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Abstract—The dependencies across different layers are an
important property in multiplex networks and a few methods
have been proposed to learn the dependencies in various ways.
When capturing the dependencies across different layers, some
of them assumed the structure among layers following consistent
connectivity to force two nodes with a link in one layer tend to
have links in other layers, some introduced a common vector to
model the shared information across all layers. However, the
correlations among layers in multiplex networks are diverse,
which go beyond the connectivity consistency. In this paper, we
propose a novel Modeling Correlations for Multiplex network
Embedding (MCME) framework to learn the robust node repre-
sentations for each layer. It can deal with complex correlations
with a common structure, layer similarity and node heterogeneity
through a unified framework in multiplex networks. To evaluate
our proposed model, we conduct extensive experiments on several
real-world datasets and the results demonstrate that our proposed
model consistently outperforms state-of-the-art methods.

Index Terms—Multiplex Network, Multiplex Network Embed-
ding, Link Prediction, Layer correlations, Node correlations

I. INTRODUCTION

In recent years, with the rapid expansion of network data

volume and access, data representation in the form of multi-

plex networks is becoming an increasingly common practice.

Generally speaking, a multiplex network is composed of a

set of nodes and different types of connections. Each type of

link and its nodes constitute a layer with special functions

and structure for the multiplex network. With their powerful

representation and modeling capabilities, multiplex networks

have a variety of research tasks and applications. Compared

with a single or homogeneous network, certain network tasks

based on this network, e.g., community detection and link

prediction, pose new challenges. One of the most important is

the complex dependencies across the different layers.

To model the dependency in multiplex network, there have

been a few studies on multiplex network embedding, e.g.,

matrix factorization-based [1], [2], random walk-based [3], [4]

and deep neural network-based [5]–[7]. For the ones modeling

the correlations among layers, [8], [9] think nodes in all layers

tend to have a consistent connectivity structure and force node

embeddings for the same node in different layers closer to

share the consistent structure. [4], [6] model the cross-layer

node pairs which also lead to two nodes linked in one layer

are more likely to link with each other in another layer. [3], [5]

introduce a common vector to model the shared information

across all layers in multiplex networks. [7] require some prior

knowledge to select the most informative layer or the hierarchy

dependencies between the layers while this prior knowledge

is sometimes difficult to obtain.

However, in many real-life multiplex networks, the seman-

tics between the layers are usually different, or even opposite,

and the statistical characteristics of the same node across

layers are significantly different. Then the correlations among

layers are not only the connectivity consistency or the shared

common information of the same nodes in different layers, and

nodes in different layers have specific and diverse structure so

that links in one layer may not exist in another layer, e.g., in a

social network, the structure between the networks constructed

by the types of following and messaging may be more similar

than the structure between the messaging and comment, or

for the networks constructed by the types of following and

blacklist relationships, in which the users to follow and to

blacklist are not completely different. The existing approaches

mentioned above have lost the ability to model the complex

correlations and are not well applicable to these networks with

large structural differences.

For clarity, we take a popular multiplex network from CKM

data [10] as an example. Fig. 1(a) shows the 7th node and its

ego network of all three layers and we take a case to predict the

top-5 links for node 7 in each layer. We can see that the edges

of node 7 existing in the second layer are also likely to exist in

the first layer, while the third layer does not actually have the

same edge as the other two layers. The predicting results of

different models on this dataset are shown in Fig. 1(c). It can
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Fig. 1. (a) shows node 7 and its ego network of all three layers based on CKM dataset. (b) is a simple diagram of Layer Correlation and Node correlation
based on (a). (c) intuitively shows the results of our model and several baseline models on predicting top-5 links for node 7 in each layer.

be seen that in the third layer, MNE [3] and CrossMNA [5]

tend to predict the edges that exist in the other two layers

even if the third layer does not actually have the same edge as

the other two layers. As a single-layered embedding method,

vgae [11] only focuses on the structural information within

the layer. Even if both two links of node 7 in the second

layer exist in the first layer, the prediction of each layer is

independent of other layers. In contrast to the poor results of

these algorithms, our proposed model can model the complex

dependencies across the layers and is completely accurate for

predicting the real edges in each layer.

The great superiority of this model is mainly because

the link correlations in multiplex networks are not just the

connectivity consistency or shared structure, but also more

complex. Modeling complex link correlations can make our

model more robust and not just applicable to the networks

following the connectivity consistency. We depict them from

two perspectives. From the layered perspective, each layer

in a multiplex network has its own unique semantics. The

semantics of some layers are relatively close to each other,

while the semantics of other layers may be very different

or even opposite. Then, we define a Layer Correlation (LC)

index, which is measured by the intersection of the edge sets

of different layers. As shown in Fig. 1(b), the correlation

between G1 and G2 is more related than G3 and G1 (or G2).

More subtly, from the node perspective, the correlations of

nodes between layers are also varying. In some layers, the

structure of nodes is similar, while in other layers, it may

be considerably different. Correspondingly, we define a Node

Correlation (NC) index to weigh the difference of degrees

and neighborhoods of nodes in different layers. As shown in

Fig. 1(b), the correlation of node 7 between the first layer

and the second layer is positive, while the correlation between

the third layer and the second layer is negative. With the

constraints of Layer Correlation and Node Correlation, we

enforce the vectors with greater correlations to be closer and

with weaker or negative correlations to be further.

In summary, our major contributions can be listed as fol-

lows:

• We investigate the existing multiplex network embedding

methods and find that when modeling the dependencies

across different layers, some models need necessary

prior knowledge about the relationship between layers,

while some models consider nodes to be consistent in

connectivity or think there is some shared information

between anchor nodes. However, from the datasets in

real life, we find that the correlations are more complex

and multiple aspects, e.g., varying degrees and different

directions (positive and negative).

• We divide the correlations in multiplex networks into

layer correlation and node correlation. And we define

two indexes to separately formalize their degrees of

correlation.

• We propose a novel Modeling Correlations for Multiplex

network Embedding (MCME) framework, which incor-

porates the complex link correlations in multiplex net-

works into the node representation learning process of

each layer. Extensive experiments on several multiplex

networks prove the effectiveness of our model.

II. PROPOSED METHOD

A. Framework and Overview

In a multiplex network, the different semantic meanings

at each layer will lead to diverse structures. As shown in

Fig. 1(a), the connections of node v7 vary in each layer.

However, different types of connectivity relations share the

same set of nodes. Therefore, as the same entity, they display

some common features across the networks. For example, as

shown in Fig. 1(a), the connections of node v7 that exist in

the second layer are very likely to exist in the first layer.

However, the correlation in a multiplex network is not just the

consistency of connectivity between nodes. For instance, the

connections of node v7 in the third layer do not actually have

the same connection as the other two layers. The correlations

are complex and multiple aspects and modeling the complex

link correlations can make the model more generalized and

not just applicable to the networks that follow the connectivity

consistency. Therefore, we propose a model MCME to model

the link correlations in multiplex networks. Fig. 2 shows the

overall framework of MCME.

MCME is mainly composed of three components, namely,

learning the common features among nodes in all layers
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by encoding on the aggregated network regardless of the

relation types, generating the node representations in each

layer by combining common vectors and layer vectors, and

integrating complex correlations, including constraints of layer

correlations and node correlations. The overall objective of our

approach is to minimize the following loss function:

L = lossagg + lossel + α · losslc + β · lossnc. (1)

Next, we will introduce the details of each part.

LC

NC

Fig. 2. The proposed MCME framework.

B. Encoder on Aggregated Networks

As the same entity in different layers of a multiplex network,

nodes share some common features across the networks.

To leverage the common information among nodes in the

multiplex network, we define common vectors z ∈ Rd1 for

nodes to preserve the common features and it is learned in a

new aggregated network. Firstly, we aggregate a single-layered

network G0 = (V, ξ0), by merging the edges in all layers

regardless of the type. Then, we get the node representations

in the aggregated network G0 by an inference model:

q(Z | I,A0) =

N∏
i=1

q(zi | I,A0), (2)

q(zi | I,A0) = N (zi | μi, diag(σ
2
i )), (3)

where μi and σi are learning by a two-layer GCN [12]:

μ = GCNμ(I,A
0), (4)

σ = GCNσ(I,A
0), (5)

GCN(I,A0) = Ã0ReLU(Ã0IW0)W1, (6)

where μ and σ are the matrices of mean vectors μi and

variance vectors σi, respectively. W0 and W1 are weight

matrices, GCNμ and GCNσ share the first-layer parameters

W0. Ã0 = D0− 1
2 (A0 + I)D0− 1

2 is the symmetrically

normalized adjacency matrix, D0 is the degree matrix of G0

and I is the identity matrix.

With the object of reconstructing the adjacency matrix, the

node distributions with μ and σ should be similar to the

standard Gaussian, the loss function is defined as:

lossagg = −
[ ∑
(v0

i ,v
0
j )∈ξ0

log(p(v0i , v
0
j )+

∑
(v0

i ,v
0
j )∈ξ0neg

(1− log(p(v0i , v
0
j ))

]

−KL
[
q(Z | I,A0) ‖ p(Z)

]
, (7)

where p(v0i , v
0
j ) denotes the edge probability between vi and

vj in G0, and ξ0neg is all the node pairs that are not in ξ0.

KL [q(·) ‖ p(·)] is the Kullback-Leibler divergence between

q(·) and p(·), p(Z) =
∏

i p(zi) =
∏

i N (zi | 0, I) is a

Gaussian prior.

We use the inner product to denote the edge probability

between vi and vj , which is defined as follows:

p(v0i , v
0
j ) = σ(zT

i zj), (8)

where σ(·) is the logistic sigmoid function.

C. Generate Node Representations in Each Layer

The different semantics at each layer in the multiplex

network will lead to diverse structures. To capture the unique

characteristics of each layer in G, we define layer vectors to

extract the semantics of the network, i.e., rl ∈ Rd2 for the

network of the l − th layer. Combining the node distribution

with μ and σ learned in the above section with layer vector,

we can get the node representations in each layer, i.e., node

vi the l − th layer, as follows:

zli = N (zi | μi, diag(σ
2
i ))⊕ rl, (9)

where zli ∈ Rd and ⊕ is the sum operation. Their dimensions

must be equal, i.e., d1 = d2 = d, and then we have zli as

follows:

zli = N (zi | μi, diag(σ
2
i )) + rl. (10)

Through the combination, Zl represents the node embedding

matrix in each layer, which contains not only the commonness

among nodes, but also the unique characteristics of the selected

network.

With the node representations in each layer, we reconstruct

the adjacency matrix of each layer by minimizing the follow-

ing loss function:

lossel = −
L∑

l=1

[ ∑
(vl

i,v
l
j)∈ξl

log(p(vli, v
l
j)+

∑
(vl

i,v
l
j)∈ξlneg

(1− log(p(vli, v
l
j))

]
, (11)

where ξlneg is all the node pairs that are not in ξl. p(vli, v
l
j)

denotes the edge probability between vi and vj in layer l
calculated by the internal product, the same as the previous

section:

p(vli, v
l
j) = σ(zl

i

T
zl
j). (12)
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It should be noted that due to the sparsity of network

in real life, the number of negative edges is very large

and can generally be linearly bounded by the number of

nodes. It is computationally expensive to consider all the

pairs in loss functions defined in Eqs.7 and 11. To solve this

problem, we use the negative sampling approach [13]. For

each (vi, vj) ∈ ξl, we randomly sample k nodes that are not

connected to node vi in layer l. These k samples are put into

the set of negative samples. In this way, the size of negative

samples is only k times as large as that of positive samples.

D. Modeling Correlations

We divide the correlations in the multiplex network into

layer correlation and node correlation and define two indica-

tors to measure the correlation degree, respectively.

1) Modeling Layer Correlations: We use the global overlap

rate between two layers for quantification to formalize layer

correlations.

LCl1l2 =
| ξl1 ∩ ξl2 |
| ξl1 ∪ ξl2 | , (13)

where l1 and l2 are the layers, ξl1 and ξl2 are their respective

edge sets, and | · | is the size of the set. The range of LC is [0,

1]. The larger the value of LC, the more similar the network

structure of the two layers. If the network structures of the

two layers are completely different, then LC = 0.

We enforce the layer vectors closer to the larger layer

correlations among layers by the following terms:

losslc =

L∑
l1=1

L∑
l2=l1+1

|| rl1 − rl2 || LCl1l2 . (14)

2) Modeling Node Correlations: For node correlations, we

mainly consider two important properties of nodes: degree and

neighborhoods. For the correlation in the degree of node vi
between layers l1 and l2, we have:

NCl1l2
d = e−|d(vl1

i )−d(v
l2
i )|, (15)

where | · | is an absolute value, d(vl1i ) and d(vl2i ) denote the

degree of node vi in layers l1 and l2, respectively. The greater

the difference between the degrees of the nodes in the two

layers, the smaller the correlation.

For the correlation in neighborhoods of node vi between

layers l1 and l2, we have:

NCl1l2
n =

1

1 + e−|N (v
l1
i )∩N (v

l2
i )|

, (16)

where N (vl1i ) and N (vl2i ) denote the neighborhoods of node

vi in layers l1 and l2, respectively. The larger the size of the

intersection of node neighborhoods in the two layers, the larger

the correlation. Finally, the node correlation index of node vi
can be expressed as:

NCl1l2
i =

⎧⎨
⎩
− 1

1+e−|d(vl1
i

)−d(v
l2
i

)|
, if | N (vl1i ) ∩N (vl2i ) |= 0,

2NCl1l2
d NCl1l2

n

NCl1l2
d +NCl1l2

n

, otherwise.

(17)

If the size of the intersection of node neighborhoods in the

two layers equals zero, it indicates that the node structures of

these two layers are not similar. Therefore, we set the correla-

tion to be negative and the greater the difference between node

degrees, the greater the value. Otherwise, if it is not zero, the

value of NC is the harmonic mean of NCd and NCn. Through

the node correlation, we enforce the node vectors closer to the

positive larger node correlations among layers and further to

the negative node correlations by the following terms:

lossnc =

L∑
l1=1

L∑
l2=l1+1

|| Zl1 − Zl2 || NCl1l2 , (18)

where Zl1 and Zl2 are the node embedding matrix in Gl1 and

Gl2 , respectively, and NCl1l2 is the node correlations matrix

between layers l1 and l2.

By integrating all objectives, the final objective of the

MCME framework can be summarized below:

L = lossagg + lossel + α · losslc + β · lossnc, (19)

where α and β are parameters used to control the weight of

the regularization terms.

III. EXPERIMENT

In this section, we conduct experiments on several real-

world multiplex networks to evaluate the performance of the

proposed model,. We first introduce the datasets that will be

used in the evaluation. Then, we describe the experimental

settings. Finally, we show the detailed experimental results.

TABLE I
STATISTICS OF THE DATASETS.

Networks Layers Nodes Edges Type LC NC
CKM 3 246 1,551 Social 0.214 0.062

SacchCere 7 6,570 282,754 Genetic 0.019 -0.488
MUS 7 7,747 1,9842 Genetic 0.010 -0.876

Drosophila 7 8,215 43,366 Genetic 0.005 -0.770
Moscow 3 88,804 210,256 Social 0.040 -0.484

A. Datasets

In our experiments, we work on five public datasets from

social and genetic domains. All datasets are obtained from Co-

MuNe lab’s web site1. We provide detailed information about

each dataset and summarize the dataset statistics in Table I,

where LC and NC denote the average layer correlations and

node correlations among layers of dataset.

B. Baseline Methods

To show the effectiveness of our method, we compare three

types of baseline methods, namely, single-layered embedding

models, heterogeneous and multiplex embedding models.

• vgae [11]: An embedding model for single-layered net-

works. It is an inference model parameterized by a two-

layer GCN.

1https://comunelab.fbk.eu/data.php
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Fig. 3. ROC-AUC scores of link prediction on four datasets.

Fig. 4. AP scores of link prediction on four datasets.

• node2vec [14]: An embedding model for single-layered

networks. It designs a biased random walk and explores

diverse neighborhoods to learn richer representations.

• LINE [15]: An embedding model for single-layered net-

works. It preserves both the first-order and second-order

proximities in a network.

• R-GCN [16]: An embedding model for heterogeneous

networks. It develops neural networks to heterogeneous

networks and specifically deals with the highly multi-

relational data characteristic of realistic knowledge bases.

• MNE [3]: An embedding model for multiplex networks.

MNE jointly learns a high-dimensional common embed-

ding and a lower-dimensional additional embedding for

each layer through a unified embedding model.

• mGCN [6]: An embedding model for multiplex networks.

mGCN is a multi-dimensional graph convolutional net-

work, which captures the interactions within and across

multiple dimensions.

• CrossMNA [5]: An embedding model for multiplex net-

works. The final embedding is generated by combining

the layer vector for each layer and the common embed-

ding for each node.

C. Experimental Settings

1) Evaluation Metrics: In our experiments, we perform link

prediction tasks at each layer of multiplex networks to verify

the effectiveness of learned node embeddings. We randomly

split all edges in each layer into two sets for training and

testing, respectively. We vary the training set rate from 10%
to 70% in 10% increments. We also randomly sample the

same number of unconnected node pairs with positive edges

in the test set as negative edges and use both the positive

and negative edges for testing. Moreover, we use areas under

the ROC curve (ROC-AUC) and Average Precision (AP) to

evaluate the performance. Higher values of ROC-AUC and

AP indicate better link prediction performance.

2) Parameter Settings: The basic experiment we conduct

is link prediction in each layer of multiplex networks. So the

single-layer network embedding methods learn separately in

each layer and then used the learned representation to predict

the links in the corresponding network. All models set 128

as the dimension of the final embedding. For LINE, we set

the feature embedding dimensions for first-order proximity

and second-order proximity both to 64 and concatenate them

together as the final node embedding. For CrossMNA, the

dimensions of layer vector d1 and inter-vector d2 are set as 128

and 100, respectively. For mGCN, we use the representations

learned by node2vec on each dataset as input. For MNE, the

dimension of additional vectors to be 10 following the original

work. Additionally, for node2vec, the best hyper-parameter is

empirically set as p = 2 and q = 0.5.

D. Performance Analysis

We evaluate the quality of the learned embedding by taking

link prediction in each layer, and take the average results of all

layers as the final result. We evaluate the ROC-AUC and AP

values of different models with the training ratio from 10% to

70% in 10% increments. We take five times experiments for

each training ratio and take the average as the final result. The

results are shown in Figs. 3 and 4 and Table II, where Fig. 3

shows the ROC-AUC scores on four relatively small datasets,

Fig. 4 shows the AP scores and Table II shows the ROC-AUC

and AP scores on Moscow and the test error (mean absolute

error) on this dataset. Note that due to out of memory, we do
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TABLE II
THE ROC-AUC AND AP SCORES OF LINK PREDICTION ON THE MOSCOW DATASET, WHERE 10%-40% INDICATES THE TRAINING RATE AND THE

STANDARD DEVIATIONS ARE REPORTED IN THE PARENTHESES.(BOLD IS BEST)

Model
10% 20% 30% 40%

ROC-AUC AP ROC-AUC AP ROC-AUC AP ROC-AUC AP
node2vec 0.425(0.000) 0.472(0.000) 0.393(0.002) 0.458(0.001) 0.376(0.001) 0.451(0.001) 0.371(0.001) 0.451(0.001)

LINE 0.496(0.004) 0.498(0.002) 0.490(0.008) 0.496(0.003) 0.500(0.001) 0.500(0.002) 0.501(0.002) 0.501(0.002)
R-GCN 0.500(0.000) 0.500(0.000) 0.500(0.001) 0.499(0.000) 0.375(0.001) 0.455(0.001) 0.501(0.000) 0.500(0.000)
MNE 0.541(0.001) 0.501(0.000) 0.575(0.000) 0.505(0.001) 0.589(0.001) 0.501(0.528) 0.0.627(0.002) 0.551(0.002)

mGCN 0.500(0.001) 0.523(0.000) 0.505(0.001) 0.530(0.001) 0.510(0.001) 0.533(0.006) 0.511(0.002) 0.537(0.001)
CrossMNA 0.467(0.001) 0.484(0.001) 0.547(0.002) 0.531(0.001) 0.616(0.002) 0.581(0.001) 0.674(0.002) 0.629(0.003)
MCME 0.624(0.004) 0.717(0.004) 0.684(0.001) 0.756(0.002) 0.713(0.001) 0.773(0.001) 0.721(0.002) 0.776(0.002)

not experiment with them on Moscow with vgae. From the

experiment results, we can make the following observations:

• Our proposed model MCME almost outperforms the

other baselines on all datasets. Especially, MCME can

yield significant improvement on sparse, small layer

correlation and negative node correlation networks. For

example, on the MUS dataset by the ROC-AUC, MCME

can boost the performance around 5% -11% compared to

the best baseline when the training rate is increased from

10% to 70%.

• As the rate of training data gradually increases, the results

of all models will be improved. That’s because as the

training rate increases, the network structure becomes

more complete and the information becomes more ad-

equate.

• Our model can achieve promising results with a small

rate of the training set. Almost on all the datasets by the

30% of training rate can achieve comparable results with

70% but on the MUS dataset because it is too sparse.

• In general, multiplex embedding models can obtain better

results than single-layered embedding models, especially

on the CKM and Moscow, where network structures

in each layer are relatively similar. This indicates that

modeling the complex dependencies across the different

layers is effective.

IV. CONCLUSION

Multiplex networks are becoming an increasingly common

practice in real life, in which multiple types of connectivity

relations exist among a set of nodes. Most existing studies

work overlooked the complex properties of correlations in

multiplex networks. In this paper, we propose MCME, a novel

embedding method for multiplex networks, which models

the complex correlations in multiplex networks. We test our

method for link prediction tasks using five datasets compared

with some state-of-the-art baseline models. The experimental

results show the generalization ability of our model. It obtains

comparable performance in the aspect of connectivity consis-

tency after multiplexing, and has significant advantages on the

multiplex networks with different structures. In future work,

we will extend our model to weighted and heterogeneous

networks.
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