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Abstract. Temporal graph representation learning aims to generate
low-dimensional dynamic node embeddings to capture temporal infor-
mation as well as structural and property information. Current represen-
tation learning methods for temporal networks often focus on capturing
fine-grained information, which may lead to the model capturing random
noise instead of essential semantic information. While graph contrastive
learning has shown promise in dealing with noise, it only applies to static
graphs or snapshots and may not be suitable for handling time-dependent
noise. To alleviate the above challenge, we propose a novel Temporal
Graph representation learning with Adaptive augmentation Contrastive
(TGAC) model. The adaptive augmentation on the temporal graph is
made by combining prior knowledge with temporal information, and the
contrastive objective function is constructed by defining the augmented
inter-view contrast and intra-view contrast. To complement TGAC, we
propose three adaptive augmentation strategies that modify topological
features to reduce noise from the network. Our extensive experiments on
various real networks demonstrate that the proposed model outperforms
other temporal graph representation learning methods.

Keywords: Temporal graphs · Network embedding · Contrastive
learning

1 Introduction

Temporal networks have become increasingly popular for modeling complex real-
world scenarios, e.g., citation networks, recommendation systems, and engineer-
ing systems [3,7,9,16], where nodes represent interacting elements and temporal
links denote their labeled interactions over time. These networks are inherently
dynamic, with the topology and node properties evolving over time [32]. How-
ever, the real world is often affected by time-varying noise, which can have a
significant impact on the network structure and its predictions. For instance,
colleagues who work together on a project may interact frequently during the
project’s duration, but may rarely interact afterwards, leading to a decrease
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in the amount of available information for future interactions. Therefore, it is
imperative to investigate techniques for reducing the influence of time-varying
noise on temporal graphs in order to improve the accuracy of predicting future
interactions.

In recent years, there has been a surge in the development of temporal graph
neural networks (TGNNs), which extend the capabilities of neural networks to
structured inputs and have achieved state-of-the-art (SOTA) performance in
various tasks, such as link prediction. However, one of the key challenges in
temporal graph representation learning is the presence of time-varying noise,
which can significantly affect the network’s evolution. Existing methods [10,11,
17,19,33] have primarily focused on capturing fine-grained information to obtain
a more comprehensive node representation. This can lead to overfitting and the
capture of random noise, which can obscure essential semantic information in
the network as it evolves. Therefore, it is important to explore new approaches
that balance the capture of both fine-grained and essential semantic information
in order to improve the robustness and generalization ability of TGNNs.

Contrastive learning (CL) has emerged as a promising approach for address-
ing the aforementioned challenges in temporal graph representation learning by
enabling the method to learn more generalized graph representations through the
generation of multiple views for each instance using various data augmentations.
This process helps reduce the impact of noise and improve method generaliza-
tion and robustness [36]. However, current graph augmentation methods tend
to focus primarily on capturing structural features at the node or graph level,
while neglecting the temporal information of edge generation [34]. Incorporating
temporal information related to edge generation into graph learning can help
capture the dynamic evolution of the graph and improve the accuracy of node
representations. Thus, there is a need to develop new approaches that effectively
integrate temporal information into CL-based methods for temporal graph rep-
resentation learning.

Consider the toy example of a temporal network shown in Fig. 1. When using
the method of static graph augmentation (e.g., GCA [37]) to improve the tem-
poral graph, the edge between nodes D and E may be inadvertently removed.
As a result, TGNNs may not be able to accurately predict future interactions
based on the enhanced graph because crucial temporal information has been
lost. Specifically, the interaction between nodes D and E at the most recent time
t5 is crucial for accurately predicting future interactions, while the interaction
between nodes B and C at time t2 may be less important. Consequently, the
static graph augmentation method fails to capture important temporal informa-
tion that is essential for accurate predictions of future interactions in temporal
graphs. To overcome this issue, incorporating temporal information into data
augmentation and node representation can effectively capture the evolution of
edge generation and improve the accuracy of future interaction predictions.

In this paper, we propose a novel contrastive model called Temporal Graph
representation learning with Adaptive augmentation Contrastive (TGAC).
Firstly, we utilize centrality measures to eliminate redundant topological



Temporal Graph Representation Learning 685

Fig. 1. The toy example illustrates the limitations of the static graph augmentation
method when applied to a temporal graph. Specifically, the original temporal network
(left) and the resulting loss of temporal information following the application of static
graph augmentation (middle) are demonstrated. To address this issue, we propose a
novel approach for augmenting temporal graphs by incorporating both topological and
temporal information. This approach allows us to eliminate redundant information
while preserving vital temporal information (right).

information from the input temporal graph by taking into account both struc-
tural and temporal influence. This process enhances the effectiveness of temporal
graph augmentation. Subsequently, the pruned graph is subjected to perturba-
tions to generate two distinct temporal views for augmentation. Finally, the
model is trained using a contrastive loss function to maximize the agreement
between node embeddings in the two views.

Specifically, the main contributions are summarized as follows.
– We present a novel approach for temporal graph contrast learning that incor-
porates temporal information during edge generation. This enables the model
to better capture the structural evolution characteristics of graphs, resulting
in improved representation learning.

– We propose a temporal graph augmentation method that leverages both the
structural and temporal information of neighborhoods. By doing so, we are
able to augment the original graph while preserving important temporal fea-
tures.

– To further enhance important topology structures and improve node repre-
sentations, we propose a graph pruning scheme that employs edge centrality
measures to remove noisy or redundant connections prior to attention alloca-
tion.

– Experimental results demonstrate the superior performance of our proposed
TGAC in tasks such as link prediction and node classification, when compared
to other state-of-the-art temporal graph representation learning models.

2 Related Work

In this section, we will provide a concise overview of the existing literature on
temporal graph representation learning. We will then delve into the topic of con-
trastive representation learning methods. Finally, we will compare and contrast
our proposed method with related works in the field to better understand its
unique contributions.
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2.1 Temporal Graph Representation Learning

Graph representation learning methodologies are designed to generate embed-
dings that capture both structural and attribute information at either the node
or graph level [4,24,26,31]. For temporal graphs, traditional representations
can be expanded to incorporate time-dependency, where the model of temporal
dependence is formulated either as snapshot-based or event-based methods [20].
These techniques aim to learn temporal node or graph embeddings that capture
the evolution of the graph over time. While snapshot-based paradigms may have
merit, our paper focuses primarily on event-based models, which have exhibited
superior performance in empirical studies compared to models based on snapshot
temporal graphs [27].

Temporal graphs exhibit the time-varying behavior of nodes, which provides
distinct insights not present in static graphs. By incorporating historical inter-
action information, we can distinguish between nodes that have similar local
neighborhoods but different structural roles. For instance, JODIE [14] learns the
embeddings of evolving trajectories by leveraging past interactions. TGN [25]
keeps track of a memory state for each node and updates it with new interac-
tions. CAWs [32] capture the dynamic evolution of networks by using temporally
anonymous random walks to extract temporal network motifs. Unfortunately, all
of the aforementioned techniques do not take into account the impact of noise
in the network, which can be detrimental to the ability to capture valuable tem-
poral information.

2.2 Contrastive Representation Learning

Inspired by recent advancements of CL in computer vision [12] and natural lan-
guage processing [18] domains, some research has been conducted to apply CL
to graph data. For instance, DGI [30] combines Graph Neural Networks with
infomax and concentrates on contrasting views at the node level by generating
multiple augmented graphs through handcrafted augmentations. GRACE [36]
generates two views by randomly masking node attributes and removing edges,
while GCA [37] employs a similar framework to GRACE but emphasizes design-
ing the adaptive augmentation strategy.

Although some studies have explored the potential of contrastive learning
for temporal graphs, most of them focus on static graphs and snapshot-based
temporal graphs [5,22,23]. In contrast, our proposed approach addresses the
challenge of noise in temporal graphs by considering the importance of edges with
respect to both temporal and topological features, and adaptively augmenting
the graphs in an efficient manner. Our approach effectively enhances both the
temporal and topological features of the graphs, distinguishing it from existing
methods for temporal graph learning and graph contrastive learning.
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Fig. 2. Our proposed Temporal Graph representation learning with Adaptive augmen-
tation Contrastive (TGAC) model. The input graph G is first pruned to be G̃, then
use two augmentation t and t′ are generate two temporal graphs G̃1 and G̃2. A shared
TGNN F is employed to obtain two views’ node representation. Finally, the model
was trained by contrasting positive-negative pairs in both intra-view (in purple) and
inter-view (in orange). (Color figure online)

3 The Proposed Method

In this section, we will introduce the notations and definitions used in this paper.
Then, we will present the problem formulation and introduce the overall frame-
work of TGAC. Finally, we will provide a detailed description of each component
module (Fig. 2).

3.1 Preliminaries

First, we define the temporal graph based on the timestamps accompanying the
node interactions.

Definition 1 (Temporal Graph). A temporal graph is represented as G =
(V, E), where V is the set of nodes and E is the set of sequences of node inter-
actions with timestamps labels. For any edge (u, v, t) ∈ E, there exists a set of
timestamps Eu,v = (u, v, t1), (u, v, t2), · · · , (u, v, tn), indicating that nodes u and
v have interacted at least once at each of the corresponding timestamps. Two
interacting nodes are referred to as neighbors. It is important to note that in
temporal graphs, the concept of interaction replaces the concept of edges, and
multiple interactions can occur between two nodes.

A good representation learning method for temporal networks should be able
to accurately and efficiently predict how these networks will evolve over time. In
this context, the problem can be formulated as follows.

Definition 2 (Problem formulation). For any temporal graph G = (V, E),
the task is to learn the mapping function f : V → Rd to embed the node in a d-
dimensional vector space, where d ≪ |V|.The node representation is supposed to
contain both structural and temporal information and is suitable for downstream
machine-learning tasks such as link prediction, and node classification.
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3.2 Overview

The proposed model utilizes graph contrastive learning to capture the structural
and temporal features from temporal graphs during the training phase. The
model prunes the input temporal graph, generates contrasting views, and uses
a loss function that includes both link prediction and contrastive loss to learn
effective node representations.

3.3 Temporal Graph Pruning

To ensure effective node representation learning for downstream tasks, it is nec-
essary to remove noisy edges from the original time graph topology. TGAC
achieves this by computing the importance of each edge, which takes into account
both the node centrality and temporal information. As a result, the pruned
time graph provides richer information for TGNN to learn node representations
more effectively. The centrality of each edge is assessed based on a combination
of node properties, graph topology, and temporal characteristics. By removing
noisy links based on their centrality attributes, the pruned temporal graph facili-
tates improved information use for node representation learning through TGNN.

Node centrality is a common method for measuring the importance of nodes
in large-scale complex networks. Various techniques have been proposed to mea-
sure node centrality, some of which are outlined below:

– Degree centrality (DE) is considered one of the elementary measures of cen-
trality, which quantifies the number of edges incident to a particular node
in a network. It is a widely used and effective approach for evaluating the
significance of a node in a network. Specifically, in social networks such as
Twitter, nodes represent people, while edges represent the following connec-
tions among them. Nodes with a high degree of centrality tend to correspond
to more important people.

– Eigenvector centrality (EV) is another important centrality measure that con-
siders not only the number of connections of a particular node but also the
centrality of its neighboring nodes. The idea is that if a node is connected
to other nodes with high centrality, its own centrality is subsequently aug-
mented. Consequently, a node’s eigenvector centrality may not necessarily be
high even if it has a substantial degree, in cases where all its connections have
low centrality. Subsequent paragraphs, however, are indented.

– PageRank centrality (PR) is a measure of centrality determined by utilizing
the PageRank algorithm. This algorithm involves developing a random walk
model on a directed graph and calculating the likelihood of visiting each node
under specific conditions. The resulting stable probability value of each node
is its PageRank value, which serves as an indicator of the node’s importance
or centrality within the network.

These three methods of calculating node centrality have distinct advantages
and limitations. DE is a straightforward and efficient method, making it suitable
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for datasets that are not very sensitive to node characteristics. EV takes into
account both node characteristics and topology and performs well across a wide
range of datasets. PR is especially effective for analyzing complex topological
networks. Consequently, we can use the notation ϕ(·) to indicate the specific
node centrality method used for a given dataset.

Additionally, since temporal graphs contain temporal information that static
graphs lack, we need to consider the temporal dimension when measuring the
impact of each edge. To achieve this, we define the centrality of each edge as
φt
uv, which is determined by the centralities of the two nodes it connects and the

time of its occurrence. In undirected graphs, φtuv is computed as the product
of the average centralities of its two nodes and the time at which the edge is
formed. This can be expressed mathematically as follows:

φt
uv = (ϕ(u) + ϕ(v))/2 + αtuv. (1)

This definition enables us to capture the evolving nature of the temporal
graph and obtain more precise node representations that can be used for down-
stream tasks. In the case of a directed graph, we define the centrality of an edge
as the product of the centrality of the node it is pointing to and the time at which
the connection is established. This reflects the impact of the edge in directing
the flow of information or influences toward the target node, while also taking
into account the time factor. Hence, the edge centrality for a directed graph is
defined as:

φt
uv = ϕ(v) + αtuv. (2)

After obtaining the centrality score for each edge, we sort all the edges in
descending order based on their centrality scores and then select the top k edges
to retain while pruning the rest. The value of k is determined by the formula
k = E × (1 − c), where E represents the total number of edges in the temporal
graph, and c is the pruning ratio. The temporal graph after pruning is illustrated
below:

Ẽ =
{
ui, vi, ti|φti

uivi
∈ TopK(φ(E), k)

}
. (3)

This method helps to remove redundant and noisy edges from the temporal
graph and obtain a pruned temporal graph that can be used for subsequent
training, which facilitates the acquisition of improved representation results.

3.4 Temporal Graph Encoder

The temporal graph encoder is based on TGN [25] and consists of interchange-
able and independent modules. Each node in the model has a memory vector that
represents its past interactions in a compressed form. When a new event occurs,
the mailbox module calculates the message for each related node, which is then
used to update the node’s memory vector. To address the issue of stale infor-
mation, the embedding module calculates node embeddings at each time step
by using their neighborhood and memory state. In other words, the encoder
updates the memory state of each node with new interactions and employs a
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node memory update mechanism. In the node memory storage module, at time
t, the model stores the memory of each node u it has encountered so far in a
vector denoted by su(t). Whenever a new interaction occurs with a node, its
compressed historical information is used to update its memory state. During
the message passing and updating phase, the model calculates the memory vec-
tors for the source and target nodes u and v affected by each event. This is done
using the msg method, which computes the message sent from the source node
to the target node. The message is then used to update the memory vectors of
both nodes. We formulate message passing function as

mu(t) = msg
(
su(t−), sv(t−), t

)
, (4)

m̄u(t) = agg (mu(t1), . . . ,mu(t)) . (5)

To clarify, the message passing and aggregator part involves calculating the
message using the msg method for the nodes u and v affected by each event,
where su(t−) represents the information at node u before time t. The message is
then aggregated with the information obtained before the node, and the resulting
information is then updated to yield the su(t) value for node u. This process
involves the utilization of a learnable information method, such as MLP, followed
by information aggregation techniques, such as RNNs or attention mechanisms,
and concluded with information update operations. In scenarios where nodes u
and v are affected by an interaction event, their information is updated using a
memory cell such as GRU [2] or LSTM [8]. The process can be mathematically
formulated as follows:

su(t) = mem
(
m̄u(t), su(t−)

)
. (6)

Finally, after obtaining su(t), the node representation is obtained by con-
catenating it with the current input features of node u at time t, followed by a
non-linear transformation to obtain the final embedding hu(t). Specifically, the
concatenation operation is defined as follows:

zu(t) = emb(u, t) =
∑

v∈Nk
u ([0,t])

h (su(t), sv(t)) , (7)

where h is a learnable function. The resulting zu(t) can be used for downstream
tasks such as node classification or link prediction.

3.5 Temporal Contrastive Learning

Contrastive learning aims to learn node or graph representations by bringing
positive samples closer and pushing negative samples farther apart. We use a
general contrastive learning framework to maximize representation consistency
across different views. Two views of the pruned graph are generated using ran-
dom augmentation operations. Existing methods struggle with topological ran-
dom disturbances, as selecting positive and negative samples is crucial. After



Temporal Graph Representation Learning 691

a disturbance, ineffective neighborhood information can make optimizing con-
trastive targets difficult. We must perturb the graph to preserve its internal mode
as much as possible. Our method removes edges randomly with a probability but
assigns a weight to each edge to decrease the probability of removing important
edges and increase that of removing redundant ones.

To achieve this, we introduce a removal probability for each edge and improve
the perturbation process of the temporal graph by considering edge importance.
Similar to temporal graph pruning, we compute edge importance based on topol-
ogy and time information and use it to calculate the removal probability for each
edge. However, since the importance values may be relatively large, we first nor-
malize them by setting them to wt

uv = lg φt
uv. After normalization, we obtain

the removal probability for each edge as follows:

ptuv = min
(
wt

max − wt
uv

wt
max − µt

w

· pe, pr
)
, (8)

where pe is a hyperparameter that controls the overall probability of edge
removal, wt

max and µt
w are the maximum and average values of wt

uv, respec-
tively. We set a cut-off probability pr < 1 to prevent the removal probability
from becoming too high and corrupting the graph topology. The resulting tem-
poral graph is pruned and looks like this:

P
{
(u, v, t) ∈ Ẽ

}
= 1 − ptuv. (9)

To enhance the quality of node representations, we propose topological per-
turbations that generate distinct views during each iteration of training, denoted
as Ẽ1 and Ẽ2. The probabilities of generating these two views are represented by
p1e and p2e, respectively. To prevent excessive perturbation that may lead to the
degradation of the graph topology, we set pe to 0.7, ensuring that pr does not
surpass 0.7.

3.6 Loss Function

Task Loss: To learn the parameters of TGNN for each view node, we utilize a
link prediction binary cross-entropy loss function, define as follows:

L(u, v, t) = − log σ(−ztu
T
ztv) − QEv′∼P (v) log σ(ztu

T
ztv′). (10)

The loss function aims to maximize the likelihood of the observed edges
while minimizing the likelihood of negative edges. Since two views both have
this task, the loss for the two views is defined similarly. The overall objective to
be maximized is defined as the average over two views, formally given by:

Ltask =
∑

(u1,v1,t1)∈Ẽ1

L(u1, v1, t1) +
∑

(u2,v2,t2)∈Ẽ2

L(u2, v2, t2). (11)
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Contrastive Loss: We use a comparison objective for the two generated views
to differentiate nodes with the same identifier in different views from other
embeddings. For any node vi in one view, its corresponding node ui in the
other view is considered as an anchor, and vi and ui form positive sample pairs.
All other nodes from both views form negative samples, guiding the model to
maximize the consistency of node representations across the two views. The rep-
resentations of each node in the two views should be similar and distinct from
those of other nodes.

Furthermore, we use a two-layer MLP to transform node representations into
a feature space for comparison. A similarity function θ(u, v) = s(g(u), g(v)) is
used to measure different node representations, where s can be either cosine
or Euclidean distance and g(·) denotes the non-linear projection of the MLP.
To achieve contrastive learning in multi-view, we use a loss function similar
to InfoNCE. For each positive sample pair ui and vi, the objective function is
defined as follows:

Lcl =
∑

ui,vi∈V
log

Pi

Pi +N inter
i +N intra

i

, (12)

where Pi = eθ(ui,vi)/τ is positive pair, N inter
i and N intra

i are inter-view and
intra-view negative pairs, respectively, which are given by the following:

N inter
i =

∑

k ̸=i

eθ(ui,vk)/τ , (13)

N intra
i =

∑

k ̸=i

eθ(ui,uk)/τ , (14)

where τ denotes the temperature coefficient.

Total Loss: The total loss function is a combination of the task loss Ltask and
contrastive loss Lcl. The definition of the total loss function L is established
formally by utilizing Eqs. 11 and 12. Specifically, the total loss function L is
expressed as follows:

L = λLtask + Lcl, (15)

where λ is a hyperparameter that balances the weights of the two loss functions.
The task loss function Ltask evaluates the predictive capability of the model
in identifying observed edges in the temporal graph, whereas the contrastive
loss function Lcl encourages the consistency of representations of the same node
across the two augmented views.

4 Experiments

In this section, we evaluate the performance of TGAC against a variety of base-
lines on different datasets. We further conduct an ablation study on relevant
modules and hyperparameter analysis.
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4.1 Experimental Setup

Datasets. We evaluate the performance of TGAC on the tasks of temporal
link prediction and dynamic node classification using four public temporal graph
datasets, namely, Wikipedia [14], Reddit [1], MOOC [14], and CollegeMsg [15]. A
detailed description of the statistical characteristics of these datasets is presented
in Table 1.

Table 1. Statistics of the datasets.

Datasets |V| |E| Feature Label
Wikipedia 9,227 157,474 172 2
Reddit 10,984 672,447 172 2
Mooc 7,144 411,749 0 2
CollegeMsg 1,899 59,835 0 0

Baselines. To evaluate the performance of TGAC, we compare ten state-of-
the-art graph embedding methods on both static and temporal graphs. For
static graph embedding methods, including GAE, VGAE [13], GraphSAGE [6]
and GAT [29]. For temporal graph embedding methods, including CTDNE [21],
JODIE [14], DyRep [28], TGAT [35], TGN [25] and CAWs [32].

Parameter Settings. In the parameter settings, we select the optimizer with
the Adam algorithm, the learning rate is 0.0001, and the dropout probability
is 0.1. The dimension of both node embedding and time embedding is set to
100, memory dimension is set to 172. The temporal information weight α and
contrastive loss weights λ are set at 10 and 0.1. For the baseline methods, we
keep their default parameter settings.

4.2 Temporal Link Prediction

For temporal link prediction, we follow the evaluation protocols of TGN [35].
The goal of this task is to predict whether a temporal link will exist between
given two nodes at a certain future point in time. We consider two different
downstream tasks for evaluation: transductive and inductive link prediction. In
the transductive link prediction task, we aim to predict the presence or absence
of a link between two nodes that were observed during the training phase. In
the inductive link prediction task, we aim to predict the presence or absence of
a link between two new nodes that were not observed during the training phase.
We divide the ratios of training, validation, and testing are 70%, 15%, and 15%,
respectively.
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Table 2. ROC AUC(%) and Average Precision(%) for the transductive temporal link
prediction on Wikipedia, Reddit, Mooc and CollegeMsg. The means and standard
deviations are computed for ten runs.

Task Methods
Wikipedia Reddit Mooc CollegeMsg

AUC AP AUC AP AUC AP AUC AP

Tr
an

sd
uc

ti
ve

GAE 91.47± 0.3 91.12± 0.1 95.87± 1.2 96.57± 1.0 87.89± 0.6 90.70± 0.3 73.15± 1.5 70.00± 1.17

VGAE 82.43± 1.6 82.50± 4.0 92.70± 0.4 91.53± 0.7 88.21± 0.6 91.00± 0.3 74.07± 0.9 70.66± 1.0

GraphSAGE 92.00± 0.3 92.34± 0.3 97.75± 0.1 97.85± 0.1 56.17± 0.3 60.63± 0.2 62.38± 1.3 62.48± 0.9

GAT 92.76± 0.5 93.17± 0.5 97.90± 0.1 97.07± 0.1 67.24± 0.1 66.66± 0.8 78.09± 0.5 75.97± 0.7

CTDNE 82.36± 0.7 80.86± 0.7 85.32± 2.0 87.31± 1.4 88.37± 2.6 89.27± 2.0 81.88± 0.7 80.25± 0.8

JODIE 94.94± 0.3 94.65± 0.6 97.62± 0.2 97.07± 0.4 79.75± 2.8 74.85± 3.1 59.85± 6.0 54.50± 4.4

DyRep 94.22± 0.2 94.63± 0.2 98.01± 0.1 98.05± 0.1 80.57± 2.1 77.30± 2.2 54.75± 6.8 51.89± 4.8

TGAT 94.99± 0.3 95.29± 0.2 98.07± 0.1 98.17± 0.1 66.02± 1.0 63.82± 0.9 81.05± 0.6 79.16± 0.6

TGN 98.42± 0.1 98.50± 0.1 98.69± 0.1 98.73± 0.1 89.07± 1.6 86.96± 2.1 85.06± 5.9 85.38± 6.4

CAWs 98.39± 0.1 98.62± 0.1 98.05± 0.1 98.66± 0.1 69.48± 5.3 70.11± 6.2 90.02± 0.2 92.55± 0.1

TGAC-DE 98.85± 0.0 98.89± 0.0 98.70± 0.0 98.73± 0.0 85.39± 1.0 82.20± 1.0 91.39± 0.6 92.91± 0.5

TGAC-EV 98.86± 0.0 98.91± 0.0 98.71± 0.1 98.74± 0.0 88.54± 0.8 86.02± 0.8 91.55± 0.7 93.03± 0.5

TGAC-PR 98.85± 0.0 98.90± 0.0 98.76± 0.1 98.76± 0.1 88.14± 1.4 85.47± 1.3 91.49± 0.7 92.98± 0.5

In
du

ct
iv
e

GraphSAGE 88.60± 0.3 88.94± 0.5 94.28± 0.4 94.51± 0.1 53.68± 0.4 55.35± 0.4 49.64± 1.5 51.83± 0.8

GAT 89.11± 0.5 89.82± 0.4 94.30± 0.4 94.58± 0.3 53.43± 2.1 54.80± 0.9 68.98± 1.2 66.22± 1.2

JODIE 92.75± 0.3 93.11± 0.4 95.42± 0.2 94.50± 0.6 81.43± 0.8 76.82± 1.4 51.59± 3.2 50.02± 2.2

DyRep 91.03± 0.3 91.96± 0.2 95.79± 0.5 95.75± 0.5 82.06± 1.7 79.17± 1.6 49.05± 4.1 49.30± 2.6

TGAT 93.37± 0.3 93.86± 0.3 96.46± 0.1 96.61± 0.2 69.09± 0.8 67.65± 0.7 72.27± 0.5 72.53± 0.6

TGN 97.72± 0.1 97.83± 0.1 97.54± 0.1 97.63± 0.1 89.03± 1.6 86.70± 2.0 78.54± 3.9 80.77± 3.7

CAWs 98.16± 0.2 98.52± 0.1 97.56± 0.1 97.06± 0.1 74.79± 2.3 76.02± 2.2 89.11± 1.5 91.79± 1.4

TGAC-DE 98.29± 0.0 98.35± 0.1 98.95± 0.0 98.98± 0.0 84.00± 1.3 80.02± 1.5 88.42± 0.5 90.70± 0.4

TGAC-EV 98.28± 0.1 98.35± 0.1 98.94± 0.1 98.97± 0.1 88.23± 0.6 85.30± 0.7 88.49± 0.5 90.75± 0.4

TGAC-PR 98.28± 0.1 98.34± 0.0 98.96± 0.1 98.98± 0.1 88.16± 1.5 85.16± 1.7 88.49± 0.5 90.73± 0.4

The results of our method and the baseline method on the temporal link
prediction task are compared in Table 2. We leverage the Area Under the ROC
Curve (AUC) and Average Precision (AP) as performance metrics. On both
transductive and inductive tasks, we make the following observations.

– Baseline temporal graph embedding methods outperform static graph embed-
ding methods such as GAE, VGAE, GraphSAGE, and GAT in link prediction
tasks on four real-world datasets that include temporal information.

– For the temporal graph embedding methods, compare with the methods
which combine time embedding, node features, and graph topology (i.e.,
CTDNE, TGAT) are worse than the use of a special module to update node
embeddings based on temporal interactions (i.e., TGN, TGAC).

– Our method outperforms several existing methods on multiple datasets,
although it is not as effective as CAWs on some of them. However, CAWs
uses online time random walk sampling to obtain time node representations,
which cannot be parallelized on the GPU and therefore require significant
processing time. By incorporating prior knowledge into our time map and
utilizing message passing, our method improves efficiency compared to TGN
and achieves faster processing speeds than CAWs.
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4.3 Dynamic Node Classification

For dynamic node classification, we also follow the evaluation protocols of TGN.
The goal of this task is to predict the state label of the source node while giving
the node link and future timestamps. Specifically, we use the model obtained
from the previous transductive link prediction as the pre-training model for
node classification. The node classification task trains a classifier decoder sepa-
rately, such as a three-layer MLP. We evaluate the task on three datasets with
dynamic node labels (i.e., Wikipedia, Reddit, and Mooc), excluding the Col-
legeMsg dataset because there are no node labels.

The results of our method and the baseline method on the Dynamic Node
Classification task are compared in Table 3. We leverage the Area Under the
ROC Curve (AUC) as performance metrics. Our results demonstrate superior
performance on all three datasets, underscoring the effectiveness of our model’s
use of contrastive learning. By bringing the distance between nodes in one view
closer while pushing away nodes in the other view, our model learns more opti-
mized node representations for downstream classification tasks. This approach
has proven to be more effective than alternative methods, as evidenced by the
superior performance of our model.

Table 3. ROC AUC(%) for the transductive dynamic node classification on Wikipedia,
Reddit and Mooc. The means and standard deviations are computed for ten runs. We
use bold and underline to highlight the best and second best performers.

Wikipedia Reddit Mooc
CTDNE 84.86± 1.5 54.38± 7.5 71.84± 1.0

JODIE 84.40± 0.9 61.51± 1.2 70.03± 0.5

DyRep 83.25± 0.5 60.86± 1.7 64.64± 1.4

TGAT 84.41± 1.5 65.98± 1.6 65.79± 0.5

TGN 87.56± 0.7 65.51± 0.8 63.93± 0.3

CAWs 84.88± 1.3 66.52± 2.2 68.77± 0.4

TGAC-DE 87.69± 0.2 68.54± 0.4 70.13± 0.2

TGAC-EV 90.13± 0.2 71.70± 0.4 61.83± 0.7

TGAC-PR 88.85± 0.2 71.06± 0.8 71.10± 0.3

4.4 Ablation Experiment

We conducted a series of experiments on the CollegeMsg dataset to evaluate the
effectiveness of pruning on temporal graphs, using different centrality measures.
Our findings, presented in Table 4, indicate a notable enhancement in the model’s
performance upon the removal of extraneous links through the application of
diverse node centrality principles. Herein, “T” refers to the TGNN function,
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Table 4. Ablation study result on CollegeMsg for Pruning schemes

T T+DE T+EV T+PR T+DE+P T+EV+P T+PR+P
AUC 85.06 90.38 90.57 90.58 92.39 92.55 92.49

Table 5. ROC AUC(%) for both the transductive and inductive temporal link predic-
tion on Wikipedia, Reddit, and CollegeMsg.

Wikipedia Reddit CollegeMsg
Transductive Inductive Transductive Inductive Transductive Inductive

TGAC w/o CL 98.29 98.37 98.54 98.57 85.06 87.41

TGAC w/o Prune 98.32 98.40 98.62 98.65 90.57 87.93

TGAC 98.53 98.64 98.82 98.86 92.71 88.79

Fig. 3. Parameter Sensitivity.

while “P” denotes the Prune function. Furthermore, we conducted an ablation
study to assess the impact of contrastive learning, and the results are depicted
in Table 5. Upon removing both the pruning and contrastive learning aspects,
the model became a conventional TGN model. Our findings demonstrate that
the absence of pruning and contrastive learning resulted in a significant decline
in the performance of the TGN model.

4.5 Parameter Sensitivity

Our proposed method requires a thorough analysis of hyperparameters’ impact
on temporal link prediction performance on the datasets. These hyperparam-
eters are the temporal graph pruning ratio c, the balance parameter λ, and
the temporal graph enhancement factor pe. We use a range of evaluation met-
rics to gauge the efficacy of various parameter values. We evaluate them on
Wikipedia and CollegeMsg datasets using link prediction as the downstream
task. We investigate the impact of the temporal graph pruning ratio on the
model’s ability to learn effective information. Additionally, we explore the bal-
ance between link prediction and contrastive learning. Figure 3 illustrates the
sensitivity of our model’s performance to various hyperparameters, including c,
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λ, and pe. Our experiments show that the proposed method achieves the best
results when c = 0.05, λ = 0.1, and pe = 0.4.

5 Conclusion

This paper introduces a novel temporal graph contrastive learning model named
TGAC. The proposed model employs a pruning and adaptive augmentation tech-
nique that incorporates topological and temporal information with prior knowl-
edge. This approach leads to the generation of enhanced temporal graph infor-
mation, which in turn improves the performance of TGNN. The experimental
results demonstrate that the TGAC model outperforms state-of-the-art methods
on most of the datasets.
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