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Abstract—Mobile phones and tablets are becoming the primary 
platform of choice. However, these systems still suffer from 
limited battery and computation resources. A popular technique 
in mobile edge systems is computing outsourcing that augments 
the capabilities of mobile systems by migrating heavy workloads 
to resourceful clouds located at the edges of cellular networks. 
In the multi-site scenario, it is possible for mobile devices to 
save more time and energy by offloading to several cloud service 
providers. One of the most important challenges is how to choose 
servers to offload the jobs. In this paper, we consider a multi-site 
decision problem. We present a scheme to determine the proper 
assignment probabilities in a two-site mobile-edge computing 
system. We propose an open queueing network model for an 
offloading system with two servers and put forward performance 
metrics used for evaluating the system. Then in the specific 
scenario of a mobile chess game, where the data transmission is 
small but the computation jobs are relatively heavy, we conduct 
offloading experiments to obtain the model parameters. Given the 
parameters as arrival rates and service rates, we calculate the 
optimal probability to assign jobs to offload or locally execute and 
the optimal probabilities to choose different cloud servers. The 
analysis results confirm that our multi-site offloading scheme is 
beneficial in terms of response time and energy usage. In addition, 
sensitivity analysis has been conducted with respect to the system 
arrival rate to investigate wider implications of the change of 
parameter values.

Index Terms—Computation outsourcing, Multi-site offloading, 
Mobile-edge computing, Queueing networks

I. In t r o d u c t i o n

As a key 5G enabler technology, Mobile Edge Com-

puting (MEC) has emerged as a new computing paradigm 

that provides end-users with low latency in their access to 

applications deployed at the edge of the cloud [1], [2]. In 

MEC, computation offloading is a promising solution proposed 

to improve the mobile devices’ performance by migrating 

heavy computation workload to resourceful servers [3]. In 

recent years, there has been a lot of research on mobile 

cloud offloading and computation outsourcing [4]-[6]. Mobile- 

edge computing offloading is different from the traditional 

client-server architecture, where a thin client always migrates 

computation to a server [7]. The current cloud computing 

infrastructure provides mobile systems with plenty and easy

Corresponding author: Huaming Wu (whming@tju.edu.cn).

Fig. 1. Multi-site offloading scenario.

access to public cloud resources. Hence, there are several cloud 

service providers that use public clouds to address the mobile 

computing problems. For example, Apple’s iCloud provides a 

service to its customer by hosting their applications and data 

in public clouds (i.e., Amazon EC2 and Microsoft Azure) [8]. 

The possibility to offload involves taking a decision regarding 

whether and what computation to migrate [9].

Mobile devices can access multiple cloud providers and 

edge servers (Fig. 1) and it is possible for mobile systems 

to optimize their metrics by offloading different parts of the 

computation to different servers [4], [10], [11]. However, the 

issues of poor flexibility, complex structure, and not suitable 

for lightweight equipment hinders the large-scale application 

of the existing schemes.

In this paper, we propose a cost-efficient and light-weighted 

scheme for multi-site offloading and outsourcing in mobile- 

edge services. Different from the existing schemes, the pro-

posed scheme accelerates the decision process by leveraging 

open queueing network models. Given the arrival and service 

rates of the queues, the optimal probability to assign jobs to 

offload and the optimal strategy to choose offloading servers 

are specified for the system gain in terms of response time 

and energy consumption. We also propose metrics to evaluate 

the performance and cost of the multi-site offloading system.

In order to validate the proposed offloading scheme, experi-

ments are conducted by including a mobile chess game in our 

offloading engine, where we run experiments using different

978-1-7281-9916-0/20/$31.00 ©2020 IEEE 
DOI 10.1109/MSN50589.2020.00033
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mobile devices in different network conditions. A mobile chess 

game is a good candidate application to investigate the benefits 

of mobile cloud offloading since the data transmission is 

small but the computation work can be relatively heavy. The 

experimental results confirm that using the proposed multi-

site offloading scheme more time and energy can be saved 

on the mobile devices. Real-time multimedia applications, 

especially real-time strategy games, fitness applications are 

some applications that benefit from this approach.

The remainder of this paper is structured as follows. Section 

2 presents the system model and metrics. Section 3 shows 

the evaluation of the proposed offloading scheme. Finally, the 

paper is concluded in Section 4.

II. Re l a t e d  Wo r k

A number of researches exist on offloading decisions for 

improving system performance and saving energy [10], [12]-

[15]. To achieve energy-efficient offloading under a completion 

time constraint, Guo et al. [13] provide a dynamic offloading 

decision scheme to reduce energy consumption and shorten 

completion time. Hu et al. [15] propose a software framework 

to deploy existing robotic software packages to the cloud and 

transform them into cloud services. Wu and Wolter investigate 

two types of delayed offloading policies and optimize a 

proposed Energy-Response time Weighted Product (ERWP) 

metric [16]. However, most of the prior studies in this area 

propose a limited form of offloading, that is limited to a single 

server as the offloading target [16], [17].

Besides the schemes for single-site offloading, there are 

a few number of works in the area of multi-site offloading 

decisions. Goudarzi et al. study a hybrid solution that finds 

the offloading solution in a timely manner with two decision 

algorithms [18]. Enzai et al. [19] propose a heuristic algo-

rithm for the multi-site computation offloading problem. Since 

the multi-site offloading depicts a more generic mobile-edge 

computing model, and it contains the single-site offloading 

problem, we address multi-site decision problem in this paper. 

Compared with existing solutions, our proposed model is 

lighter and more flexible.

III. Sy s t e m  Mo d e l

We propose a novel offloading policy for the multi-site 

offloading system by considering the following realistic sce-

nario. Rather than directly connecting to remote cloud servers, 

the mobile devices use a nearby cloudlet (or an edge server) 

through Wi-Fi or 3G/LTE networks to obtain reliable con-

nections and services. The term cloudlet refers to a layer 

connecting mobile devices and cloud servers. A cloudlet can 

be either a computer or a cluster of digital infrastructure which 

is well-connected to the Internet and provides cloud users with 

a rapid response and specifically customized functionalities 

[20]. As shown in Fig. 1, cloudlets are located close to mobile 

devices while the cloud servers are generally far.

The jobs of the system are generated by the mobile appli-

cations which can either execute them locally on the mobile 

device or offload them to cloud servers. In the latter case the

mobile devices discover a nearby cloudlet and offload jobs 

to it before receiving the computation results sent back by the 

servers. The offloadable jobs can be any computation-intensive 

or energy-intensive jobs such as Optical Character Recognition 

(OCR), real-time translating and chess algorithm computation. 

The offloading decision mechanisms on the mobile systems 

are managed by the system administrator by a Mobile Device 

Management (MDM) system. The administrator can decide 

how many jobs to offload and how many to execute locally. 

The decision algorithm we use is a static algorithm which 

assigns jobs to be offloaded or executed locally randomly 

with a certain probability. The jobs assigned to offload are 

temporarily stored in the cloudlet offloading buffer before they 

are sent to the cloud servers.

There are several cloud servers available for executing the 

jobs in this scenario. The cloudlets collect jobs from nearby 

mobile clients and decide how many jobs to offload to each 

server in order to save the most execution time and energy. 

The cloudlet, also managed by the system administrator, uses a 

static strategy to offload the jobs to different servers according 

to certain probabilities. Finally, the jobs are offloaded to the 

desired servers through a network and after being processed by 

the servers, the results are sent back to the mobile devices. For 

the sake of model simplicity, we consider a two-site offloading 

scenario. In fact, the more complicated situation can also be 

attributed to a two-site problem when the servers are divided 

into two categories, fast and slow ones.

An example of this scenario could be a financial company, 

where the employees use their mobile devices to do a certain 

computation job. There are cloudlets in each floor of the 

company building which the mobiles can connect and offload 

jobs to. After collecting the jobs, the cloudlet sends them to 

either the company’s private cloud or a public cloud through 

Internet to execute the jobs. Finally, the computation results 

are sent back to the mobile devices.

A. Performance Analysis Model
In order to evaluate the performance of a two-site mobile 

offloading execution, we define an open queueing network 

model from our scenario shown in Fig. 2. The cloud servers 

and the mobile device execution are represented as queueing 

nodes. It is assumed the service times have an exponential 

distribution for each queue and the jobs are generated by a 

number of mobile devices as a Poisson process with rate A 

[21]. Each time a job is generated, a decision has to be taken by 

the mobile devices whether it is offloaded to the cloud server 
or executed locally. There is a dispatcher di in Fig. 2 which is 

used to allocate the offloadable jobs either to the cloud servers 

or to the mobile device with an offloading probability n. Thus, 

a ratio of 1 — n of the total jobs are allocated to the mobile 

device and served with rate

After an offloadable job is assigned to offloading, it is first 

stored in the offloading buffer in the cloudlet. The dispatcher 

d2 is used to allocate the jobs to the different servers. In 

our scenario there are two cloud servers in the system, one 

server is in Germany (server.de) and the other one is located in
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a 1 — aChina (server.cn). The service rates are m1 and M2 respectively. 

a  of the jobs are allocated to server.de while 1 — a  of 

the jobs are offloaded to server.cn. The mobile devices are 

assumed to be located in Germany. In the proposed two- 

site mobile cloud offloading system management, the two 

assignment probabilities n and a  are the parameters that the 

system administrator can tune to adjust the performance. In the 

following sections, we explore how to determine the optimal 

probabilities n and a  for the optimal system gain.

B. Performance Metrics
In order to evaluate the performance of the multi-site of-

floading system, we propose several metrics: average response 

time, mean energy consumption, accounting cost and Dollar 

per Job metric. We not only analyze the performance metrics 

independently, but also consider the tradeoff between different 

metrics in this section.
1) Average response time: The response time is the time 

between arrival of a job until it completes service and departs. 

In queueing theory, the mean response time can be computed 

using Little’s law [22]

E [N] = AE [R]. (1)

E[ ] is the expectation of a random variable. Then the response 

time

e  i«] =  ™  = ( 1 —p )  1  = p —r  • <2)

where p is the system utilization.

In the proposed queueing network model, the system mean 

response time equals the average of the response times in 

the offloading queue and in the local execution queue. That 

is the sum of products of response time and probability of 

assignment to each queue:

E [R] = (1 — n) ■ E Rlocal] +  n ■ E [Roffload] • (3)

Similarly, the response time of the two-site offloading queue 

is computed as

E [R]
1 — n

Mm  (1 n)A
+n

Mi — anA +
M2 — (1 a)nA

(5)
2) Energy consumption: The energy consumption is the 

energy spent by the mobile device in a period of time. Aaron 

Carroll made elaborate measurements and computations of the 

energy consumption of each module in mobile systems in [23]. 

As introduced by Carroll, the energy consumption of executing 

different commands are not equal. Thus we assign two energy 

parameters es and em to represent the energy consumption 

for offloading execution and local execution of jobs on the 

smartphone respectively. The offloading energy parameter es 
includes both the power used by data transmission and waiting 

for the results. Since the value of energy in mobile devices and 

servers are different, we assign another specific weight (6s and 

Om). Then the expected energy consumed per job is:

E [E] =  nE [Roffload] esOs +  (1 — n)E [Rlocal] ■ emQm • (6)

That is the expected energy consumption equals the sum of 

products of the expected response time and energy parameter 

of each queue. Substituting the model parameters into Eq. 6,

we get

( 1  — n ) e s 9 s

E [f ] =  -  T T  H rMm  ( 1  n ) A
a

+  n e m ^m  +
Mi — a n  A

1 — a
M2 — (1 — a)nA

(7)

3) Energy-response time tradeoff metric: Energy consump-

tion and response time are two primary aspects for mobile 

cloud offloading systems which must be taken into considera-

tion when making offloading decisions [21]. In order to inves-

tigate how expected response time will interact with expected 

energy consumption, we study the tradeoff between these 

two metrics, which is a nontrivial multi-objective optimization 

problem:

E [Roffload] =  (1 — a) ■ E [Rcn] +  a ■ E [Rde] • (4)

Substituting Eq. 2, Eq. 4 and model parameters into Eq. 3 

we get the expected response time of the multi-site offloading 

system as:

Fig. 2. A queueing model for mobile cloud offloading system

Tradeoff =  E [R] ■ E [E] =  ] • (8)

The tradeoff metric we propose is an objective function 

formed from the product of the expected energy consumption 

(Eq. 6) and the expected response time (Eq. 3). This can be 

seen as energy per job metric, which is the better the lower.

4) Accounting cost: In addition to energy and performance 

we propose an accounting cost metric to represent the cost 

property of the multi-site offloading system.

The accounting cost we considered is the system cost. We 

assume that the billing of the server in Germany (server.de) 

is more expensive than the server in China (server.cn). But 

the German server is closer to the user. Since most popular 

cloud service providers, like Google App Engine (GAE) and 

Sina App Engine (SAE), charge their users by incoming 

and outgoing network traffic, we define two cost weighting
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parameters Zde  and ( en  that are multiplied by the number 

of jobs. Hence the cost metric is given by the sum of the 

probability of offloading to each server multiplied with the 

cost weighting parameter:

Cost = n \  [a ■ Zde  + (1 — a) ■ Ze n ] • (9)

5) Dollar per Job metric: The tradeoff between response 

time and cost metric is also analyzed. An objective function 

formed from the tradeoff of these two metrics is created to 

demonstrate the tradeoff situation. Since the reciprocal of the 

response time can be interpreted as the number of processed 

jobs, we call the product Dollar per Job metric as shown 

below:

Dollar per Job =  E [R] ■ Cost =  —i— • (10)
e [R]

As a system designer, one may look forward to maintaining 

the response time with lower cost, as for the Dollar per Job 

metric, the lower the better.

The parameters for the queueing model are measured from 

runtime experimental data. In Section V we evaluate the 

offloading system using the proposed metrics.

IV. Ru n t i m e  o f  t h e  Of f l o a d i n g  Ch e s s  Ga m e

In the proposed model, the parameters p 1, p 2 and 

are needed as the input of the proposed queueing network 

model. Thus in this section, we explore these parameters 

by conducting experiments. A mobile chess game is a good 

candidate application to investigate the benefits of mobile 

cloud offloading since the data transmission is small but the 

computation work can be relatively heavy. We develop our 

testbed based on the chess module CuckooChess 1.12 [24], an 

advanced free open source chess program under the GNU Gen-

eral Public License written in Java. The CuckooChess module 

implements many of the standard methods for computer chess 

programs which enable us to develop various desired chess 

strategies.

We show the runtime experiments of the offloading chess 

engine. Most chess programs are divided into two parts: an 

engine that computes the best move given a current board 

representation and a user interface. The chess engine can 

be run either on the mobile device or on the remote server 

while the interface will always remain on the mobile device. 

The two parts communicate with each other using a public 

communication protocol. The most popular protocol is the 

Chess Engine Communication Protocol (CECP) [25].

We vary the search depth in the tree which is a parameter 

commonly used to adjust the difficulty of a chess game. We 

investigate only the runtime of the chess moves, which is used 

as an indicative parameter for the performance of the device. 

In our evaluations, we do not consider the influence of fault 

occurrences in the communication networks because we only 

focus on the total response time of the offloading server which 

includes the transmission time and the server execution time.

Fig. 3. The mobile offloading experiment deployment

TABLE I
Tr a c e r o u t e  r e s u l t s  f r o m  d i f f e r e n t  n e t w o r k s

from-to
Number 

of Hops

Packet

Loss

Average

RTT(ms)

eduroam - server 7 0.10% 7.5

O2 DSL - server 15 0.20% 52.8

China ADSL - server 22 3.60% 286.0

eduroam - China server 22 3.10% 288.2

A. Hardware and Network Specification

The experiment deployment is illustrated in Fig. 3. We 

use different connections to parameterize our model. The 

offloading server (xen-virtual-machine: 2.53 GHz 4core Xeon 

CPU E5649 with 8 GB RAM) is located at our institute in 

Berlin. For the runtime experiments we used two different 

mobile phones, a Samsung Galaxy S6 (2.1 GHz Exynos 7420 

CPU with 3 GB RAM) and a Redmi 2 (1.2 GHz Qualcomm 

Snapdragon 410 CPU with 1 GB RAM). We connected 

the Samsung Galaxy S6 to the server through two different 

networks, the eduroam WLAN at the institute and the 02 

DSL network from a residential area in Berlin. The Redmi 

2 connected to the offloading server through ADSL network 

form China Unicom (a Chinese state-owned telecommunica-

tions operator) from Beijing. The mobile phones access the 

networks through Wi-Fi.

We could hence investigate three very different network 

connections to our offloading server: an excellent connection 

using eduroam, a good connection using O2 DSL and a less 

stable, and longer connection from China using China Unicom 

ADSL. In order to show the three network characteristics, we 

run the MTR tool [26] for about 10 minutes in the each 

scenario and show the results in a table.

The first three result rows in Table I summarize the tracer-

oute results to the offloading server host https://www.mi. 

fu-berlin.de/offload from the three networks. They illustrate 

the number of hops, the packet loss as well as the average 

round-trip time (RTT) for a packet to this host.

When the mobile device is connecting to the eduroam 

network in our institute, the average RTT from the MTR tool is

7.5 ms and it needs 7 hops to the offloading server. Meanwhile, 

in the 02 DSL, it takes 15 hops and the average RTT is 52.8
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ms, which has more network delay than eduroam. The worst 

network is Unicom ADSL from China because it is far away 

(22 hops) from the server in Germany and the average RTT 

is 286 ms. The network connection from China also has the 

highest packet loss.

Even though the network conditions are changing from time 

to time, the traceroute results can still act as indications of the 

network characteristics in a general order of magnitude.

It is worth mentioning that in the runtime experiments we 

set up one offloading server which is located at our institute, 

while we use two mobile devices: one is in Germany and 

the other in China. Thus for the Chinese server queue, the 

measurement direction is opposite to that in the queueing 

network model. In the model, jobs are offloaded to the Chinese 

server, but the runtime measurements are taken by sending 

jobs from China to the German server. We assume the runtime 

distributions are identical for both directions so that we can 

use the runtime results to parameterize the service rate for 

server.cn.
To support this assumption, we take another traceroute mea-

surement from our institute to a Chinese server (baidu.com) 

shown in the row of Table I. From the results, one can 

see that the number of hops and average RTT (22 hops, 

288.2 ms RTT) are nearly the same with that from China 

client to German server (22 hops, 286.0 ms RTT). Since our 

model only takes the mean response time into consideration, 

the transmission time distributions of both directions can be 

considered identical in our case.

B. Mean runtime of first 10 rounds

Fig. 4 shows the mean runtime of the first 10 chess rounds 

with the two different mobile devices in different network 

conditions. We use an average over the first ten rounds since 

some games end very quickly and almost all games took at 

least ten rounds, such that those mean values can cover most 

of the 60 tests. The results are shown with confidence intervals 

(CI). The local execution time increases rapidly up to several 

seconds per round on both devices with growing depth. The 

increase seems to be roughly exponential. However, the server 

has more processing power and the remote execution time 

increases slowly but seems to be linearly for both devices and 

all networks.

We assume that the processing speed of the server will be in 

the same order or magnitude irrespective of the network over 

which it is accessed. Therefore, we attribute the difference in 

the speed of the remote execution using the different networks 

to the quality of the network conditions. Using eduroam, since 

the server and the client are in the same LAN, the execution 

time is the lowest and offloading is beneficial for any search 

depth. While using the 02 network local execution of the chess 

search is faster up to a search depth of 7. For higher difficulty, 

from depth 8 onwards, offloading will increase the processing 

speed. As for the connection from China, even using a less 

powerful device Redmi 2, offloading takes longer and is only 

beneficial for search depth 9 and more.

Fig. 4. Mean runtime with different mobile devices in different network 
conditions

C. Runtime for a full game
The times shown in Table II describe the mean time that 

must be invested in a full game. We have used the mean 

number of rounds needed per search depth and the mean time 

needed for the mean number of rounds. Obviously, the time per 

game increases most with the depth for the full computation 

on both mobile devices.

All remote executions increase less and offloading within 

the eduroam network at our institute is the fastest for a 

full game at all levels of difficulty. The decisions for a full 

game will be mostly the same as for the first ten rounds, as 

considered in Fig. 4.

When the network connection is stable and the user is in 

the same LAN as the offloading server(e.g. eduroam in our 

experiment), one should always offload his computation to 

save time and energy. While as one uses a less powerful device 

(Redmi 2), one should decide to offload when the search depth 

is larger than 6 in a good network (e.g. 02 DSL). It can be seen 

that offloading is beneficial even for a very powerful mobile 

device (Samsung S6) when the search depth is more than 8. 

However, if the network delay is high, it is wise to execute 

the computation locally on the mobile device before the search 

depth of 10, in which we assume the network condition does 

not change during one game time.

V. Ev a l u a t i o n  o f  t h e  Mu l t i -s i t e  Of f l o a d i n g  

Sc h e m e

In this Section, we evaluate the performance metrics pro-

posed in Section III-B using the model analysis results. We 

parameterize the queues in the proposed model for multi-

site offloading scenario using the experiment results from our 

offloading chess engine.

A. Response Time Analysis
In Fig. 5 we show the average system response time E [R] 

versus the offloading probability n and the probability of 

choosing the German server a. The light color area at the 

bottom of the figure is the area where the system witnesses
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TABLE II
Me a n  Ti m e  p e r  Ga m e  (m s )

depth
device

3 5 7 9 11

S6 local 1647.02 4454.53 11752.20 44483.90 95115.70

S6 edurom remote 804.27 916.77 1203.08 1666.47 1698.15

S6 O2 remote 5253.47 8439.13 10092.90 11634.20 13967.10

Redmi local 1793.78 6099.82 23977.40 67450.70 142052.00

Redmi China remote 40650.70 40532.10 40853.60 40343.60 40972.50

Fig. 5. System average response time over the offloading probability n  and 
the optimal probability of choosing the German server a

the shortest average response time. Searching from the figure, 

we get the optimum point (n =  0.85,a =  0.73) for the average 

response time metric. Besides, one can also see the edge in the 

top (n =  0, no jobs are offloaded) shows the highest response 

time when all jobs are executed on the mobile device. For the 

sake of brevity, in the following analysis we set the offloading 

probability n =  0.85 so that we mainly study how the system 

performance interacts with the probability of choosing the 

German server a.

We can further formulate the optimization of the mean 

response time metric for the offloading assignment as:

argmin E [R] , (11)
a

and we find the probability of choosing the German server a 

to server.de and server.cn (1 — a) queues such that E [R] is 

minimized when all queues are in operation. After setting the 

offloading probability n as a constant, the optimal probability 

a  can be computed by taking the derivative of the expected 

response time E [R]:

d E[R] 

da
(12)

E[R]

Optimum

A = 0.20 

A = 0.15 

A = 0.10 

A = 0.05

Fig. 6. Mean system response time changing with the probability of choosing 
the German server a

Tradeoff

Fig. 7. Response time and energy tradeoff over the optimal probability of 
choosing the German server a

Then the optimal probability a  to assign a job 

server.de queue is

a =  An^i — 2^ i fi 2 +  (m i +  M2 — An) ^ 1 fi 2 

An (m i — M2) ’

Substituting the numerical instances of model parameters 

into Eq. 13, we get exactly the same optimal value a  =  0.73 

as shown in Fig. 5.

We show the two-dimensional result of the mean system 

response time changing with the probability of choosing the 

German a  in Fig. 6. The results are presented with four differ-

ent arrival rates A =  0.05,0.10, 0.15 and 0.20 respectively. We 

vary the probability of choosing the German server a  from 0

to the 

(13)
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Cost

Fig. 8. Accounting cost changing with the probability of choosing the German 
server a

to 1. When a  =  1 all offloading jobs go to server.de, whereas 

for a  =  0 all jobs are executed in server.cn.
From the figure, we found the optimal probability of choos-

ing the German server a  to minimize the system average 

response time for different arrival rates. When the workload 

is low (A =  0.05), E [R] is minimized when a  = 1 ,  that is 

all jobs are offloaded to server.de. As the system workload 

increases, the optimal probability a  decreases and the jobs 

are offloaded to both the German and Chinese servers. When 

A =  0.2, the optimal probability a  is 0.73, the same as the 

value we derived from Eq. 13.

B. Tradeoff Analysis
We present the tradeoff of energy consumption and response 

time in Fig. 7. As the average response time metric, we 

formulate the optimization of the Tradeoff metric as:

argmin Tradeoff. (14)
a

We found that the optimal probability of choosing the 

German server for the tradeoff metric is the same as the 

one for the average response time metric (Fig. 6). The reason 

is that in the multi-site offloading scenario, the response time 

dominates the tradeoff metric. When the response time shorter, 

the mobile device can save more energy by using the results 

sent from the servers.

C. Dollar per Job Analysis
The accounting cost metric changes with the probability 

of choosing the German server as depicted in Fig. 8. It 

is assumed that the Germany server charges more than the 

Chinese server as the cost parameters are Zde =  2.5 and Zen =

1. We also present the results with four different arrival rates 

A =  0.05,0.10,0.15 and 0.20 respectively.

Obviously, the accounting cost metric increases monotoni- 

cally with growing probability of choosing the German server 

, since the larger the more jobs are offloaded to the more 

expensive server server.de. Similarly, the larger the system 

arrival rate A the more the user has to pay. However, from 

Fig. 9 when the system workload is heavy (A =  0.20) we can 

find the optimal probability a  =  0.49 for the Dollar per Job 

metric. As the system arrival rate decreases, it is cheaper to

Fig. 9. Dollar per Jobs metric over the probability of choosing the German 
server a

offload all the jobs to the Chinese server. That is we get the 

lowest Dollar per Job metric when a  =  0.

Given the system parameters as arrival rates and service 

rates, we can calculate the optimal offloading probability n 

and probability of choosing the German server for different 

performance metrics and give advice to system administrators 

as to how to configure the multi-site offloading system.

D. Sensitivity Analysis

Sensitivity analyses were implemented to explore the effects 

of increasing the system arrival rate A on the probability of 

choosing the German server a  (Fig. 10(a)) and the Dollar per 

Job metric (Fig. 10(b)). As expected, increasing the system 

arrival rate necessarily made the offloading less cost-effective 

and the Dollar per Job metric increased accordingly. However, 

for the optimal probability of choosing the German server an 

increase in the arrival rate will cause its decrease because as 

the system workload is heavier some jobs should be offloaded 

to server.cn to avoid the long waiting time in the queue of 

server.de.

VI. Co n c l u s i o n s

In this paper we presented CoOMO, a cost-efficient multi-

site offloading scheme for mobile computation outsourcing. 

CoOMO aims to provide a light-weighted, yet powerful and 

efficient offloading assignment decision for mobile cloud ser-

vices. First, an open queueing network model is proposed for 

the multi-site offloading system and performance metrics used 

for evaluating the system are presented. The experimental re-

sults confirm that our multi-site offloading scheme is beneficial 

in terms of response time and energy when the recommended 

assignment probabilities are applied. We found that the optimal 

probability for choosing the offloading server for the energy- 

response time tradeoff metric is the same as the one for the 

average response time metric. When the system workload is 

heavy, we found the optimal probability a  =  0.49 for the 

Dollar per Job metric. However, as the system arrival rate is 

low, it is always cheaper to offload all the jobs to the remote 

Chinese server.
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Fig. 10. Sensitivity analysis results
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