑛𝑡𝑒𝑟 +  ′
𝑖𝑛𝑡𝑒𝑟

)

+ 𝛽𝑖𝑛𝑡𝑟𝑎, (5)

here 𝛼 and 𝛽 are trade-off parameters used to balance the losses
f inter-view and intra-view.  inter and  inter′ represent the inter-
napshot loss in two views, respectively. Without loss of generality, we
et 𝛼 = 0.5 and 𝛽 = 1 in our experiments.

.2. Dynamic network augmentation

Visual representation learning has demonstrated that contrasting
onsistent and inconsistent views of images enhances encoder repre-
entations (Bachman, Hjelm, & Buchwalter, 2019). However, defining
iews on networks is a nontrivial task as networks lack standard
ugmentation methods, such as image cropping, rotation, and color
istortion. Consequently, we consider two common augmentation ap-
roaches for networks: (1) structure-based augmentations that operate
n network structure by removing edges, and (2) attribute-based aug-
entations that modify initial node attributes, such as masking or

dding Gaussian noise. We create two distinct views of the snapshot
equence by augmenting the network snapshot sequence, which are
enoted as ̃1 = 𝑝1() and ̃2 = 𝑝2(). Specifically, to generate aug-
ented views of the dynamic network in each snapshot, we randomly

emove edges and mask node features. Higher probabilities are assigned
o unimportant edges or features, while lower probabilities are given
o important ones, as proposed in Zhu et al. (2021b). For the sake of
odel robustness, we use the same probability to remove edges or mask

ttributes.
To randomly remove edges in the original network snapshot, we

efine a masking matrix �̃� ∈ {0, 1}𝑁×𝑁 . Each entry of the matrix is
rawn from a Bernoulli distribution �̃�𝑖𝑗 ∼ 

(

1 − 𝑝𝑟
)

, where 𝑝𝑟 is the
robability of removing each edge. Given an input dynamic network
with its corresponding adjacency matrix sequence

{

𝐀1,𝐀2,… ,𝐀𝑇 },
e compute the resulting adjacency matrix �̃�𝑡 for time-step 𝑡 as the
adamard product of 𝐀𝑡 and �̃�, 𝑖.𝑒., �̃�𝑡 = 𝐀𝑡◦�̃�.

Furthermore, to mask node features with zeros, we use the vector
�̃� ∈ {0, 1}𝑀 . Each dimension of the vector is drawn independently from
a Bernoulli distribution with probability 1 − 𝑝𝑚, 𝑖.𝑒., �̃�𝑖 ∼ 

(

1 − 𝑝𝑚
)

.
Given an input dynamic network  with its corresponding attribute
matrix sequence

{

𝐗1,𝐗2,… ,𝐗𝑇 }, we compute the generated masked
features �̃�𝑡 of 𝐗𝑡 as the vertically concatenated matrix of element-wise
products between each node feature vector 𝐱𝑡𝑖 and the masking vector
�̃�, which is calculated by:

�̃�𝑡 =
[

𝐱𝑡1◦�̃�; 𝐱𝑡2◦�̃�;⋯ ; 𝐱𝑡𝑁◦�̃�
]⊤ , (6)

where [⋅; ⋅] is the concatenation operator.
Our model produces two distinct views of the dynamic network

 by simultaneously employing two methods. The generation of ̃1
and ̃2 is controlled by two hyperparameters, namely 𝑝𝑟 and 𝑝𝑚. To
ensure diversity in the generated contexts for the two views, we use two
separate sets of hyperparameters, denoted by {𝑝𝑟,1, 𝑝𝑚,1} and {𝑝𝑟,2, 𝑝𝑚,2}
5

for the augmentation process.
4.3. The GNN encoder

To extract the topology and temporal information of the dynamic
network in two different views, we adopt a GNN encoder after corrupt-
ing the input snapshot sequence. The GNN encoder of DNCL consists of
two parts: a structure layer and a temporal layer. The structure layer
captures the nonlinear spatial or attribute features from the network
snapshot at each time step, while the temporal layer captures the non-
linear temporal characteristics and evolving patterns. For the structure
layer, we use a two-layer Graph Convolutional Network (GCN) (Kipf &
Welling, 2017a), and for the temporal layer, we use a Gated Recurrent
Unit (GRU) (Cho et al., 2014).

4.3.1. GCN-based structure layer
The GCN-based structure layer takes the feature matrix 𝐗 as input

and uses a localized first-order approximation to perform the spectral
graph convolution operation based on the adjacency matrix 𝐀. For-
mally, we define the operation of our GCN unit for snapshot 𝑡 of the
dynamic network as:

𝐙𝑡 = GCN
(

𝐗𝑡,𝐀𝑡) = 𝑓
(

�̂�− 1
2 �̂��̂�− 1

2 𝐗𝑡𝐖𝜇

)

, (7)

where 𝐗𝑡 and 𝐀𝑡 are the attribute matrix and adjacency matrix of the
network snapshot at time step 𝑡 respectively. In the case of a network
without node attributes, the matrix 𝐗𝑡 is an identity matrix 𝐈. The
matrix �̂� is defined as 𝐀𝑡 + 𝐈, where 𝐈 ∈ R𝑁×𝑁 and 𝐀𝑡 ∈ R𝑁×𝑁 . The
matrix �̂� represents the diagonal node degree matrix of �̂�. The ex-
pression �̂�− 1

2 �̂��̂�− 1
2 denotes the approximated graph convolution filter.

The weight matrix is denoted as 𝐖𝜇 . The nonlinear activation function
ReLU is represented as 𝑓 (⋅). The output representation obtained by the
GCN layer is denoted as 𝐙𝑡, where 𝐙𝑡 ∈ R𝑁×𝑑 and 𝑑 is the embedding
imension. When the input consists of the adjacency matrix sequence
𝐀1,𝐀2,… ,𝐀𝑇 } and attribute matrix sequence

{

𝐗1,𝐗2,… ,𝐗𝑇 }, the
output is obtained as

{

𝐙1,𝐙2,… ,𝐙𝑇 } through the GCN layer.

4.3.2. GRU-based temporal layer
As a type of RNN, the GRU is capable of handling long-term de-

pendencies in sequence modeling problems. We use it to capture the
temporal dependencies between different snapshots of dynamic net-
works. In the GRU layer, we take

{

𝑧1𝑖 , 𝑧
2
𝑖 ,… , 𝑧𝑇𝑖

}

as input, where 𝑧𝑡𝑖
indicates the 𝑖th row of the 𝑡th snapshot embedding matrix 𝐙𝑡. We
input the hidden state representation of a single GRU layer to merge
the information of the former continuous 𝑇 snapshots in the final
embedding ℎ𝑇𝑖 . At time step 𝑡, the GRU computes the new hidden state
as follows:

𝑐𝑡𝑖 = 𝜎
(

𝑧𝑡𝑖𝐔𝑐 + ℎ𝑡−1𝑖 𝐖𝑐 + 𝑏𝑐
)

, (8)

𝑟𝑡𝑖 = 𝜎
(

𝑧𝑡𝑖𝐔𝑟 + ℎ𝑡−1𝑖 𝐖𝑟 + 𝑏𝑟
)

, (9)

ℎ𝑡𝑖 = 𝜙
(

𝑧𝑡𝑖𝐔ℎ +
(

ℎ𝑡−1𝑖 ◦𝑟𝑡𝑖
)

𝐖ℎ + 𝑏ℎ
)

, (10)

ℎ𝑡𝑖 =
(

1 − 𝑐𝑡𝑖
)

◦ℎ𝑡−1𝑖 + 𝑐𝑡𝑖◦ℎ̃
𝑡
𝑖, (11)

where 𝑧𝑡𝑖 is the input of GRU layer at time step 𝑡; 𝑐𝑡𝑖 stands for the update
gate, which determines how much past information is kept and how
much new information is added; 𝑟𝑡𝑖 stands for the reset gate, which
is used to determine how much past information to forget; ℎ̃𝑡𝑖 is the
andidate hidden state that uses the reset gate 𝑟𝑡𝑖 to store the relevant
nformation from the past; 𝐔𝑐 , 𝐖𝑐 , 𝐔𝑟, 𝐖𝑟, 𝐔ℎ, 𝐖ℎ represent the weight
atrices and 𝑏𝑐 , 𝑏𝑟 represent the biases; 𝜎 is a sigmoid function and
is a hyperbolic tangent function. The whole input of GRU layer is
𝐙1,𝐙2,… ,𝐙𝑇 }, and the output is 𝐇𝑇 ∈ R𝑁×𝑑 .

The detailed training algorithm is summarized in Supplemental

Materials (Appendix. B).
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4.4. Complexity analysis

Assuming that all input and hidden features hold a dimension of
𝑑, 𝑇 symbolizes the length of the network snapshot sequence, and 𝑁
epresents the total number of nodes, the time complexity of DNCL
an be analyzed accordingly. The DNCL model incorporates several
CN and GRU modules, where each GCN module entails matrix mul-

iplication and activation functions, resulting in a time complexity of
(𝑇𝑁2𝑑 +𝑁𝑑). In a similar vein, the GRU module involves linear and
onlinear transformations, along with cyclic calculations, yielding a
ime complexity of (3𝑇 (𝑁𝑑2 + 𝑁𝑑)). Consequently, the overall time
omplexity of DNCL is determined as follows:

(𝑇 (𝑁2𝑑 +𝑁𝑑) + 3𝑇 (𝑁𝑑2 +𝑁𝑑)). (12)

hough the DNCL model employs mutual information, manages to
ut down computational time through effective sampling strategies,
nd its primary overhead is attributed to the GCN and LSTM compo-
ents. In contrast, both GCA and DGCN depict different computational
verheads. GCA, being an adaptive contrast representation learning
pproach for static graph scenarios, leverages a priori knowledge to
pur graph generation, yielding two views for concurrent operations.
his does not substantially inflate its time overhead, which is primar-

ly committed to the GCN operations, with a complexity of (𝑁2𝑑).
GCN, unlike GCA, computes Dice similarities across all nodes, and via
CN, the complexity is depicted as (𝑇 (𝑁2𝐶 log𝐶 +𝑁2𝑑)), wherein C

ymbolizes the average degree of a node. Consequently, DNCL displays
uperior experimental results compared to similar methods, without
amping up its computational time.

The model complexity bears a linear proportion with the network
ize and relies on the model structure. Therefore, when the network size
𝑁) undergoes a substantial escalation, the complexity of the model
oes not rise proportionally. Whilst DNCL encapsulates a significant
umber of parameters, it can accomplish a test within seconds thanks
o GPU acceleration.

.5. Theorem and proof

We give theoretical justification behind DNCL from two aspects,
.𝑒., MI maximization and the defined loss.

heorem 1. For two random variables 𝐇1,𝐇2 ∈ R𝑑 being the embedding
f one snapshot in the two views or two snapshots in one view, with their
oint distribution denoted as 𝑝(𝐇1,𝐇2), our objective  is a lower bound of
I between encoder input 𝐗 and node representations in two network views
r two network snapshots 𝐇1,𝐇2. Formally,

≤ 𝐼(𝐗;𝐇1,𝐇2). (13)

roof. We first demonstrate the connection between  and the In-
oNCE objective (van den Oord et al., 2018), which is defined as:

NCE(𝐇1;𝐇2) ≜ (14)

E𝛱𝑖𝑝(𝐡𝑖;1 ,𝐡𝑖;2)
⎡

⎢

⎢

⎣

1
𝑁

𝑁
∑

𝑖=1
log e𝜃(𝐡𝑖;1 ,𝐡𝑖;2)

1
𝑁

∑𝑁
𝑗=1 e

𝜃
(

𝐡𝑖;1 ,𝐡𝑗;2
)

⎤

⎥

⎥

⎦

,

where 𝜃(𝐱, 𝐲) = 𝑠(𝑔(𝐱), 𝑔(𝐲)). We further define 𝜌𝑟
(

𝐡𝑖;1
)

=
∑𝑁

𝑗≠𝑖 e
𝜃
(

𝐡𝑖;1 ,𝐡𝑗;1
)

∕𝜏 and 𝜌𝑐
(

𝐡𝑖;1
)

=
∑𝑁

𝑗=1 e
𝜃
(

𝐡𝑖;1 ,𝐡𝑗;2
)

∕𝜏 for convenience of
notation. 𝜌𝑟

(

𝐡𝑖;2
)

and 𝜌𝑐
(

𝐡𝑖;2
)

can be defined similarly. Then, the
objective  could be rewritten as follows:

 = E𝛱𝑖𝑝(𝐡𝑖;1 ,𝐡𝑖;2)

[

1
𝑁

𝑁
∑

𝑖=1
log e𝜃(𝐡𝑖;1 ,𝐡𝑖;2)∕𝜏

√

𝜌𝑐
(

𝐡𝑖;1
)

+ 𝜌𝑟
(

𝐡𝑖;1
)

⋅
1

√

𝜌𝑐
(

𝐡𝑖;2
)

+ 𝜌𝑟
(

𝐡𝑖;2
)

]

.

6

Replacing by the notation of 𝜌𝑐 , the InfoNCE estimator 𝐼NCE can be
written as follows:

𝐼NCE(𝐇1,𝐇2) = E𝛱𝑖𝑝(𝐡𝑖;1 ,𝐡𝑖;2)

[

1
𝑁

𝑁
∑

𝑖=1
log e𝜃(𝐡𝑖;1 ,𝐡𝑖;2)∕𝜏

𝜌𝑐
(

𝐡𝑖;1
)

]

.

herefore, we obtain

 = 𝐼NCE(𝐇1,𝐇2) − E𝛱𝑖𝑝(𝐡𝑖;1 ,𝐡𝑖;2)

[

1
𝑁

𝑁
∑

𝑖=1
log

(

1 +
𝜌𝑟

(

𝐡𝑖;1
)

𝜌𝑐
(

𝐡𝑖;1
)

)]

+ 𝐼NCE(𝐇2,𝐇1) − E𝛱𝑖𝑝(𝐡𝑖;1 ,𝐡𝑖;2)

[

1
𝑁

𝑁
∑

𝑖=1
log

(

1 +
𝜌𝑟

(

𝐡𝑖;2
)

𝜌𝑐
(

𝐡𝑖;2
)

)]

≤ 𝐼NCE(𝐇1,𝐇2) + 𝐼NCE(𝐇2,𝐇1).

Referring to Poole, Ozair, van den Oord, Alemi, and Tucker (2019), the
InfoNCE estimator is a lower bound of the true MI, 𝑖.𝑒.,

𝐼NCE(𝐇1,𝐇2) ≤ 𝐼(𝐇1;𝐇2).

So, we can get

2 ≤ 𝐼(𝐇1;𝐇2) + 𝐼(𝐇2;𝐇1) = 2𝐼(𝐇1;𝐇2),

inally, we get the following inequality

≤ 𝐼(𝐇1;𝐇2). (15)

Referring to Edwards (2008), which states that, for all random
ariables 𝐗,𝐘,𝐙 satisfying the Markov relation 𝐗 → 𝐘 → 𝐙, the

inequality 𝐼(𝐗;𝐙) ≤ 𝐼(𝐗;𝐘) holds. We find that 𝐗,𝐇1,𝐇2 satisfy the
relation 𝐇1 ← 𝐗 → 𝐇2. Since 𝐇1 and 𝐇2 are conditionally independent
after observing 𝐗, the relation is Markov equivalent to 𝐇1 → 𝐗 →
𝐇2, which leads to 𝐼(𝐇1;𝐇2) ≤ 𝐼(𝐇1;𝐗). We further observe that
he relation 𝐗 → (𝐇1,𝐇2) → 𝐇1 holds, therefore, it follows that
(𝐗;𝐇1) ≤ 𝐼(𝐗;𝐇1,𝐇2). Combining the two inequalities yields the

required inequality as follows:

𝐼(𝐇1;𝐇2) ≤ 𝐼(𝐗;𝐇1,𝐇2). (16)

Following Eqs. (15) and (16), we finally get the inequality:

 ≤ 𝐼(𝐗;𝐇1,𝐇2), (17)

end of the proof. □

Theorem 2. When we use the identity function as projection function 𝑔,
measure nodes’ similarity by simply taking the inner product, and assume
that positive pairs are far closer than negative pairs, 𝑖.𝑒., 𝐡⊤𝑖;1𝐡𝑗;2 ≪ 𝐡⊤𝑖;1𝐡𝑖;2
and 𝐡⊤𝑖;1𝐡𝑗;1 ≪ 𝐡⊤𝑖;1𝐡𝑖;2, minimizing the pairwise objective 𝓁

(

𝐡𝑖;1,𝐡𝑖;2
)

coincides with maximizing the triplet loss, as given in the sequel

−𝓁
(

𝐡𝑖;1,𝐡𝑖;2
)

∝ 4𝑁𝜏 +
∑

𝑗≠𝑖

[

‖

‖

𝐡𝑖;1 − 𝐡𝑖;2‖‖
2 − ‖

‖

‖

𝐡𝑖;1 − 𝐡𝑗;2
‖

‖

‖

2

+ ‖

‖

𝐡𝑖;1 − 𝐡𝑖;2‖‖
2 − ‖

‖

‖

𝐡𝑖;1 − 𝐡𝑗;1
‖

‖

‖

2]
. (18)

Proof. Based on these assumptions, we can rearrange the pairwise
objective as follows:

− 𝓁
(

𝐡𝑖;1,𝐡𝑖;2
)

= − log e
(

𝐡⊤𝑖;1𝐡𝑖;2∕𝜏
)

∑𝑁
𝑘=1 e

(

𝐡⊤𝑖;1𝐡𝑘;2∕𝜏
)

+
∑𝑁

𝑘≠𝑖 e
(

𝐡⊤𝑖;1𝐡𝑘;1∕𝜏
)

= log
(

1 +
𝑁
∑

𝑘≠𝑖
e
𝐡⊤𝑖;1𝐡𝑘;2−𝐡

⊤
𝑖;1𝐡𝑖;2

𝜏 +
𝑁
∑

𝑘≠𝑖
e
𝐡⊤𝑖;1𝐡𝑘;1−𝐡

⊤
𝑖;1𝐡𝑖;2

𝜏

)

. (19)

By Taylor expansion of first order, we obtain:

−𝓁
(

𝐡𝑖;1,𝐡𝑖;2
)

≈
𝑁
∑

𝑘≠𝑖

(

e
𝐡⊤𝑖;1𝐡𝑘;2−𝐡

⊤
𝑖;1𝐡𝑖;2

𝜏 + e
𝐡⊤𝑖;1𝐡𝑘;1−𝐡

⊤
𝑖;1𝐡𝑖;2

𝜏
)

≈ 2 + 1
𝜏

𝑁
∑

(

𝐡⊤𝑖;1𝐡𝑘;2 − 𝐡⊤𝑖;1𝐡𝑖;2 + 𝐡⊤𝑖;1𝐡𝑘;1 − 𝐡⊤𝑖;1𝐡𝑖;2
)

𝑘≠𝑖
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Table 2
Statistical Details of Datasets. Including the number of snapshots, nodes, edges, and
clusters in each dataset.

Attribute #Snapshot #Node #Edge #Cluster

Enron 12 151 3,513 –
Cell 10 400 5,124 –
UCI 10 1,604 25,190 –
B-OTC 7 5,051 40,516 –
COLAB 10 315 943 –
Ellip1 6 1,089 6,269 –
Ellip2 6 2,047 12,768 –
Ellip3 7 3,519 27,942 –
Ellip4 6 4,328 32,148 –
KIT 12 195 14,236 25
SBM1 8 1,280 81,661 4
SBM2 8 2,560 325,215 5
SBM3 8 5,120 653,093 6

= 2 − 1
2𝜏

𝑁
∑

𝑘≠𝑖

(

‖

‖

𝐡𝑖;1 − 𝐡𝑘;2‖‖
2 − ‖

‖

𝐡𝑖;1 − 𝐡𝑖;2‖‖
2

+ ‖

‖

𝐡𝑖;1 − 𝐡𝑘;1‖‖
2 − ‖

‖

𝐡𝑖;1 − 𝐡𝑖;2‖‖
2
)

∝ 4𝜏 +
𝑁
∑

𝑘≠𝑖

(

‖

‖

𝐡𝑖;1 − 𝐡𝑖;2‖‖
2 − ‖

‖

𝐡𝑖;1 − 𝐡𝑘;2‖‖
2

+ ‖

‖

𝐡𝑖;1 − 𝐡𝑖;2‖‖
2 − ‖

‖

𝐡𝑖;1 − 𝐡𝑘;1‖‖
2
)

,

which concludes the proof. □

5. Experimental setup

This section offers an overview of the experimental setup, which
encompasses the datasets used, the employed comparison methods, the
evaluation metrics used to measure task performance, and a detailed
outline of the parameter settings utilized in the experiments.

5.1. Datasets

We conduct experiments on seven real-world dynamic networks and
three synthetic dynamic networks. The datasets utilized in our study are
characterized by edge sizes that vary in magnitude from one hundred to
over one hundred thousand. These datasets are derived from a variety
of domains, encompassing social, industrial, and synthetic fields. The
deliberate selection of these diverse datasets facilitates a more compre-
hensive demonstration of the robustness and universal applicability of
our proposed models. The detailed statistics are reported in Table 2 and
give their detailed description in Supplemental Materials (Appendix. C).

5.2. Baseline methods

To evaluate the performance of DNCL, we compare it against six
network representation learning methods. For static network represen-
tation learning, we independently learn embeddings of each snapshot
and subsequently aggregate them by computing their average. They
including GCN (Kipf & Welling, 2017a), GCA (Zhu et al., 2021b),
VGRNN (Hajiramezanali et al., 2019), DySAT (Sankar et al., 2020),
EvolveGCN(E-GCN) (Sankar et al., 2020), HNIP (Qiu et al., 2020),
DGCN (Gao et al., 2022) and HyperDNE (Huang et al., 2023). We give
their detailed introduction in Supplemental Materials (Appendix. D).

To ensure a fair comparison, we employ default parameter settings
for all baseline methods. Additionally, we use the same embedding di-
mension settings as DNCL on each dataset. The input snapshot sequence
length, denoted as 𝑇 , is set to 3. However, it is worth noting that HNIP
does not support attribute graphs, so we only compare its performance
7

with that of other methods in the link prediction and clustering tasks. t
5.3. Evaluation metrics and parameters settings

In our experiments, we use Average Precision (AP) and Area under
the ROC Curve as metrics for link prediction tasks, F1 score as the met-
ric for node classification tasks, and Normalized Mutual Information
(NMI) as the metric for clustering tasks.

AP is a commonly used metric for binary classification problems that
averages the precision over predicted links. It can be defined as follows:

𝐴𝑃 =
∑

𝑘 𝑝@𝑘 ⋅ I
{

𝐸𝑝𝑟𝑒𝑑 (𝑘) ∈ 𝐸𝑔𝑡
}

|

|

|

{

𝑘 ∶ 𝐸𝑝𝑟𝑒𝑑 (𝑘) ∈ 𝐸𝑔𝑡
}

|

|

|

, (20)

where 𝑝@𝑘 =
|

|

|

𝐸𝑝𝑟𝑒𝑑 (𝑘)∩𝐸𝑔𝑡
|

|

|

𝑘 , which represents the fraction of correct
predictions in the top 𝑘 predictions and 𝑘 is the ranking position of
the prediction results, which is used to calculate the weighted sum of
the prediction results of different ranking positions when calculating
AP and calculate the corresponding weight according to whether the
prediction results are consistent with the real category; 𝐸𝑝𝑟𝑒𝑑 and 𝐸𝑔𝑡
epresent the predicted and ground truth links, respectively. A higher
P value indicates that the model can make accurate predictions for a

arger proportion of links.
AUC is a metric that measures the model’s ability to distinguish

etween true and false positive rates at various thresholds. It can
e computed by considering 𝑢 independent comparisons between the
xisting and nonexistent links, where 𝑢′ times the existing link gets a
igher score than the nonexistent link and 𝑢′′ times they receive the
ame score. Then, the AUC is calculated as:

𝑈𝐶 = 𝑢′ + 0.5𝑢′′
𝑢

. (21)

To mitigate the impact of sparsity, we randomly sample the same
number of existing edges for nonexistent edges before computing the
AUC.

NMI is a metric commonly used to detect the effectiveness of
network partitions. For two different divisions of 𝐴 and 𝐵, the NMI
is defined as follows:

𝑁𝑀𝐼 =
−2

∑𝐶𝐴
𝑖=1

∑𝐶𝐵
𝑗=1 𝐶𝑖𝑗 ⋅ log

(

𝐶𝑖𝑗 ⋅𝑁
𝐶𝑖⋅⋅𝐶⋅𝑗

)

∑𝐶𝐴
𝑖=1 𝐶𝑖⋅ ⋅ log

(

𝐶𝑖⋅
𝑁

)

+
∑𝐶𝐵

𝑗=1 𝐶⋅𝑗 ⋅ log
(𝐶⋅𝑗

𝑁

) , (22)

here 𝑁 represents the number of nodes, 𝐶 denotes the confusion
atrix, and 𝐶𝑖𝑗 represents the number of nodes belonging to commu-
ity 𝑖 in division 𝐴 and also belonging to community 𝑗 in division
. 𝐶𝐴 and 𝐶𝐵 represent the number of communities in divisions 𝐴
nd 𝐵, respectively. Furthermore, 𝐶𝑖⋅ and 𝐶⋅𝑗 represent the sums of
he elements in the matrix 𝐶. The larger value of NMI means more
imilarity between 𝐴 and 𝐵. Especially when 𝑁𝑀𝐼 = 1, it indicates
hat 𝐴 and 𝐵 are the same division of the network.

For DNCL, in the parameter sensitivity section, denoted as Sec-
ion 6.5, we illustrate the parameters applied in the DNCL model. The
onfiguration is as follows: the node representation dimension is fixed
t 64, the trade-off parameters 𝛼 and 𝛽 are set to 0.5 and 1 respectively,
nd the temperature parameter 𝜏 stands at 0.5. Additionally, for the
eneration of ̃1 and ̃2, the parameters 𝑝𝑟,1, 𝑝𝑚,1 and 𝑝𝑟,2, 𝑝𝑚,2 are set as
,0 and 0.1, 0.1 accordingly. With these parameters, the model yields
ptimum results. Moreover, fluctuations in the performance of DNCL
re minimal with variant parameter settings, thereby validating the
obustness of our model.

. Experimental results

We verified the effect of DNCL on three different tasks: link predic-
ion, node classification and clustering respectively, and the experimen-
al results will be introduced separately in this section.
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Fig. 3. Comparison of link prediction results based on the AP and AUC scores on four real-world networks. (a) Enron. (b) Cell. (c) UCI. (d) B-OTC.
Fig. 4. Comparison of node classification results based on the F1 score on four real-world networks. (a) Ellip1. (b) Ellip2. (c) Ellip3. (d) Ellip4.
Table 3
Average AP and AUC scores (%) of link prediction on four real-world networks.

Method Metric Enron Cell UCI B-OTC COLAB

GCN AP 78.88 86.31 53.81 66.16 73.18

AUC 78.99 85.26 60.30 67.84 73.45

GCA AP 75.11 89.76 71.75 77.01 79.88

AUC 73.63 87.40 71.21 72.05 76.23

VGRNN AP 72.03 75.92 73.71 82.10 88.77

AUC 73.45 77.11 75.39 80.93 86.21

DySAT AP 73.35 83.36 69.30 78.35 90.40

AUC 75.18 83.73 70.77 77.69 87.25

E-GCN AP 69.31 61.16 46.36 55.78 87.53

AUC 74.31 62.42 50.21 58.89 83.88

HNIP AP 70.53 64.03 50.31 59.99 67.18

AUC 72.35 63.83 52.13 63.63 69.34

DGCN AP 68.09 61.71 61.26 60.50 68.19

AUC 73.83 64.24 65.02 66.50 72.04

HyperDNE AP 62.62 55.69 61.81 66.82 57.53

AUC 63.25 55.94 62.69 68.29 60.30

DNCL
AP 82.68 91.27 83.02 82.32 90.74

(± 0.12) (± 0.33) (± 0.11) (± 0.22) (± 0.07)

AUC 80.33 89.91 82.32 81.21 87.72
(± 0.14) (± 0.43) (± 0.12) (± 0.23) (± 0.17)
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6.1. Performance of link prediction

This task aims to predict whether any two nodes will interact with
each other in the future. For example, predict whether there is an edge
between any two nodes in the fourth snapshot based on the information
of the first three snapshots. We employ the garnered nodes to signify
the connection probability between two nodes via a layer of multi-layer
perceptron (MLP) and sigmoid functions. We experiment on the Enron,
Cell, UCI, B-OTC and COLAB networks. We use AP and AUC scores to
evaluate all the methods. For all snapshots in each dataset, we split
them into multiple groups of input with the step size 1. We differ from
DySAT and HyperDNE in dataset partitioning in that we input only
the first three snapshots in link prediction to predict the subsequent
snapshots, instead of using the first 𝑇 snapshots for prediction and T+1
snapshots as in DySAT or HyperDNE. We take the average AP and AUC
scores of all input groups for evaluation. The results are presented in
Table 3 and Fig. 3. Table 3 shows the average value of AP and AUC
on all snapshots, and Fig. 3 reveals the value of AP and AUC on each
snapshot. We can see that the DNCL model outperforms the baseline
methods. DySAT often achieves comparable performance to DNCL in
different datasets. One possible reason is that DySAT can jointly model
structural and temporal information by aggregators (𝑒.𝑔., multi-head
attention). Noticed that the results of the static graph representation
learning model GCA are superior to some temporal methods, which also
illustrates the effectiveness of contrastive learning from the side.

6.2. Performance of node classification

The aim of this task is to predict the node class in the future.
The intuition is that a model that captures the evolution of dynamic
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Table 4
Average F1 scores (%) of node classification on four datasets.

Method Ellip1 Ellip2 Ellip3 Ellip4

GCN 9.26 10.37 11.31 9.14
GCA 8.27 9.87 10.35 9.22
VGRNN 8.68 9.26 11.07 9.66
DySAT 7.77 10.05 11.08 9.21
E-GCN 9.39 8.81 10.76 9.30
DGCN 8.14 8.48 9.96 7.91
HyperDNE 7.97 9.02 11.03 9.47

DNCL 11.17 10.83 12.55 13.19
(± 2.13) (± 1.54) (± 1.41) (± 1.22)

Fig. 5. Influence of embedding dimension for AP and AUC scores on two datasets. (a)
Enron. (b) Cell.

networks should also be able to reflect changes in node classes within
its learned embeddings. To this end, we train a classifier using node rep-
resentations obtained from the sequence of node attributes. The dataset
is split into training, validation and testing sets, with proportions of
50%, 20% and 30%, respectively. The micro average F1 score is used
as the evaluation metric. The results of all methods on four Elliptic
datasets are presented in Table 4 and Fig. 4, where Table 4 shows the
average value of F1 scores on all snapshots, Fig. 4 reveals the value of
F1 score on each snapshot. The results indicate that the DNCL model
significantly outperforms the baseline methods, particularly in Ellip4,
which is the largest and noisiest of the four networks. These findings
suggest that our model is more robust than those that estimate or
generate ground-truth network features in challenging environments.

6.3. Performance of clustering

The aim of this task is to predict the node cluster label in the
future, 𝑖.𝑒., exploring changes in clusters in dynamic networks. We
experiment on the KIT and three synthetic networks. Once we have
learned node representations, we apply 𝐾-Means to cluster all nodes.
The NMI score is used as the evaluation metric. From Table 5, we
can see that DNCL still outperforms all baseline methods, especially on
the dataset SBM3 with 5,120 nodes. The random-walk-based HNIP is
competitive with GCN-based models (𝑒.𝑔., E-GCN) in clustering tasks,
which means that only considering neighbor information is not enough
for node representation learning.

6.4. Ablation study

To verify the validity of our proposed contrast between different
views in DNCL, 𝑖.𝑒., inter-snapshot loss and intra-snapshot loss, we
conduct an ablation study by independently removing the different
items in the overall contrastive loss as shown in Eq. (5). DNCL-1 refers
to the model without the inter-snapshot loss (𝑖.𝑒., 𝑖𝑛𝑡𝑒𝑟) in the topology
perturbation view, DNCL-2 refers to the model without the inter-
snapshot loss (𝑖.𝑒.,  ′

𝑖𝑛𝑡𝑒𝑟) in the node feature perturbation view, and
DNCL-3 refers to the model without the intra-snapshot loss (𝑖.𝑒., 𝑖𝑛𝑡𝑟𝑎).

The experimental results are presented in Table 6, which clearly
9

demonstrate the effectiveness of both inter-snapshot and intra-snapshot
Table 5
Average NMI scores (%) of clustering on four datasets.

Method KIT SBM1 SBM2 SBM3

GCN 63.05 11.69 35.90 25.68
GCA 71.06 9.68 30.57 37.99
VGRNN 55.60 10.72 36.58 42.20
DySAT 60.50 11.33 41.12 41.07
E-GCN 71.76 12.54 37.12 41.65
HNIP 68.82 13.12 36.17 35.90
DGCN 55.26 10.19 37.27 40.13
HyperDNE 55.93 13.43 38.52 42.04

DNCL 76.01 17.10 42.12 55.93
(± 2.17) (± 1.32) (± 1.11) (± 1.73)

Table 6
Ablation study.

DNCL-1 DNCL-2 DNCL-3 DNCL

AP

Enron 80.61 80.90 83.02 83.63
Cell 88.35 88.72 92.67 91.17
UCI 79.00 78.60 80.04 82.97
B-OTC 72.90 73.10 80.34 83.42

F1

Ellip1 9.39 7.86 8.47 11.07
Ellip2 8.97 9.04 8.32 10.80
Ellip3 10.71 11.04 11.31 12.45
Ellip4 8.71 8.89 8.85 13.18

NMI

KIT 73.20 73.85 75.81 75.91
SBM1 11.30 10.54 16.38 17.01
SBM2 35.28 33.56 37.76 42.03
SBM3 46.77 42.28 38.58 55.82

contrast in improving the performance of the proposed DNCL model
on all datasets. Specifically, the ablation study shows that removing
inter-snapshot contrast in the view of topology perturbation has a
greater impact on link prediction and node classification tasks, while
removing intra-snapshot contrast has a greater impact on clustering
tasks. This observation suggests that network topology information
plays a more important role in the learning of node representations than
node attributes. These results provide further evidence of the validity
of the proposed contrastive learning framework in DNCL, highlighting
the importance of leveraging both inter-snapshot and intra-snapshot
contrast in dynamic network representation learning.

6.5. Parameter sensitivity analysis

We conduct experiments for analyzing the sensitivity of several
hyper-parameters in this subsection.

6.5.1. Embedding dimension
To analyze the influence of the hidden features learned by DNCL,

we set the embedding dimensions 𝑑 for each dataset as 8, 16, 32, 64,
nd 128, respectively. The results are presented in Fig. 5. As expected,
he performance improves as the value of 𝑑 increases. However, when
he node embedding dimension exceeds 64, the growth rate of the
erformance is limited. Considering the storage space consumption, we
dopt 𝑑 = 64 for all experiments in this paper.

.5.2. Inter-snapshot and intra-snapshot contrast weights
In this experiment, we investigate the influence of the inter-snapshot

ontrast parameter 𝛼 on model performance by fixing 𝛽 to 1 and
varying 𝛼 from 0.0 to 1.0. The results are presented in Fig. 6. While the
impact of 𝛼 on link prediction and clustering tasks is not as significant
as on node classification, increasing 𝛼 consistently improves model
performance across all tasks. Additionally, we explore the influence of
the intra-snapshot contrast parameter 𝛽 by fixing 𝛼 to 0.5 and varying
𝛽 from 0.0 to 1.0. The results are presented in Fig. 7. We observe that
changes in 𝛽 have a significant impact on all three tasks, suggesting
that the comparison between different views within the same snapshot
is crucial for nodes to learn more discriminative representations.
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Fig. 6. Influence of 𝛼 with 𝛽 = 1 on different tasks, respectively. (a) Link prediction. (b) Node classification. (c) Clustering.

Fig. 7. Influence of 𝛽 with 𝛼 = 0.5 on different tasks, respectively. (a) Link prediction. (b) Node classification. (c) Clustering.

Fig. 8. Influence of 𝑝𝑚,2 with 𝑝𝑚,1 = 0 on different tasks, respectively. (a) Link prediction. (b) Node classification. (c) Clustering.

Fig. 9. Influence of 𝑝𝑟,2 with 𝑝𝑟,1 = 0 on different tasks, respectively. (a) Link prediction, (b) Node classification and (c) Clustering.
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6.5.3. The topology and node features mask weights
To explore the influence of the different view generation mecha-

nisms, we fixed 𝑝𝑚,1 to 0 and then varied 𝑝𝑚,2 from 0.0 to 0.9, and
fixed 𝑝𝑟,1 to 0 and then varied 𝑝𝑟,2 from 0.0 to 0.9, respectively. The
results are presented in Figs. 8 and 9. The results show that masking
more edges or node features improves the performance of clustering
tasks more significantly.

7. Conclusion and future work

In spite of numerous dynamic network representation learning
methodologies proposed in recent years, the majority are restricted to
generative or estimated objectives, hyper-focusing on network details.
Consequently, correlated models might lack robustness when networks
scale and graph features become sparse. To rectify this, we proposed
a contrastive learning method that maximizes mutual information to
learn representations. Our method is tailored specifically for dynamic
networks, which are typically represented as sequences of network
snapshots. By incorporating both inter-snapshot and intra-snapshot
contrast, our approach efficaciously captures both the structural (at-
tribute) information and the temporal dimension of the network. We
introduce the DNCL model grounded on this contrastive strategy,
and our experimental results in various downstream tasks demon-
strate its efficacy in overcoming the limitations of extant methods.
Notwithstanding the strengths of our method, it is not devoid of
limitations. Firstly, it targets discrete-time dynamic networks, poten-
tially neglecting the fine-grained information contained within their
continuous-time counterparts. Secondly, our method is limited to lev-
ering local neighborhood data, which may pose a barrier to accessing
higher-order and densely semantic information.

In the future, we aim to broaden the application of DNCL to en-
compass continuous-time dynamic networks beyond discrete-time ones.
This could be achieved by integrating techniques such as random point
processes and temporal random walks. Additionally, while our model
currently relies primarily on local neighborhood information, we ac-
knowledge the limitations of intra-snapshot contrast and inter-snapshot
contrast. We hence plan to explore the integration of higher-order
structural information—such as motifs, communities, network homo-
geneity, and sub-graphs to bolster the diversity of our comparative
views and obtain a more comprehensive understanding of the dataset.
Furthermore, we intend to probe into methods such as pre-training and
various levels of sampling to enhance the scalability and efficiency of
the algorithm for larger dynamic networks.
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