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Abstract—The convergence of the Internet of Things
(IoT) with e-health records is creating a new era of advance-
ments in the diagnosis and treatment of disease, which
is reshaping the modern landscape of healthcare. In this
paper, we propose a neural networks-based smart e-health
application for the prediction of Tuberculosis (TB) using
serverless computing. The performance of various Convo-
lution Neural Network (CNN) architectures using transfer
learning is evaluated to prove that this technique holds
promise for enhancing the capabilities of IoT and e-health
systems in the future for predicting the manifestation of
TB in the lungs. The work involves training, validating, and
comparing Densenet-201, VGG-19, and Mobilenet-V3-Small
architectures based on performance metrics such as test
binary accuracy, test loss, intersection over union, preci-
sion, recall, and F1 score. The findings hint at the potential
of integrating these advanced Machine Learning (ML) mod-
els within IoT and e-health frameworks, thereby paving the
way for more comprehensive and data-driven approaches
to enable smart healthcare. The best-performing model,
VGG-19, is selected for different deployment strategies us-
ing server and serless-based environments. We used JMe-
ter to measure the performance of the deployed model,
including the average response rate, throughput, and er-
ror rate. This study provides valuable insights into the
selection and deployment of ML models in healthcare,
highlighting the advantages and challenges of different de-
ployment options. Furthermore, it also allows future stud-
ies to integrate such models into IoT and e-health systems,
which could enhance healthcare outcomes through more
informed and timely treatments.
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ing, predictive models, serverless computing, tuberculosis.
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I. INTRODUCTION

THE rapid advancements in Machine Learning (ML) and
Artificial Intelligence (AI) technologies have significantly

impacted the field of medical diagnosis, particularly in the realm
of pulmonary diseases such as Tuberculosis (TB) [1]. Moreover,
the integration of these cutting-edge technologies has paved the
way for revolutionary developments in the Internet of Things
(IoT) and e-health solutions [2], [3], [4], [5]. These innovations
allow for real-time monitoring of patients’ health conditions
and the seamless transmission of medical data to healthcare
providers [6], enabling more timely and accurate diagnoses and
treatments [7]. TB is a contagious ailment primarily impacting
the lungs, resulting from specific bacteria. It is transmitted when
individuals with the infection cough, sneeze, or release saliva
into the air. TB can be both prevented and treated. In 2021, TB
resulted in 1.6 million fatalities, inclusive of 187,000 individuals
with HIV. Globally, TB ranked as the 13th primary cause of
death, and it was the second-highest infectious cause of death
after COVID-19, surpassing HIV/AIDS. Around 10.6 million
individuals worldwide contracted TB that year, comprising 6
million men, 3.4 million women, and 1.2 million children.
Although TB affects all nations and ages, it’s notable that it can
be both treated and averted. MultiDrug-Resistant TB (MDR-TB)
continued to be a significant public health concern in 2021, with
only a third of those afflicted receiving treatment. From 2000 to
2021, approximately 74 million lives were rescued due to TB
treatments and diagnoses. To meet the global goals established
at the 2018 UN summit on TB, an annual funding of US$13
billion is required to support TB care, prevention, diagnosis, and
treatment. One of the health objectives of the UN’s Sustainable
Development Goals (SDGs) is to eradicate the TB epidemic
by 20301. The diagnosis of TB typically requires careful in-
terpretation of chest radiographs, a process that can be both
time-consuming and subject to human error. The automation
of this process using ML technologies, integrated with IoT and
E-Health systems in the future, promises to increase both the
speed and accuracy of TB diagnosis2.

Image recognition technology has evolved significantly, find-
ing applications across various fields and technologies. Its
fundamental goal is to enable computers to process and in-
terpret visual data similarly to human vision, but with greater
speed and accuracy. Image recognition technology has evolved
significantly, finding applications across various fields and

1https://www.who.int/news-room/fact-sheets/detail/tuberculosis
2https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9041161/
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technologies. Its fundamental goal is to enable computers to
process and interpret visual data similarly to human vision,
but with greater speed and accuracy. Researchers have shown
that a pure transformer architecture can be useful for image
recognition tasks and can get great results with less comput-
ing power than convolutional networks [8]. Further, the im-
plementation of Oscillatory Neural Networks (ONNs) using
Field-Programmable Gate Array (FPGA) for digit recognition
from a camera stream highlights the adaptability of image
recognition in real-time applications [9]. Moreover, Genetic
Algorithm Augmented Convolutional Neural Network (CNN)
has been utilised to improve performance in training time and
accuracy [10]. Another study discussed making an Advanced
Driver Assistance System (ADAS) with a heterogeneous mul-
ticore System on Chip (SoC) that has dedicated accelerators
for different image recognition tasks [11]. Furthermore, the
Sequence-to-Sequence Domain Adaptation Network (SSDAN)
for robust text image recognition [12] and image recognition
for the detection of Distribuited Denial of Service (DDoS)
malware in IoT environments [13] and applied transfer learning
techniques for image recognition in categorising nanoscience
images obtained by scanning electron microscope [14]. Finally, a
comprehensive review of deep learning methods in plant pheno-
typic image recognition is conducted to understand the literature
in detail [15].

This paper presents a comparative study of three different
CNN architectures, namely, DenseNet201, VGG19, and Mo-
bileNet V3 Small. The research leverages transfer learning, a
technique that utilizes pre-trained models to bypass the need
for large amounts of data and computational resources [16].
Performance evaluation of these models is conducted using
two publicly available chest radiograph datasets released by
the U.S. National Library of Medicine [17]. These datasets,
comprising normal and abnormal chest X-rays, are sourced from
Montgomery County’s TB screening program and the Shenzhen
No. 3 People’s Hospital in China. Post model selection, the
research investigates the comparison of two deployment strate-
gies: a traditional server-based deployment on an AWS EC2
instance, and a serverless approach using AWS Fargate and AWS
Elastic Kubernetes Service (EKS) for containerized deployment.
When we refer to “serverless” in the context of AWS Fargate
and AWS EKS, it doesn’t mean that servers aren’t used at all.
Instead, “serverless” in this context means that the developers
and operators don’t need to provision, manage, or maintain the
underlying servers [18]. The cloud provider (in this case, AWS)
abstracts away the infrastructure management. Application de-
velopers can use serverless computing without handling backend
infrastructure. This paradigm emphasises front-end and business
development. The cloud provider is in charge of managing all
backend processes, including infrastructure scaling and main-
tenance. This strategy streamlines development and delivers a
cost-effective charging mechanism based on real usage, avoiding
idle resource expenses.

A. Motivation and Our Contributions

TB is an infectious disease that carries the risk of death,
and even after recovery, there is a risk of re-infection [19].
Chest radiography, which is the most commonly used diagnostic
tool to diagnose TB, has an important value in identifying the
disease. This has led to increased interest in the field of medical
imaging research, particularly in the automated detection of

chest diseases using lung radiographs [20]. Accurate diagnosis
of active TB is crucial for an effective TB control initiative.
Patients who remain undiagnosed with TB remain infectious
and at risk of death; Patients who do not have TB but are
misdiagnosed are unnecessarily exposed to potentially harmful
drugs, wasting valuable public health resources. Additionally,
only a small fraction of MD-R TB cases are confirmed by
laboratories; This highlights the need for adequate diagnostic
capacity for all forms of drug-resistant tuberculosis to advance
global TB care. Therefore, TB control strategies should pri-
oritize early diagnosis and appropriate treatment for all types
of TB [21].

This work contributes to ongoing efforts to automate TB
diagnosis by introducing a new architecture based on serverless
computing and ML. The novelty of this work lies in the com-
prehensive approach to TB diagnosis by combining advanced
CNN architectures with innovative delivery strategies. This dual
focus not only increases the accuracy of disease detection but
also streamlines the implementation process, making it more
adaptable and efficient to real-world scenarios. Furthermore,
our research is pioneering in integrating serverless comput-
ing paradigms into healthcare, potentially revolutionizing the
speed and efficiency of disease diagnosis and management. To
achieve this, we have selected Densenet-201, VGG-19, and
Mobilenet-V3-Small architectures, because other well-known
research works [22], [23] have shown that these models are
most suitable for understanding the patterns, weights, and biases
in a greyscale image such as Chest X-Rays. Results from this
research could potentially lead to the development of robust,
scalable, and accurate computer-aided diagnostic systems for
TB, facilitating more efficient patient treatment. The first part of
the innovative approach involves choosing the right ML model.
Following model selection, two different deployment strategies
are explored: AWS EC2 (traditional server-based deployment)
and (serverless-based deployment) using AWS Fargate and AWS
EKS. The paper concludes by showing the performance supe-
riority of serverless computing over traditional servers by com-
paring two different deployment strategies. This study provides
new insights into the selection and deployment of ML models for
disease detection, paving the way for more efficient diagnostic
systems. The main contributions of this paper are:

� Emphasizes the importance of chest radiography in dis-
ease detection.

� Enables real-time monitoring and early detection of TB
with a proactive approach by integrating with IoT.

� Facilitates TB diagnosis using advanced CNN architec-
tures.

� Explores and compares distribution strategies, highlight-
ing latency considerations.

The rest of the paper is structured as follows. Sec-
tion II presents the studies on ML models and their prac-
tices to predict Pneumonia-based diseases and their deploy-
ment in the real world. Section III describes the proposed
methodology. Section IV presents the performance evalua-
tions and results. Section V concludes and highlights future
directions.

II. RELATED WORK

In this section, we delve deeply into various research ini-
tiatives where ML, particularly CNN architectures, has been
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TABLE I
COMPARISON OF PROPOSED WORK WITH EXISTING STUDIES

utilized for interpreting lung X-ray images. The primary ob-
jective of these studies is to diagnose lung-related diseases,
highlighting the efficacy of deep-learning models. Our focus is
predominantly on TB diagnosis, aiming to not only evaluate the
diagnostic capabilities of AI but also explore the operational
facets of deployment and scalability. This approach intends
to bridge the gap between academic research and real-world
clinical applications. COVID-19 Detection: Showkat et al. [16]
utilized the ResNet deep learning model to classify pneumo-
nia from chest X-rays, achieving notable success in detecting
COVID-19-related pneumonia. Shelke et al. [22] employed AI
to analyze chest X-rays, achieving a remarkable 98.9% accuracy
rate in distinguishing COVID-19 from normal pneumonia using
the DenseNet-161 model. Tangudu et al. [23] introduced an
optimized model with a 99% accuracy rate across two datasets
for COVID-19 detection via chest radiographs, leveraging the
MobileNet architecture.

Pneumonia Severity and Classification: Dey et al. [24] re-
vealed that the VGG19 deep learning system, combined with
an Ensemble Feature Scheme and Random-Forest classifier,
achieves a 97.94% accuracy in diagnosing pneumonia from chest
X-rays. Saleh et al. [25] utilized eight pre-trained models to dis-
cern pneumonia severity, with the MobileNet model achieving
up to 94.23% accuracy.

Tuberculosis Detection: The study in [26] employed the
ConvNet model to detect TB from chest X-rays, achieving
an 87% accuracy rate, although pre-trained models like Xcep-
tion achieved slightly higher precision. Our study distinguishes
itself by emphasizing deployment strategies, an aspect often
overlooked in related research. We use Amazon Fargate with
EKS to deploy our model serverlessly, making it practical and
applicable. Table I compares our proposed work with existing
studies. Most similar research focuses on model performance
and accuracy but overlooks deployment and scaling solutions.
Our work addresses this gap by focusing on real-world deploy-
ment strategies.

III. METHODOLOGY

This section explains comprehensive methodology imple-
mented in our study, including the datasets, CNN models,
transfer learning strategies applied to these models, system
architecture, and deployment strategies.

A. Dataset

Our study employed two principal chest X-ray datasets: the
Montgomery County set (MC) and the Shenzhen set, both
of which were retrieved from the popular data science plat-
form, Kaggle3 [17]. The dataset used for this research was

3https://www.kaggle.com/datasets/nikhilpandey360/chest-xray-masks-and-
labels

sourced from the National Library of Medicine, National Insti-
tutes of Health, Bethesda, MD, USA and Shenzhen No.3 Peo-
ple’s Hospital, Guangdong Medical College, Shenzhen, China.
The Montgomery County set, assembled in cooperation with
the Department of Health and Human Services, Montgomery
County, USA, comprises 138 frontal chest X-rays. Out of these,
80 are normal cases and 58 are cases showing indications of
TB. All images were captured using an Eureka stationary X-ray
machine and are provided in PNG format, with DICOM format
also available upon request. These details, as well as subsequent
analyses of the data, were published in [17]. The Shenzhen
dataset, collected in collaboration with the Shenzhen No.3
People’s Hospital, China, consists of 662 frontal chest X-rays,
with 326 normal and 336 exhibiting signs of TB. These images
were captured as part of routine hospital procedures and are
provided in PNG format. This dataset and its insights were
also discussed in [17]. Both datasets not only have a clear
naming convention for ease of interpretation, with identifiers
signifying whether an X-ray is normal or abnormal, but also
come with a clinical reading that outlines crucial information
such as the patient’s age, gender, and any detected lung ab-
normalities [17]. In addition to [17], these datasets have also
been used in research investigations [28], [29]. Considering the
diversity and variability in medical imaging data, incorporating
chest X-ray images from various hospitals could significantly
enhance our model’s applicability. Federated learning, where
model training is decentralized and data remains at its original
location, emerges as a viable solution. This method not only
addresses privacy concerns but also allows for a richer, more
diverse dataset without the need to transfer sensitive medical
data [30], [31].

B. Model Selection

In this research, we employed a transfer learning approach
that leverages pre-trained models to efficiently detect TB in
a resource-efficient manner. The approach encompasses the
following key aspects: Adaptation of Pre-Trained Models: We
initiated our methodology by adapting pre-trained models for
TB detection. This involved preparing datasets for both training
and testing, followed by tailoring these models to specifically
address the task of TB detection. 1) Feature Extraction and Fine-
Tuning: A critical phase of our approach was the feature extrac-
tion and subsequent fine-tuning. Initially, the model was trained
and evaluated using the prepared datasets. This was followed by
fine-tuning, where we unfroze layers in the base model and re-
trained it with a reduced learning rate. This fine-tuning process
was crucial in enhancing the model’s performance by achieving
a deeper understanding of the dataset-specific features. 2) Opti-
mization Strategies: We fine-tuned our model for an additional
five epochs with a reduced learning rate of 0.001. The decision
to unfreeze the last 30% of the layers in each model was based
on our findings and aligned with established guidelines [16],
proving to be effective in optimizing the model’s performance
for TB detection. 3) Utilization of Specific Models: In our
research, we specifically employed models like DenseNet201
and VGG19, known for their proficiency in image recognition
tasks, and adapted them for our TB classification task. This
allowed us to leverage the extensive knowledge these models had
acquired from training on large-scale image datasets, making
them particularly suited for our research needs. This strategy
enables us to leverage the knowledge these models have already
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acquired through training on a large-scale image dataset and
tailor it to our TB classification task. Further elaboration on the
individual models and the fine-tuning process will be presented
in the following sections. The transfer learning approach we
adopted was not only instrumental in enhancing the model’s ac-
curacy but also in conserving computational resources, making
it a viable solution for integrating with IoT and e-health systems
for future healthcare delivery.

1) Densenet 201: In our study, we draw relevance from
the research detailed in [27] concerning the utilization of the
DenseNet201 model for TB classification. This work outlines a
DenseNet201-based deep transfer learning (DTL) model specif-
ically for the diagnosis of COVID-19 patients, which has been
instrumental in guiding our choice of models. Their methodol-
ogy involves leveraging DenseNet201 for feature extraction, uti-
lizing its pre-trained weights on the ImageNet dataset, and incor-
porating a convolutional neural structure. The demonstrated ef-
fectiveness of DenseNet201 in differentiating COVID-19 cases
from chest CT scan images in their study provides compelling
evidence for its prospective relevance in analogous situations,
including our Tuberculosis case classification. The choice to in-
clude DenseNet-201 in our study was driven by its architectural
strengths, notably, its dense connectivity pattern, which allevi-
ates the vanishing-gradient problem, strengthens feature prop-
agation, and encourages feature reuse. This makes DenseNet-
201 highly effective for medical image analysis, particularly in
complex tasks like TB classification. DenseNet-201’s ability to
process detailed features from chest X-rays, a critical component
in TB diagnosis, enhances the model’s classification accuracy.
We leveraged this to compare its performance with other CNN
architectures, demonstrating its robustness in handling intricate
patterns in medical imaging. The inclusion of DenseNet-201,
therefore, was not only to provide a comprehensive analysis
but also to showcase the effectiveness of different architectural
approaches in medical diagnostics.

Hence, we regard the DenseNet201 model as a pivotal compo-
nent of our model architecture ensemble, along with VGG19 and
MobileNetV3 Small, to explore its potential for TB classifica-
tion. Our findings, highlighting DenseNet-201’s performance in
TB classification, contribute to the growing body of evidence
supporting the use of advanced deep learning techniques in
healthcare. This aligns with our paper’s aim to explore and
validate the integration of cutting-edge machine learning models
in medical diagnostics, offering insights into their practical
application in e-health systems.

2) VGG 19: In [24], a novel approach employing a tai-
lored VGG19 architecture was utilized to scrutinize chest X-
ray images, with a particular focus on distinguishing between
normal and pneumonia-afflicted cases. Their model utilized
transfer learning in combination with SoftMax and was com-
pared against various prominent deep learning models such
as AlexNet, VGG19, and ResNet50. The experimental results
unveiled VGG19’s superior performance over its counterparts.
The VGG19 architecture’s use of small, stacked convolution
filters significantly enhances its feature extraction capabilities.
The small filters enable broader and more complex feature
abstraction, crucial for image classification and object detection.
VGG19’s deep layers excel at extracting high-level features,
essential for accurate image classification and object detection.
This structure efficiently utilizes contextual information, im-
proving accuracy in tasks like image super-resolution. Addi-
tionally, VGG19 effectively balances reducing overfitting and

gradient weight updating challenges, maintaining effectiveness
across various applications. Furthermore, an Ensemble Feature
Selection (EFS) technique was used in [24] to enhance VGG19’s
diagnostic accuracy. This method fused the hand-engineered
features acquired through procedures like Continuous Wavelet
Transform (CWT), Discrete Wavelet Transform (DWT), and
Gray-Level Co-occurrence Matrix (GLCM) with deep learning
features extracted through transfer learning [24]. Both methods
are widely used in signal processing and analysis and have
different effects on persistence and precision. While the CWT
method works more effectively at high frequency, DWT is more
successful at the discrete scale level. For this reason, CWT is
generally used in applications requiring time-frequency analy-
sis, while DWT is more frequently used in applications requiring
multi-level analysis.The remarkable classification accuracy of
97.94% achieved by the VGG19 model, as reported in [24],
underscores its clinical utility and its potential applicability
for interpreting clinical-grade chest X-rays. Bearing in mind
the noteworthy results obtained using VGG19 in chest image
analysis as demonstrated in [24], we have opted to integrate the
VGG19 model into our research. Its proven proficiency in image
classification is anticipated to enrich our study and aid in the
precise classification of TB cases. Ensemble Feature Selection
(EFS) is a significant method in various data processing and anal-
ysis fields, known for its robustness and adaptability in feature
selection. Its methodologies, benefits, and practical applications
have been explored across different domains, demonstrating its
versatility and effectiveness in a wide range of applications, from
medical diagnostics to environmental monitoring and cyberse-
curity, highlighting its importance in modern data analysis and
prediction models.

The VGG19 model, known for its robust performance across
various metrics, possesses several distinctive characteristics: i)
High-Dimensional Feature Extraction: In some applications like
blood pressure estimation using PPG signals, the VGG19 model
excels in extracting high-dimensional and rich life characteris-
tics, enhancing performance in conjunction with other networks
like LSTM [32]. ii) Modification for Specific Applications:
For certain tasks, such as detecting Autism Spectrum Disorder
from facial images, modifications to the VGG19 model, like
altered architecture, attention mechanisms, and the application
of transfer learning, have significantly improved its accuracy.
These changes enable the model to better capture subtle facial
characteristics and reduce overfitting [33]. iii) Transfer Learning
Capabilities: The VGG19 model’s transfer-learning capabilities
are noteworthy, especially in fields like traffic anomaly clas-
sification, where it achieves high accuracy and AUC scores,
outperforming other methods and previous VGG19 models [34].
iv) Performance Metrics: It achieves impressive performance
metrics, such as a testing accuracy of 99.98%, a loss rate of
0.0120, an F1-score of 99.89%, and an area under the ROC of
100% in specific studies [35]. These characteristics collectively
contribute to the VGG19 model’s robustness and adaptability in
various contexts, enabling its consistent outperformance.

3) Mobilenet V3 Small: In [25], the authors performed a
comparative analysis of five pre-trained convolutional neural
network (CNN) models, specifically, ResNet50, ResNet152V2,
DenseNet121, DenseNet201, and MobileNet, to distinguish
pneumonia cases from normal instances. The investigation un-
derscored that MobileNet outperformed the other models when
operated with a batch size of 16, 64 epochs, and the ADAM
optimizer. The model’s predictions were further verified using
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Fig. 1. Process of Feature extraction and fine tuning

public chest radiological images, and the achieved accuracy of
the MobileNet model was an impressive 94.23%. Such high ac-
curacy underpins the model’s efficacy in aiding the development
of effective CNN-based solutions for the preliminary diagnosis
of diseases such as COVID-19. Inspired by the promising re-
search findings of [25], we have decided to include MobileNetV3
Small in our study for TB detection. Given the robust perfor-
mance of the MobileNet architecture in previous research and
its ability to deliver high accuracy with lower computational
requirements, we anticipate that it will significantly contribute
to the success of our TB classification task. Comparison with
Other Models (EfficientNet, ResNet, Lightweight CNNs):
While models like EfficientNet and ResNet are recognized for
their efficiency and high performance in various tasks, our choice
for Densenet-201, VGG-19, and MobileNetV3 Small was driven
by specific considerations relevant to our research context. Effi-
cientNet, known for its scalable architecture, is highly efficient
but requires more fine-tuning for specific applications such as
medical imaging [36]. ResNet, with its deep residual learning
framework, is considered complex for our dataset and task
requirements, and its performance in medical image analysis
has been outperformed by more specialized architectures [37].
Lightweight deep CNN models often trade off accuracy for effi-
ciency, which is less ideal for the precision required in medical
diagnostics [38]. Our chosen models provide a balance between
computational efficiency and high accuracy, critical in medical
image analysis for TB classification. The extensive literature on
Densenet-201, VGG-19, and MobileNetV3 Small, especially in
medical imaging contexts, further reinforced our decision [39],
[40], [41].

C. Implementation Strategy of Chosen Models

The process of model implementation is divided into two main
phases: Feature Extraction and Fine-tuning as stated in Fig 1, a
strategy inspired by an innovative approach.

1) Feature Extraction: In this phase, we utilized the convo-
lutional base of each pre-trained model (DenseNet201, VGG19,
and MobileNetV3 Small) as a feature extractor and trained a

new classifier on top of it, as suggested in [16]. The pre-trained
models are initialized with weights trained on ImageNet. Only
the last fully connected layer of each pre-trained model was
replaced with a new one, specifically adapted to our binary
classification task as shown in Fig 1. Each image is resized to
the specific input size required by the pre-trained model (224×
224 pixels). The image then passes through the convolutional
base of the pre-trained model, which acts as a high-capacity
feature extractor, mirroring the methodology [16]. During this
phase, the weights of the convolutional base are frozen. Freezing
these weights prevents their updates during training, ensuring
that the learned pre-trained features are preserved. The ADAM
optimizer, known for its efficiency in probability-based models,
was chosen for its adaptive learning rate, ideal for managing the
binary cross-entropy loss function in our tuberculosis detection
model. This optimizer adjusts learning rates based on gradient
estimations, leading to robust and efficient training. The training,
conducted for 15 epochs with a learning rate of 0.01, bene-
fited from the optimizer’s adaptive nature, ensuring preservation
of pre-trained features while achieving effective training and
better convergence. The training progress is monitored using
the TensorBoard callback. Model Checkpoint plays a vital role
in the training of ML models by preserving the state of the
model at various training stages. Its functions include saving the
model weight that yields the best performance, recording the
weight for each training epoch, and determining the file format
for saving these weights, like HDF5. This feature is critical in
ensuring that the most effective model state is retained and can
be revisited for optimal performance. The ModelCheckpoint
callback is used to save the model weights at the epoch where
the validation performance is the best. In addition, weight, bias,
and activation values were obtained as a result of quantized and
pruned processes for the VGG-19 model. The results show that
the learning rate = 0.01 should be chosen as the weight value
for a more accurate prediction performance of the model. When
the bias-variance balance of the model is examined, it is seen
that there is no overfit or underfit. Taking “ADAM optimizer” as
the activation value indicates that the model has better learning
ability.

2) Fine-Tuning: Following the successful training of the top
layers, we embark on the fine-tuning phase, an important stage
as mentioned in [16]. We unfreeze some of the top layers of
the convolutional base and train these layers along with the
newly added classifier layers as shown in Fig 1. During the
fine-tuning phase of our TB detection model, we unfreeze and
train some top layers of the convolutional base alongside the new
classifier layers, refining the high-level features for our specific
task. We start fine-tuning with a very low learning rate after
training the classifier, to control large gradient updates from
newly added layers and prevent disruption of the pre-trained
features. This approach allows for controlled weight adjustments
and enhances model performance while preserving learned fea-
tures. Fine-tuning must commence with a very low learning
rate, typically after the classifier on top of the convolutional
base has been trained. This is to avoid large gradient updates
caused by the randomly initialized weights, which could disrupt
the learned weights in the convolutional base. In our case, we
fine-tune the model for an additional 5 epochs with a reduced
learning rate of 0.001. The number of layers to unfreeze for
fine-tuning depends on the specific model and the task at hand.
In our research, we found that unfreezing the last 30% of the
layers in each model provided the best results, this insight is
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Algorithm 1: Transfer Learning for Tuberculosis Detection.
1: Input: Train and Test Image Directories: train_dir,

test_dir
2: Output: Trained Binary Classification Model M ,

Evaluation Metrics E
Variables:

3: img_size← (224, 224)
4: batch_size← 32
5: base_model← Pre-trained model
6: metrics← Performance metrics
7: Begin
8: � Dataset Preparation
9: for each dataset d in {train_dir, test_dir} do

10: Dd ← PrepareImageDataset(d, img_size,
batch_size)

11: end for
12: �Model Setup
13: base_model← InitializePreTrainedModel()
14: M ← AddLayers(base_model)
15: M .Compile(LossFunction, Optimizer, metrics)
16: � Feature Extraction
17: M .Train(Dtrain_dir, Dtest_dir)
18: E ←M .Evaluate(Dtest_dir)
19: � Fine Tuning
20: base_model.UnfreezeLayers()
21: M .Train(Dtrain_dir, Dtest_dir, LowLearningRate)
22: E ←M .Evaluate(Dtest_dir)
23: M .SaveModel()
24: Return M , E
25: End

aligned with the guidelines provided by [16]. After fine-tuning,
the model’s performance is evaluated again on the test data,
and the model’s precision, recall, and F1 score are computed.
The trained model and its performance metrics are saved for
future use. This strategy of combining transfer learning with
fine-tuning allows us to harness the capabilities of pre-trained
models and adapt them to our specific task, despite having a
relatively small amount of data and computational resources, as
validated by the findings in [16]. To provide a comprehensive
understanding of our methodology, we refer to Algorithm 1
and Fig. 1. Algorithm 1 delineates a systematic approach to
utilizing transfer learning for TB detection, a method that is
anticipated to synergize effectively with the emerging IoT and
e-health systems.

The algorithm commences with the preparation of the dataset,
where images from both training and testing directories are
processed and prepared for model training. Following this, a
pre-trained model is initialized as the base model, onto which
additional layers are added to tailor the model for the specific
task of TB detection. The next phase involves feature extraction,
where the model is trained and evaluated using the prepared
datasets. Subsequently, the model undergoes a fine-tuning pro-
cess to enhance its performance further. Retraining unfrozen
layers of a neural network with a lower learning rate offers
several advantages, such as layer-specific adaptation, balanced
feature learning, improved mixed-precision quantization, en-
hanced feature selection and classification, stabilization, error
reduction, adaptation post-pruning, and a focus on fine-grained
details. This method allows for better adaptation to specific tasks,

Fig. 2. Illustration of users sending requests to Server Based AWS
EC2 Instance running to predict the prediction class of the X-Ray Image

particularly in medical image analysis, by enabling different lay-
ers to focus on distinct aspects of the data. It also contributes to
a more stable and accurate model, enhances inference time, and
maintains accuracy while reducing computational complexity.
The fine-tuning involves unfreezing layers in the base model
and re-training it with a lower learning rate to achieve a more
nuanced understanding of the features in the dataset. Finally, the
trained model is stored and the evaluation metrics are returned
to demonstrate its performance. The steps to diagnose TB using
transfer learning on chest X-ray images are:

� Data Collection Step: After obtaining the CT images, we
divided them into two: train and test.

� Transfer Learning Model Selection: For this purpose, by
scanning the literature, models Densenet-201, VGG-19,
and Mobilenet-V3-Small, which were proven to be effec-
tive in detecting lung-based diseases, were selected.

� Training the Model: The model was trained with the train
set using pre-trained weights. Attention was paid to bias-
variance balance, thus ensuring that the model did not fall
into situations such as overfitting and underfitting.

� Testing the Model: Test Binary Accuracy (TBA), Test
Loss, Test Binary Intersection over Union (IOU), Test
Precision, Test Recall, and Test F1 Score values were
obtained for the performance evaluation of the model
trained using the dataset.

Time Complexity Analysis for Algorithm 1: Aggregating all
the components, the total complexity is: O(2E · (Ntrain +
Ntest) +Ntrain +Ntest). This suggests a scaling that is more
than linear with the number of images in the training and test
datasets, particularly due to the multiplicative factor of epochs
E during the training and evaluation phases.

D. Model Deployment Strategies

Server-based and serverless deployments were used in this
study to improve solution robustness and scalability.

1) Server-Based Deployment: In this method, the ML mod-
els were encapsulated within a FastAPI application. FastAPI
is a highly efficient, easy-to-use web framework for building
APIs with Python, making it suitable for integration with our
ML models4. This FastAPI application was then deployed on an
Amazon EC2 T3 medium instance. The EC2 instances provide
secure and scalable compute capacity in the cloud, allowing
our application to efficiently handle incoming HTTP requests5.
The deployment process and the handling of incoming POST
requests are detailed in Algorithm 2 and Fig 2. When a user

4https://fastapi.tiangolo.com/
5https://aws.amazon.com/ec2/
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Algorithm 2: Server-Based TB Detection via FastAPI.
1: Input: HTTP POST Request R with X-ray Image X
2: Output: HTTP Response H with Tuberculosis

Detection Result Δ
Variables:

3: API ← FastAPI application
4: EC2_Instance← EC2 medium
5: Begin
6: � Deployment Setup
7: API .Deploy(EC2_Instance)
8: if R is received then
9: X ← R.ExtractImage()

10: Δ← API .Predict(X)
11: H ← CreateResponse(Δ)
12: Return H
13: end if
14: End

sends a POST request (typically when they upload an X-ray
image for analysis), the request is processed by the application
on the EC2 instance. The image is forwarded to the deployed
ML model which processes the image, performs the prediction,
and sends back the result in the form of a HTTP response.

The basic concept of traditional server-based deployment, in
the case of AWS Elastic Compute Cloud (EC2), involves setting
up and managing a server on the cloud to host applications,
websites or services. To briefly explain the basic concepts; (i)
Choosing an EC2 Instance: Users can choose from various
instance types depending on their computational, memory, and
storage needs. (ii) Configuring the Instance: Once an instance
type is selected, users can configure the instance settings. (iii)
Setting up the Environment: After the instance is launched, users
can set up the environment based on their requirements. (iv) De-
ploying Applications: Users can then deploy their applications or
services onto the EC2 instance. (v) Security and Maintenance:
Managing a server on EC2 involves ensuring its security and
maintenance.

2) Serverless Deployment: In this approach, the FastAPI ap-
plication that hosts the ML model is deployed in an image using
Docker, a tool designed to build, deploy, and run applications
using containers. Using Docker enabled efficient management of
dependencies and simplified the deployment process to server-
less. The deployed image is then deployed using AWS EKS
and AWS Fargate. This approach was specially beatifically for
our TB detection system as it increased the overall efficiency and
responsiveness of the system in a serverless setup. EKS provides
a managed Kubernetes service that allows us to automate the
deployment, scaling and management of our application. AWS
Fargate is a serverless computing engine that eliminates the need
to manage servers for containers and thus works with EKS. The
process of deploying the FastAPI implementation on Amazon
EKS using Fargate serverless computing and the processing of
incoming POST requests is described in Algorithm 3 and Fig. 3.
Kubernetes Load Balancer service is used to open the application
running on the EKS cluster to the Internet. This service is
important for making the application accessible over the Internet
to handle user-initiated POST requests by efficiently managing
incoming network traffic. Load Balancer is used to distribute
network traffic to the FastAPI application. This is essential to
meet high-volume requests and provide real-time TB detection

Fig. 3. Illustration of users sending requests to the EKS cluster, with
Fargate managing server distribution and facilitating the process of TB
prediction using the ML model

results. It provided scalability and high availability, which is vital
for the robust and responsive performance required in e-health
applications. Upon receipt of a user-initiated POST request, the
Load Balancer redirects the request to an available container; this
container processes the image using the ML model and returns
the prediction result as an HTTP response. The user experience
is the same with both distribution strategies; The main difference
is how the system handles and processes incoming requests
internally. The use of Docker for containerizing of FastAPI
application was a key decision in this work, directly contributing
to the successful deployment and operation of the TB detection
model in a serverless environment. To explain this better, it
would be useful to go through examples; (i) Docker is used
to create a consistent and isolated environment for the FastAPI
application and encapsulate the application with all its depen-
dencies (Containerization with Docker), (ii) The containerized
application was designed for deployment on serverless platforms
like AWS Fargate and AWS EKS, optimizing for scalability
and flexibility (facilitating serverless deployment), (iii) The
use of Docker ensures that the complex dependencies of the
TensorFlow Lite model are managed effectively, leading to fewer
deployment-related issues (Advantages in the Context of TB
Detection).

3) Deployment in Clinical and Research Settings: Deploy-
ment of the system in clinical settings is intended to meet the
demands for consistent and potentially high-volume diagnostics.
The server-based approach provides a stable and robust platform
that guarantees clinical reliability and uninterrupted service
essential for patient care. Serverless deployment adapts well
to changing patient loads, offering flexible and cost-effective
scaling that is vital for a variety of clinical scenarios [42]. In
research environments, flexibility and scalability are the focus
to cope with changing data sets and experimental conditions.
Serverless deployment is particularly advantageous for research
purposes due to its scalability and ease of integrating new
updates or experimental models. The server-based approach can
also be useful for long-term, large-scale research projects that
require stable and dedicated computing resources.

The deployment strategies of our TB diagnostic system in both
clinical and research settings demonstrate the versatility and
adaptability of the system. The design of the system enables it to
meet the challenging and variable requirements of these different
environments, providing accurate TB detection. As a result,
the choice of server-based or serverless deployment strategy is
tailored to meet the specific needs of each environment. While
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Algorithm 3: Deploying FastAPI on EKS With Fargate.
1: Input: Docker image Idocker of FastAPI application,

AWS credentials Caws

2: Output: Deployed FastAPI application on Amazon
EKS with external IP IPext

3: DF ← Define FastAPI and its dependencies in a
Dockerfile.

4: Build Idocker from DF and push to DockerHub.
5: Install AWS CLI and eksctl. Configure with Caws.
6: EKSC ← Create EKS cluster with Fargate profile.
7: Dk8s ← Define Kubernetes Deployment for FastAPI.
8: Deploy Dk8s on EKSC. Expose via LoadBalancer to

get IPext.
9: if POST request Rpost received then

10: Img← Extract image from Rpost.
11: Pred← Predict using ML model with Img.
12: Respond with Pred.
13: end if
14: CW ← Setup Amazon CloudWatch.
15: Monitor app and EKSC using CW . Test via POST to

IPext.
16: End

the server-based approach offers robustness and consistency for
clinical applications, the serverless option provides scalability
and flexibility, making it ideal for research and development
scenarios [43]. This adaptability of delivery strategies enables
reliable and effective TB detection, improving the use of this
system in a variety of contexts.

4) Time Complexity Analysis of Algorithm 2 & 3: : The time
complexity for Algorithm 2 is O(1). Deploying FastAPI on an
EC2 instance (Deployment Setup) is a one-time process and
contributes to a constant overhead. Likewise, the time complex-
ity for Algorithm 3 is O(1). This is because you need to set up
the EKS cluster, define the Kubernetes deployment, etc. System
configuration and deployment processes such as contribute to a
constant overhead. Both algorithms possess a constant overhead
due to setup processes. The variable component of their com-
plexities is linear, attributed to the processing of images or POST
requests, respectively. Thus, in the context of time complexity,
both algorithms scale linearly, but with different input factors.

IV. PERFORMANCE EVALUATION

This section evaluates the performance of ML models and
deployment strategies for TB detection system. The system uses
ML models to analyze X-ray images and predict the presence
of TB. We trained Densenet-201, VGG19, and Mobilenet-V3-
Small and deployed the system in two environments: a server-
based deployment using an EC2 T3 medium instance and AWS
EKS and Fargate based a serverless settings.

A. Evaluation Metrics

The choice of metrics for evaluating the ML models was
guided by the nature of the problem and the requirements of
the system. Accuracy, loss, IOU (Intersection over Union),
precision, recall, and F1 score were chosen as they provide a
comprehensive view of the model’s performance6. Accuracy

6https://ml-compiled.readthedocs.io/en/latest/metrics.html

TABLE II
PERFORMANCE COMPARISON OF ML MODELS

measures the proportion of correct predictions, while loss quan-
tifies the difference between the predicted and actual values.
IOU is a measure of overlap between the predicted and actual
areas, which is particularly relevant for image analysis tasks.
Precision, recall, and F1 score provide insights into the model’s
performance in terms of false positives and false negatives,
which are crucial in medical diagnosis systems where both false
positives and false negatives have significant implications [44].
The IoU metric is a popular evaluation metric used in various
image processing and computer vision tasks, especially in object
detection and segmentation. The IoU metric is employed to
assess the overlap between the predicted area and the actual
ground-truth area. It measures the accuracy of a model’s pre-
dictions by calculating the overlap between the predicted area
and the actual ground-truth area. A higher IoU score indicates
a greater accuracy. Unlike simpler accuracy metrics, IoU con-
siders both true positives and false positives, making it more
robust, especially in datasets with extensive background space.
IoU offers a standardized way to compare the performance
of different models or algorithms on the same dataset, aiding
in benchmarks and competitions. Applicable to various tasks
like object detection, image segmentation, and tracking, IoU is
versatile in assessing spatial accuracy of models. It balances
the aspects of precision and recall, providing a comprehensive
performance metric. For evaluating the deployment strategies,
we considered the average response rate, error percentage, and
throughput under different loads7. These metrics were chosen
as they reflect the system’s ability to handle multiple concurrent
requests, which is a key requirement for a practical, real-world
application. The average response rate indicates the system’s
speed, while the error percentage provides an indication of its
reliability. Throughput, measured as the number of requests
handled per unit of time, gives an idea of the system’s capacity8.
By comparing these metrics across different models and de-
ployment strategies, we aim to identify the most effective com-
bination for our tuberculosis detection system. This will enable
us to optimize the system for better performance, reliability, and
capacity, thereby improving its utility in real-world applications.

B. Performance Comparison of ML Models

Table II presents the comparative analysis of ML models:
DenseNet-201, VGG19, and MobileNet-V3-Small. We evalu-
ated the models based on several performance metrics such as
Test Binary Accuracy (TBA), Test Loss, Test Binary IOU, Test
Precision, Test Recall, and Test F1 Score. Upon examination
of the data, it is evident that the VGG19 model consistently

7https://pflb.us/blog/load-testing-metrics/
8https://www.blazemeter.com/blog/performance-testing-vs-load-testing-

vs-stress-testing https://www.blazemeter.com/blog/performance-testing-vs-
load-testing-vs-stress-testing
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outperforms the other two models across nearly all metrics.
The model boasts the highest Test Binary Accuracy at 86.33%,
which signifies a greater proportion of correct predictions. Fur-
thermore, it also excels in terms of Test Precision, at 87.5%,
indicating a lower rate of false-positive results. In the context
of Test Recall and Test F1 Score, VGG19 leads with scores
of 85.36% and 86.41% respectively, demonstrating a balanced
performance between precision and sensitivity. DenseNet-201
showed lower performance compared to VGG19 in our TB
classification study, recording the highest Test Loss at 60.23%.
The architectural design differences between the models con-
tributed to this outcome. VGG19, with its simple and deep stack
of small filters, is more effective at capturing hierarchical fea-
tures, leading to its higher performance, stability, and reliability.
DenseNet-201’s structure, though efficient in some scenarios,
was less aligned with the demands of tuberculosis detection from
chest X-rays. The VGG19 model’s robustness and reliability are
attributed to its architectural design, effective transfer learning
approach, and proven performance across diverse applications.
Its simple, deep architecture with small filters in convolutional
layers enhances hierarchical feature capture, contributing to its
high performance. The model’s adaptability and consistency are
further demonstrated in various applications, from crack detec-
tion in infrastructure to grape bunch segmentation in natural
images, showing its ability to maintain stability and reliability
across different tasks and data types.

On the other hand, both DenseNet-201 and MobileNet-V3-
Small fail to match the performance of the VGG19 model.
Particularly, DenseNet-201 exhibits the lowest scores across all
the metrics, including the highest Test Loss of 60.23%. This
disparity in performance can be attributed to several factors
intrinsic to the architecture of each model. DenseNet-201, while
effective in feature preservation and reuse, can be computation-
ally intensive due to its dense connectivity. This may lead to chal-
lenges in capturing more abstract features in complex medical
images like chest X-rays, crucial for accurate TB classification.
MobileNet-V3-Small, designed for efficiency and speed, may
compromise the depth and breadth of feature extraction needed
for TB detection. In contrast, VGG19’s deep architecture allows
it to excel in capturing a wide range of features from medical
images, outperforming the other models in our study by effec-
tively learning and differentiating subtle features indicative of
tuberculosis from chest X-rays. Although MobileNet-V3-Small
shows competitive scores in some areas, such as Test Precision,
its overall performance is still not on par with VGG19. Robust-
ness is important while choosing a deployment model. In this
regard, all metrics demonstrate VGG19 to be high-performing,
stable, and dependable. This reliability can be attributed to the
architecture of the VGG19 model, which employs a simple and
deep stack of small filters in its convolutional layers, enhancing
the model’s ability to capture hierarchical features effectively.
Based on the performance indicators and the architectural ben-
efits, we are selecting VGG19 as the model of choice for
deployment.

C. Performance Comparison of Deployment Strategies

Each cloud service deployment strategy has pros and cons.
These techniques meet various use cases, requirements, and
scalability demands. Herein, we compare two prevalent de-
ployment strategies: a traditional EC2-based approach utilizing
a t3.medium server instance and a more modern, serverless

TABLE III
PERFORMANCE METRICS OF AN EC2 T3.MEDIUM SERVER UNDER VARYING

LEVELS OF CONCURRENT USER REQUESTS OVER A 100-SECOND
RAMP-UP PERIOD

TABLE IV
PERFORMANCE METRICS OF SERVERLESS FARGATE AND EKS UNDER

DIFFERENT LEVELS OF CONCURRENT USER REQUESTS

approach using Fargate and EKS. These analyses and compar-
isons will offer a clearer understanding of the behavior of these
strategies under different loads, potentially guiding deployment
decisions for similar scenarios. The tests were conducted using
Apache JMeter, a renowned performance testing tool. For our
experiment, we subjected both deployment strategies to a range
of concurrent user requests, specifically, starting from 20 and
scaling up to 500. To ensure the results were not affected by
initial cold starts or sudden spikes, a ramp-up period of 100 sec-
onds was used, with each simulation running in a single loop. The
results of this experiment are detailed in this section. Table III
presents the performance metrics of the EC2 t3.medium server
under varying levels of concurrent user requests, while Table IV
depicts similar metrics for a serverless architecture using Fargate
and EKS. Several key observations can be drawn from the
data:

1) Initial Performance: For lower user loads, both deploy-
ment strategies manage to handle requests efficiently with zero
errors. The traditional EC2 instance has a slightly better through-
put at 20 concurrent users, but as the user load increases, the
serverless approach tends to cope better.

2) Average Response Rate: An apparent increment in the
average response rate is observed for the serverless architecture
when the number of users jumps from 100 to 200. Conversely,
the EC2 instance demonstrates a more consistent increase.

3) Error Rate: At higher levels of user concurrency, the
serverless architecture, surprisingly, showcases non-zero error
percentages. Specifically, at 200 concurrent users and beyond,
errors emerge, peaking at a significant 34.67% for 300 users.
This behavior suggests that while the serverless approach is
highly scalable, it may experience difficulties under sudden and
intense load surges. Serverless computing is known for its high
scalability, which is characterized by automatic scaling to match
demand, the use of microservices allowing independent scaling
of application components, and cost-effectiveness with payment
models based on actual resource usage [43]. However, the role
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Fig. 4. Comparison of Average Response Rate for Server-based
(EC2) and Serverless (Fargate and EKS) Architectures with Varying
Concurrent Users.

of error rates in scalability cannot be overlooked. Low error
rates lead to more efficient resource utilization, whereas high
error rates may necessitate additional resources to manage failed
executions. Serverless platforms use error rates to manage the
health of functions, allocating more resources when high error
rates are detected. Analyzing error rates also provides feedback
for optimizing applications, thereby improving scalability. In
conclusion, the scalability of serverless methods is greatly in-
fluenced by error rates. Efficient management of these rates is
crucial for maintaining optimal scalability and performance in
serverless architectures.

4) Throughput: It is a measure of how many units of infor-
mation a system can process in a given amount of time, and
doesn’t exhibit a consistent trend for either architecture. While
the serverless approach has slightly decreased throughput at 80
users, it bounces back and surpasses the EC2 instance at higher
loads. AWS Fargate’s integration with EKS enhances throughput
by offering innovative cloud container management, particu-
larly beneficial for scientific computing. This setup provides
cost-effective performance, elasticity, scalability, and reduced
delays. Fargate’s on-demand capacity is crucial for dynamic
scaling, optimizing resource utilization and ensuring consis-
tent throughput across varying workloads. The simplification in
managing Kubernetes clusters, by eliminating server provision-
ing and management, indirectly boosts throughput. Addition-
ally, optimized container orchestration and network routing in
Fargate-EKS integration improve network performance, which
is essential for high throughput in distributed applications.

Fig. 4 presents a visual comparison between the average
response rate of server-based deployments, using an EC2 in-
stance, and serverless configurations utilizing Fargate and EKS,
benchmarked against varying levels of concurrent user requests.
Each column in the chart corresponds to the average response
rate for a specific number of concurrent users. Initially, at lower
user counts, the height of the columns for both deployment
strategies are quite similar, signifying nearly equivalent perfor-
mance metrics under light loads. As the concurrent user number
rises, distinct differences in the column heights begin to emerge.
The EC2-based deployment columns grow in a more steady and
uniform manner, illustrating the predictable nature of traditional
server-based architectures. It shows how, with the increase in
load, the server’s response time exhibits a gradual and linear
degradation.

Fig. 5. Comparison of Throughput (requests per minute) for Server-
based (EC2) and Serverless (Fargate and EKS) Architectures with Vary-
ing Concurrent Users.

In contrast, columns representing the serverless architectures
of Fargate and EKS exhibit a more variable growth pattern. Up
to a certain threshold of users, the response rates are competitive,
possibly even outperforming the EC2 instance. This resonates
with the on-the-fly scalability of serverless models. However,
at the upper echelons of user counts, the column heights for
the serverless configurations become notably taller, indicating
increased response times. An increased response time, especially
in serverless configurations like Fargate and EKS, indicates a
potential overhead related to cold starts or the time required
to provision additional resources in real-time. This variability
in response times represents a trade-off between the steady
performance of traditional server systems and the dynamic
but sometimes unpredictable nature of serverless setups. The
average response rate is a critical metric reflecting the system’s
speed. A higher response rate implies a slower system, which
can impact the overall efficiency of the application, particularly
in real-world scenarios where timely processing is essential.
Moreover, the error percentage, which indicates the reliability
of the system, can also be affected by increased response times.
In our system, these aspects are crucial for handling multiple
concurrent requests efficiently, a key requirement for practical
applications like our tuberculosis detection system. This could
be symptomatic of the overheads related to cold starts or the time
taken to provision additional resources in real time In essence,
Fig. 4 effectively captures the balance between the steady perfor-
mance of traditional server systems and the dynamic, but occa-
sionally unpredictable, nature of serverless setups. The decision
between the two would hinge on specific use-case requirements,
traffic predictability, and tolerance for variability in response
times. In Fig. 5, the comparative throughput performances of two
deployment strategies–EC2 Server t3.medium and AWS Fargate
combined with EKS–are visualized across varying concurrent
user loads. For the lower user count, specifically up to 80
concurrent users, both deployment strategies exhibit relatively
close throughputs, with EC2 marginally outperforming Fargate
and EKS in most cases. However, as we transition to higher user
loads, the gap in performance becomes more apparent. Notably,
at 300 concurrent users, the AWS Fargate and EKS combination
achieves a significant jump, reaching a throughput of 21.3 re-
quests/min, which surpasses the EC2’s consistent performance
of around 15.4 requests/min. This suggests that, under higher
loads, the serverless architecture of Fargate combined with EKS
might offer better scalability and responsiveness compared to
the t3.medium instance of EC2.
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V. CONCLUSIONS AND FUTURE WORK

TB remains a formidable global health challenge. To address
this, our paper embarked on a rigorous exploration of various
CNN architectures, capitalizing on the power of transfer learning
to predict TB presence in the lungs. The fusion of AI and
ML was instrumental in this endeavor, illuminating the latent
potential of technology in healthcare diagnostics. In our study,
the VGG19 model stood out as the top performer based on
test data results. Still, Densenet-201 and Mobilenet-V3-Small
also delivered impressive outcomes, highlighting the crucial
role of picking the right model for specific diagnostic needs.
We adopted serverless computing, specifically AWS Fargate,
and EKS, due to its unmatched flexibility, cost-effectiveness,
and on-the-fly resource allocation, making it the go-to choice
for real-time medical applications. Traditional servers, like EC2
t3.medium, while consistent, cannot match the dynamic scal-
ability of serverless options. However, it’s worth noting that
serverless solutions can sometimes experience “cold start la-
tency”, a minor hiccup in an otherwise superior solution9. Our
observational metrics revealed a parity in throughput between
both deployment paradigms at lower user concurrency. However,
the scalability acumen of serverless computing came to the
fore with rising user requests, distinctly outshining traditional
servers around the 300-user threshold. Caution, however, is
warranted. Our serverless deployments, while agile, began regis-
tering heightened error rates beyond 200 concurrent interactions,
hinting at possible vulnerabilities when grappling with abrupt
traffic surges.

Building upon the conclusions, we identify several promising
avenues for future research: i) Exploring Advanced Architec-
tures: Delving deeper into newer or hybrid neural network
architectures might yield even better diagnostic accuracies. To
improve this paper in future studies, chest X-ray images from
different hospitals can be studied for a federated learning envi-
ronment. Additionally, using more advanced transfer learning
models in the future may further increase the prediction rate on
TB. ii) Real-time Diagnostics: Extend the model implementa-
tions for real-time analysis, catering to continuous data streams
from medical diagnostics equipment. iii) Optimizing Deploy-
ment Strategies: A focused study on fine-tuning both server and
serverless deployments could help in further reducing latencies
and improving resource utilization. iv) Incorporating Diverse
Data Points: Broadening the dataset to include parameters like
patient history and demographics may improve the predictive
accuracy of the models. v) Disease Spectrum Extension: The
methodology’s success for TB suggests its applicability to other
diseases. Extending this to other medical conditions could be
groundbreaking. vi) Comprehensive Cost-Benefit Analysis: As
cloud and serverless technologies evolve, a detailed analysis
considering cost, performance, and reliability could guide in-
stitutions in deployment decisions. vii) Serverless Paradigm
based Shortcomings: In addition to the previously mentioned
advantages, serverless platforms also bring with them some
disadvantages that need to be solved, such as cold start latency,
error rates at high concurrency, and traditional VM limitations.
Efforts to resolve these concerns will increase users’ trust in the
system.

9https://azure.microsoft.com/en-us/blog/understanding-serverless-cold-
start/

SOFTWARE AVAILABILITY

It has been released as open-source software. The implemen-
tation code with experiment scripts and results can be found in
the GitHub repository: https://github.com/Subramaniam-
dot/CNN-Architectures-and-Deployment-Models-for-
Tuberculosis-Detection-Using-Serverless-Computinge-
healthcarefaas
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