
Tradeoff between Performance Improvement and

Energy Saving in Mobile Cloud Offloading Systems

Huaming Wu, Qiushi Wang and Katinka Wolter

Department of Mathematics and Computer Science

Free University of Berlin

Takustr.9, 14195 Berlin, Germany

Email: {huaming.wu, qiushi.wang and katinka.wolter}@fu-berlin.de

Abstract—Cloud computation offloading is a promising method
that sending heavy computation to resourceful servers on cloud
and then receiving the results from them. In this paper, we
study the offloading techniques and further explore the tradeoff
between shortening execution time and extending battery life of
mobile devices. A novel adaptive offloading scheme is proposed
and analyzed based on the tradeoff analysis. And it can be
realized thanks to the elasticity of cloud computing that the
resources can be bought on demand. We have tried to find
a server on cloud with a critical value of speedup F for a
specified mobile device. When satisfying the requirement such as
performance improvement by the system, it is worth sacrificing
large F when taking economic factor into consideration.

Index Terms—offloading; energy; time; tradeoff; cloud com-
puting

I. INTRODUCTION

Recently, the issues of energy saving and performance

improvement on mobile devices are becoming more and

more concerned [1, 3, 5]. It is challenging to run very

complex applications on the mobile devices because of the

strict constraints on their resources such as memory capacity,

network bandwidth, CPU speed and battery power [1]. This

is not just a temporary limitation of current mobile hardware

technology, but is intrinsic to mobility.

Cloud computing is becoming increasingly popular these

days due to its features like elasticity, scalability and

inexpensive. Along with the maturity of cloud computing

[2], offloading the program from mobile devices to cloud is

one of the attractive ways to overcome the above problems.

Offloading brings many potential benefits, such as energy

saving, performance improvement, reliability improvement,

ease for the software developers, better exploitation of

contextual information and so on. The main advantage of

cloud computing is its elastic execution that resources can

be obtained on demand, it is an enabler for computation

offloading. Therefore, we can choose the server on cloud that

required by users to offload the program on mobile devices.

Cloud offloading has the potential to save execution time

and energy consumption but the savings from offloading

the computation need to exceed the time and energy cost

due to the additional communication between mobile

devices and cloud [3]. The issue of how to make offloading

decision has been extensively explored but is still under

widely investigation since it’s combined by cloud computing

technique.

In our analysis, we discuss the tradeoff between reducing

execution time and saving energy consumption in cloud

offloading systems. When considering the economic factor,

the tradeoff point is strongly dependent on a speedup factor.

For a specified mobile device, it can be found that a server

with a critical value of speedup on cloud. Therefore, when

meeting performance improvement required by the system,

it is worth sacrificing energy consumption in order to save

money and resources.

Accordingly, the main contributions of our research

are two-fold. Firstly, we present the tradeoff analysis of

performance improvement and energy saving when making

offloading decisions. We cut the execution time into three

intervals, namely, never offload, tradeoff and always offload.

Secondly, we propose and study a novel adaptive offloading

model based on the above tradeoff interval. A server on cloud

with a critical value of speedup F for a specified mobile

device can be found due to the elasticity of cloud computing.

The remainder of this paper is proceeded as follows.

Section II presents how to make offloading decisions based

on performance improvement and energy saving. Section III

analyzes the tradeoff between performance improvement and

energy saving. An adaptive offloading scheme is proposed and

investigated in Section IV. Section V concludes the paper.

II. OFFLOADING DECISIONS

To begin with, we will provide a brief introduction of

mobile cloud computation offloading systems.

A typical architecture of cloud offloading systems is

depicted in Figure 1. There are three major components,

resource monitoring, cost and partition models, separately.

Resource monitoring model is used to collect resource

information such as CPU utilization, battery level, speed and

network bandwidth. And the partition model is to cut the

composing classes of the application into remote partition and

978-1-4673-5753-1/13/$31.00 ©2013 IEEE

IEEE International Conference on Communications 2013: IEEE ICC'13 - 1st International Workshop on Mobile Cloud
Networking and Services (MCN)

738

local partition, where the former is offloaded to cloud and

the latter is executed locally on the mobile device. The key

component is the cost model, where the offloading decision

is further made based on a selected cost criterion. There are

six criteria listed in Figure 1, on the one side, energy, price

cost and storage are cost criteria which are the less the better,

and on the other side, performance, robustness and security

are benefit criteria which need to be maximize. Among these

criteria, energy and performance are the most two important

aspects concerned by the mobile users, and thus we will

mainly focus on them in the following analysis.

It is obviously that offloading the application from mobile

devices onto the remote cloud server can shorten execution

time and save energy consumption. However, remote execution

is an opportunistic alternative, but not a must, because pro-

cessing on the cloud requires additional data communication,

which may increase the time and the battery consumed by

communication. Therefore, offloading decisions should be

made when encountering with large communication data or

low bandwidth. Is it worth to offload the program from local

to the cloud? We will expand it in two ways.

Cost

Minimize

cost

Maximize

performance

Minimize

energy

Maximize

robustness
Maximize

security

class
class

class
class

class

Application

Cloud

Mobile

device

offload

Battery level

Network bandwidth

Device load

Cloud load

CPU utilization

Speed

local

Resource

monitoring
Partition

class
class
class

class
class

Remote partition

Locate partition

Minimize

storage

Fig. 1. Architecture of cloud offloading systems

A. Performance improvement

Computation offloading has become an attractive way for

reducing execution time required by users, due to applications

on mobile devices are becoming increasing intensive, and

performance is an important factor to consider. Take the speech

recognition of Apple’s new product Siri on iPhone 4s [4] for

example, the amount of computing is too large to perform on

the iPhone 4s and it will take such a long time to get the

result that it can’t meet the user’s need, and thus it should

be offloaded to the cloud, in order to save time and improve

performance.

We will take execution time saving into consideration when

making offloading decisions. The parameters used below are

listed in Table 1.

For communication time, we assume that the bandwidth

remains the same for the bidirectional communication, and

thus it takes D
B

seconds to transmit and receive data. The

TABLE I
PARAMETERS OF OFFLOADING

symbol meaning

pm power for computing

pi power while being idle

ptr power for sending and receiving data

B network bandwidth

D exchanged data

tm execution time on the mobile device

ts execution time on the server

time incurred by offloading is the sum of communication

time and computing time on the cloud server and it should

be smaller than the execution time on the mobile device in

order to improve performance.

Therefore, it is worth offloading the program to the cloud

rather than executing on the local, when it meets the following

condition [5]

tm > ts +
D

B
(1)

From equation (1), it can be seen that offloading can improve

performance when execution, including computation and com-

munication, can be performed faster on the cloud than on the

mobile device.

B. Energy saving

Energy is another primary aspect that must be considered

when making offloading decisions. An investigation engaged

by thousands of users around the world indicated that longer

battery life to be more important than all other features [6].

Mobile devices such as ipad and iphone are more and more

frequently used for watching videos, web surfing, interactive

gaming, augmented reality and other purposes which consume

huge power and shorten the battery life as a result. Further,

these applications are too computation intensive to be executed

on a mobile system.

Mobile device

Cloud server

m

i

m

 power for executing

 power for idle

 execution time

p

p

t

 power for transmit and receivetrp

D B time for transmit and receive

st execution time on cloud

Fig. 2. Diagram of energy cost during the whole offloading process

According to the diagram of energy cost during the whole

offloading process described in Figure 2, it is worth offloading

739

the program to the cloud in order to save energy rather than

executing on the local, when [7]

pmtm > pits + ptr
D

B
(2)

Similarly, it is found from equation (2) that offloading can

save energy when the energy spent on communication and

computation on the cloud is much smaller than the energy

consumed by the mobile device.

III. TRADEOFF ANALYSIS

A. Problem definition of tradeoff

In equation (1) and equation (2), for simplicity, let D
B

= C

and tm = Fts, where the speedup F indicates how powerful

a cloud server is in terms of execution speed comparing with

that of the mobile device. Normally, F is much larger than 1
due to the servers are resource-rich while the mobile device

is resource-limited.

For allowing offloading to improve performance and save

energy at the same time, it has to satisfy the following two

conditions

tm >
tm

F
+ C (3)

pmtm > pi
tm

F
+ ptrC (4)

The inequalities in (3) and (4) maintain under several

conditions: large F that the server is much faster than the

mobile device, small D that only a small amount of data is

exchanged, and large B that the network bandwidth between

the mobile device and the server is high [8].

In order to analyze the relation between remote execution

on cloud and local execution on mobile device intuitively, we

define the proportion as

G = G
ρ
1G

1−ρ
2 (5)

where G1 = tm
tm

F
+C

is the ratio of execution time,

G2 = pmtm
pi

tm

F
+ptrC

is the ratio of energy cost and ρ is

the weight coefficient, and it satisfies 0 ≤ ρ ≤ 1.

The total proportion G is a performance indicator, it

considers both energy and time saving at the same time, and

the bigger G is, the better the offloading system works.

We first consider two extreme situations here. On the one

hand, if the execution time ratio G1 = 1, the proportion

G = G
1−ρ
2 is independent of G1, where G2 = Fpm

(F−1)ptr+pi

depends on the power for computing pm, the power while

being idle pi, the power for sending and receiving data ptr
and speedup F . On the other hand, if the energy cost ratio

G2 = 1, the proportion G = G
ρ
1 is not related with G2, and

we have G1 = Fptr

Fpm+ptr−pi

.

We then turn to general circumstances in the middle. For

instance, an HP iPAQ PDA with a 400MHz Intel XScale

processor has the following values: pm ≈ 0.9W , pi ≈ 0.3W
and ptr ≈ 1.3W [7]. We fix execution time on the mobile

device tm = 2s and exchanged data D = 64KB. Besides,

the weight coefficient ρ is evaluated from 0 to 1 and the

speedup F is evaluated from 1 to 21.

Accordingly, the relation between the weight coefficient

ρ and the speedup F is illustrated as Figure 3. Here we

consider three situations that network bandwidth B is set as

16Kbps, 64Kbps and 128Kbps, respectively.

0

0.2

0.4

0.6

0.8

1

0

5

10

15

20

0

0.5

1

1.5

2

2.5

3

3.5

ρF

G
(ρ
,F
)

B=128Kbps

B=64Kbps

B=16Kbps

Fig. 3. The relation between the weight coefficient ρ and the speedup F

It can be seen from Figure 3 that the network bandwidth

has a huge impact on G, for example, when B = 16Kbps,

G is always under 1 no matter how F and ρ change, which

means offloading the program from mobile device to remote

cloud can neither save energy nor reduce time when B is

small. But with the increase of B, G is also getting larger,

indicating that offloading works better. And also F has the

similar effect once ρ is fixed, that is the larger F is, the more

energy and time saving can be achieved. Besides, when ρ is

small, G rises slowly with the increase of F , however, when

ρ is big, G rises faster with the increase of F . Therefore, the

weight coefficient ρ should be chosen carefully and it should

adjust to the actual offloading systems.

For offloading break-even, that is when tm arrives at an

equilibrium point in inequality (3) or inequality (4). If we

assume tbe1 and tbe2 to be the critical time values, respectively,

we could further derivative the following two equalities

tbe1 =
tbe1

F
+ C =⇒ tbe1 =

C

1− 1
F

(6)

740

pmtbe2 = pi
tbe2

F
+ ptrC =⇒ tbe2 =

ptrC

pm −
pi

F

(7)

Equation (6) requires that 1 − 1
F

> 0, which is F > 1,

since the time of tbe1 should be positive. Similarly, equation

(7) requires that pm−
pi

F
> 0, which can be further transformed

as F > pi

pm

, as far as we know that pi < pm, since the power

while being idle must be smaller than the active power of

computing. Therefore, these constraints can always be met due

to F > 1. Especially, when pi = ptr, inequality (4) reduces

to

tm >
pi

pm

(

tm

F
+ C

)

(8)

From inequality (8), it is found that there is no need to

discuss energy saving in inequality (4), as long as it meets

performance improvement in inequality (3).

Thus, by using computation offloading to shorten execution

time and in the meanwhile to extend battery life of the mobile

device, tm has to meet the following requirement

tm > max(tbe1, tbe2) (9)

Moreover, in order to compare tbe1 with tbe2, let

tbe1

tbe2
=

C

1− 1
F

·
pm −

pi

F

ptrC
< 1 (10)

From equation (10), when F < pi−ptr

pm−ptr

, it can be seen that

tbe1 < tbe2, and otherwise when F > pi−ptr

pm−ptr

or pm = ptr,

we have tbe1 > tbe2.

B. Examples of tradeoff

In order to discuss the issue of offloading tradeoff between

performance improvement and energy saving in detail, two

situations are considered as shown by Figure 4.

As illustrated in Figure 4a (assume tbe1 < tbe2), it can be

seen that when tm < tbe1, offloading is neither beneficial for

improving performance nor saving energy, and thus program

should never be offloaded to the server in this area. When

tbe1 < tm < tbe2, offloading saves time while costs much

more energy to execute the program. But when tm > tbe2,

shifting the complex parts of the program to server on cloud

is always beneficial, therefore we should always offload in

this interval.

Similarly, as depicted in Figure 4b (assume tbe1 > tbe2),

it should never offload the program to the server when

tm < tbe2, but should always offload when tm > tbe1. When

tbe2 < tm < tbe1, cloud offloading saves energy while costs

much more time to execute the program.

m
i tr

t
p p C
F
+

mt

mt

mt C
F
+

m mp t

1bet 2bet

C

trp C

Never

offload

Always offload

Tradeoff

(a) tbe1 < tbe2

m
i tr

t
p p C
F
+

mt

mt

mt C
F
+

m mp t

1bet2bet

C

trp C

Never offload

Always offload

Tradeoff

(b) tbe1 > tbe2

Fig. 4. Making offloading decisions based on tm

Therefore, it is the tradeoff between improving performance

and saving energy in the interval between tbe1 and tbe2. The

values of pm, pi and ptr are parameters specific to the mobile

system. Besides, the speedup F is determined by the given

mobile device and server. The value of F is elastic since

different numbers of processors can be obtained from the cloud

on demand. Obviously, the large F is, the more resources are

needed to ensure such speedup while costing more money.

Considering with economic factor, it is not the larger F is,

the better the offloading system is. When a certain value of F

meets the requirement by the system, it is worth offloading

program to such a server on cloud. Furthermore, we can

741

compare F with pi−ptr

pm−ptr

, and thus the relationship between

tbe1 and tbe2 is known.

IV. ADAPTIVE OFFLOADING SCHEME

Based on the above analysis in Section III, we find that

offloading is an optimization method, not a requirement.

Therefore, we propose a scheme called adaptive cloud offload-

ing model which is depicted in Figure 5.

wait

receive

message

execute the

program

program is called

trdaeoff

offload

server 2

offload

wait

wait

receive

message

execute the

program

server 1

receive result

save time while

waste energy

choose server 1

with

save energy

while waste time

i tr

m tr

p p
F

p p

-
<

-

choose server 2

with i tr

m tr

p p
F

p p

-
>

-

send resultsend result

Fig. 5. An adaptive offloading model

From Figure 5, the offloading program is assumed as

a function, which could be repeatedly called during the

execution of the program. Server 1 and server 2 are on the

same cloud, therefore the network distances from the mobile

device to the cloud servers stay the same.

When the program is called, a tradeoff decision between

time reducing and energy saving should be made before exe-

cuting the program. For a specified mobile device, pi−ptr

pm−ptr

is

the critical value that the adaption offloading scheme depends

on. If the execution time is what we are most concerned about,

we should choose the server 1 with speedup F < pi−ptr

pm−ptr

and

the program is offloaded to it, otherwise the server 2 with

F > pi−ptr

pm−ptr

should be chosen. And then, the computation

is migrated to the selected server on cloud. Further, the same

function is executed on the server and results are sent back

to the mobile system [9]. Once received the results, another

program is called on the mobile device.

V. CONCLUSION

To sum up, we argue for tradeoff between time and

energy saving with cloud offloading in this paper, while

taking economic factor into consideration, which is also the

requirement for Green IT. The execution time is divided into

three intervals, never offload, tradeoff and always offload

based on critical time values. Further, a comprehensive study

of tradeoff examples is undertaken according to the three

intervals.

Thanks to the elasticity of cloud that the resources can be

bought on demand, a proposed adaptive offloading scheme can

be realized with the help of cloud computing and it doesn’t

require estimating the execution time. We have tried to find

a server on cloud with a critical value of F for a specified

mobile device. Detail experiments will be implemented in our

future research.

REFERENCES

[1] X. Gu, A. Messer, I. Greenberg, D. Milojicic and K. Nahrstedt, Adap-

tive offloading for pervasive computing. IEEE Pervasive Computing
Magazine, vol 3, July 2004

[2] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica and M. Zaharia, Above the

clouds: a berkeley view of cloud computing. Technical Report No.
UCB/EECS-2009-28, University of California at Berkley, USA, Feb.10,
2009

[3] A. P. Miettinen and J. K. Nurminen, Energy efficiency of mobile clients

in cloud computing. HotCloud’10 Proceedings of the 2nd USENIX
conference on Hot topics in cloud computing, 2010

[4] http://www.apple.com/iphone/
[5] R. Wolski, S. Gurun, C. Krintz, and D. Nurmi, Using bandwidth data

to make computation offloading decisions. In Proceedings of the
International Parallel and Distributed Processing Symposium (IPDPS
2008), High-Performance Grid Computing Workshop, April 2008

[6] www.cnn.com/2005/TECH/ptech/09/22/phone.study
[7] K. Kumar and Y. Lu, Cloud computing for mobile users: can offloading

computation save energy? IEEE Computer, vol 43, pp.51-56, April 2010
[8] K. Kumar, J. Liu, Y.-H. Lu and B. Bhargava, A Survey of Computation

Offloading for Mobile Systems. Mobile Networks and Applications, April
2012

[9] C. Xian, Y.-H. Lu, and Z. Li, Adaptive computation offloading for energy

conservation on battery-powered systems. In International Conference
on Parallel and Distributed Systems, pp.1-8, December 2007

742

