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A secondary structure in single-stranded DNA refers to its propensity to undergo self-folding, leading to functional 
inactivity and irreparable failures within DNA storage systems. Consequently, the property of secondary structure 
avoidance (SSA) becomes a crucial criterion in the design of single-stranded DNA sequences for DNA storage, as 
it prohibits the inclusion of reverse-complement subsequences that contribute to such structures. This work is 
specifically focused on addressing the avoidance of secondary structures in single-stranded DNA sequences. We 
propose a novel sequence replacement approach, which successfully resolves the SSA problem under conditions 
where the stem exceeds a length of 2 log2 𝑛 + 2, and the loop is of length 𝑘 ≥ 4. These parameters have been 
carefully chosen to closely resemble the real-world scenarios encountered in biochemical processes, enhancing 
the practical relevance of our study.
1. Introduction

The rapid advancement of information technology and the wide-

spread use of social networking have led to an exponential surge in 
data generation [1]. In response to this challenge, the field of Deoxyri-

bonucleic Acid (DNA) storage has emerged, leveraging the progress in 
DNA synthesis and sequencing technologies to serve as a promising and 
ideal medium for storing vast amounts of digital information [2]. How-

ever, it is essential to acknowledge that the methods for synthesizing 
and sequencing DNA sequences are far from perfect. If the codewords 
are not chosen appropriately, unintended (non-selective) hybridization 
or errors may occur during the process. To address these potential is-
sues and ensure the reliability of DNA storage, numerous exceptional 
error correction methods [3–5] and DNA clustering methods [6,7] have 
been proposed, which play a crucial role in enhancing the accuracy and 
efficiency of DNA storage systems, mitigating errors, and ensuring the 
integrity of the stored digital information.

In conventional DNA storage approaches, the utilization of short 
single-stranded DNA sequences, also referred to as oligonucleotide se-

quences, is common. Each of these sequences represents an oriented 
word, comprising four distinct nucleotide bases: Adenine (A), Thymine 
(T), Cytosine (C), and Guanine (G). The Watson-Crick complementar-

ity relationships are denoted as follows: 𝑇 = 𝐴, 𝐴 = 𝑇 , 𝐶 = 𝐺, and 
𝐺 = 𝐶 . These complementary base pairings play a fundamental role 
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in DNA replication, transcription, and other essential biological pro-

cesses.

A secondary structure in the context of DNA storage refers to the 
existence of two non-overlapping subsequences that are reverse comple-

ments of each other. This structural arrangement causes the sequence 
to fold back onto itself through a complementary base pair, resulting 
in the formation of a stem-loop structure as shown in Fig. 1. Such 
secondary structures have been identified as a significant source of po-

tential irreparable read-out failures within DNA storage systems [8]. 
For example, a large number of read-out failures in the DNA storage 
system described in [9] was attributed to the formation of hairpins, 
a special secondary structure formed by oligonucleotide sequences. It 
is necessary to stress the fact that DNA code design must take sec-

ondary structure considerations into account [10]. In the field of DNA 
sequence analysis, some researchers have presented rigorous solutions 
to avoid secondary structures in DNA codes, both for significantly 
large [11] and small [12] stem lengths. However, as of yet, no effi-

cient method has been devised to address DNA sequences with realistic 
and appropriately sized stems. This represents a significant gap in the 
current state of research, leaving a critical aspect of DNA analysis un-

explored.

In this study, we focus on the construction of DNA codes with a 
specified length 𝑛, aiming to avoid the formation of secondary struc-

tures with stem lengths equal to or greater than a given integer 𝑚 ≥ 2. 
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Fig. 1. DNA secondary structure model.
It is crucial to note that we refrain from categorizing 𝑚 as either ex-

cessively large or small, or limiting the consideration to odd stems. In 
real-world applications of DNA storage, biochemists typically address 
the secondary structure problem with a stem length of 𝑚 ≥ 6 and a 
loop length of at least 4 [12]. As depicted in Fig. 1, the subsequences 
“TCGAAC” and “AGCTTG” form a secondary structure. One of these se-

quences, either “TCGAAC” or “AGCTTG”, is referred to as a stem, and its 
length is indicated as “𝑚”, while the sequence between them is termed 
a loop, with its length denoted as “𝑘”. If the stem length 𝑚 is chosen 
to be too large, such as 𝑚 ≥ 3 log2 𝑛 + 4 as addressed in [11], several 
shorter secondary structures may still form, leading to the emergence 
of uncorrectable errors in the DNA sequence. On the other hand, se-

lecting 𝑚 to be too small, for instance, 2 or 3 as demonstrated in [12], 
may cause relatively short palindromic sequences that do not form a 
secondary structure, thereby requiring no further processing.

The main contributions of this paper are three-fold:

• We propose a novel secondary structure-avoidance code tailored 
for stems of length 𝑚 ≥ 2 log2 𝑛 +2 and loops of length 𝑘 ≥ 4 within 
a specific biological context. Notably, under certain conditions, this 
code can be extended to accommodate stems of length 𝑚 ≥ log2 𝑛 +
2.

• We put forth the definition of (𝑚, 𝑘)-SSA sequence, along with an 
associated theorem that incorporates the length of the loop denoted 
by “𝑘”.

• Numerical results indicate the relationship between the length and 
quantity of the loops.

2. Preliminary

In this study, we represent the DNA alphabet set as  = {𝐴, 𝑇 , 𝐶, 𝐺}. 
Given any two sequences 𝐱 and 𝐲, we denote 𝐱𝐲 as the concatenation 
of the two sequences. For a given sequence 𝐱 of length 𝑛, we define a 
consecutive subsequence 𝐲 of length 𝑙 as 𝐲 = 𝑥𝑖𝑥𝑖+1… 𝑥𝑖+𝑙−1, where 
𝐲 consists of consecutive elements from 𝐱. Furthermore, if we have 
two subsequences 𝐲 = 𝑥𝑖𝑥𝑖+1… 𝑥𝑖+𝑙−1 and 𝐳 = 𝑥𝑗𝑥𝑗+1… 𝑥𝑗+𝑠−1 from se-

quence 𝐱, we categorize 𝐲 and 𝐳 as non-overlapping if either of the 
following conditions is satisfied: (i) 𝑖 + 𝑙 − 1 < 𝑗, or (ii) 𝑖 > 𝑗 + 𝑠 − 1. In 
other words, for subsequences to be non-overlapping, there must be a 
clear separation between their respective starting and ending positions 
in the original sequence 𝐱.

We investigate the construction of DNA codes with a codeword 
length denoted by 𝑛, along with two specified integers, namely 𝑚 ≥
2 log2 𝑛 + 2 and 𝑘 ≥ 4. The primary objective is to design DNA codes 
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that effectively avoid the formation of secondary structures possessing 
stem lengths equal to 𝑚, as well as loops of a size greater than or equal 
to 𝑘. In the context of DNA oligonucleotides, it is common for these 
molecules to exhibit limited flexibility and are unlikely to form sharp 
turns or bend over short regions. Consequently, we introduce a slight 
refinement to the condition for folding by stipulating that the reverse-

complement subsequences must maintain a sufficiently large separation 
between them.

Definition 1. For a DNA sequence 𝐱 ∈𝑛, let 𝐲 = 𝑥𝑖𝑥𝑖+1… 𝑥𝑖+𝑙−1 and 
𝐳 = 𝑥𝑗𝑥𝑗+1… 𝑥𝑗+𝑠−1 represent two non-overlapping subsequences of 𝐱. 
We define 𝐲 and 𝐳 as reverse-complement, denoted as 𝐲 =𝑅𝐶(𝐳), when 
𝑥𝑖+𝑡 = 𝑥𝑗+𝑠−1−𝑡 for every 𝑡 ∈ [0, 𝑠 − 1].

Definition 2. Given integers 2 < 𝑚 ≤ 𝑛, a DNA sequence 𝐱 ∈𝑛 is said 
to be an m-secondary structure avoidance sequence (abbreviated as 
an 𝑚-SSA sequence), if it does not contain any two non-overlapping 
reverse-complement subsequences of length 𝑚. A code  ⊆𝑛 is called 
an 𝑚-SSA code if every codeword in  is an 𝑚-SSA sequence.

Unfortunately, the aforementioned studies [13,11,12,14] have not 
comprehensively addressed the influence of the loop size 𝑘 on the 
formation of secondary structures. This limitation arises from the recog-

nition that biochemical self-hybridization differs from the simplified 
sequence encoding used in these studies. Notably, DNA oligonucleotides 
typically exhibit a lack of sharp turns or bending over small regions, 
making the inclusion of the parameter 𝑘 particularly pertinent and 
meaningful in this context.

3. (𝒎, 𝒌)-SSA sequence

In our work, we extend the concept of 𝑚-SSA to the more natural 
concept of (𝑚, 𝑘)-SSA, we can use data simulation to analyze how many 
reverse-complements that are too close which have a very small proba-

bility of forming a secondary structure and do not need to be avoided.

Definition 3. For a DNA sequence 𝐱 ∈𝑛 with 𝐲 = 𝑥𝑖𝑥𝑖+1… 𝑥𝑖+𝑙−1 and 
𝐳 = 𝑥𝑗𝑥𝑗+1… 𝑥𝑗+𝑠−1, where 𝑗 > 𝑖 + 𝑙−1, are two non-overlapping subse-

quences of 𝐱. We denote 𝑑(𝐲, 𝐳) ≜ 𝑗 − 𝑖 − 𝑙+1 as the “distance” between 
𝐲 and 𝐳. Moreover, if 𝐲 =𝑅𝐶(𝐳), 𝑘 = 𝑑(𝐲, 𝐳) is the length of the loop of 
the secondary structure of this reverse-complement.

Definition 4. A DNA sequence 𝐱 ∈ 𝑛 is said to be an (𝑚, 𝑘)-SSA se-

quence if, for every pair of subsequences 𝑦 and 𝑧 within 𝑥, where 

𝑦 = 𝑅𝐶(𝑧), the following condition holds: either the length of 𝑦 is less 
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Fig. 2. The relationship between the length and quantity of the loops of reverse-complements with different 𝑚 in 10,000 sequences.
than 𝑚 (i.e., 𝑙𝑒𝑛𝑔𝑡ℎ(𝑦) < 𝑚), or the distance between them is less than 
𝑘 (i.e., 𝑑(𝑦, 𝑧) < 𝑘). A code  ⊆ 𝑛 is referred to as an (𝑚, 𝑘)-SSA code 
when each codeword within  satisfies the criteria of being an (𝑚, 𝑘)-
SSA sequence.

Remark 1. Our definition (𝑚, 𝑘)-SSA is much “weaker” than 𝑚-SSA in 
[11] and [12], that is to say, not all (𝑚, 𝑘)-SSA sequences are 𝑚-SSA, 
while all 𝑚-SSA sequences have the property of (𝑚, 𝑘)-SSA. Since we 
notice that not all reverse-complements form a secondary structure, A 
DNA oligonucleotide usually does not bend over small regions [15], it 
would be more natural to have a coding theoretic solution considering 
the length of loop “𝑘”.

As shown in Fig. 2, our data, which comprises DNA sequences ran-

domly generated without consideration of GC content and homopoly-

mer avoidance, simulates the relationship between the length of the 
sequence 𝑛 and the number of loops when 𝑚 is set to 6, 8 and 10, re-

spectively. As 𝑚 increases, the probability of finding a corresponding 
reverse complement decreases significantly, and the number of 𝑘 is sig-

nificantly reduced. It’s worth noting that a substantial proportion of the 
DNA sequences we analyzed consist of short loops in their secondary 
structure, with approximately twenty-five percent of all sequences hav-

ing loops shorter than 20. The presence of these short loop sequences 
suggests that they are not easily forming secondary structures, imply-

ing that it may be appropriate to retain these reverse-complements in 
the sequences.

Definition 5. For a positive integer 𝑁 , the DNA-representation of 𝑁 is 
the replacement of symbols in the quaternary representation of 𝑁 over 
𝐷 = {0, 1, 2, 3} by following rule: 0 ↔𝐴, 1 ↔ 𝑇 , 2 ↔ 𝐶 , and 3 ↔𝐺.

Theorem 1. Given 𝑚, 𝑛 and 𝑘 > 0, if a sequence 𝐱 ∈ 𝑛 is (𝑚, 𝑘)-SSA, 
then 𝐱 is (𝑚′, 𝑘′)-SSA, for all 𝑚′ ≥𝑚, 𝑘′ ≥ 𝑘.

Proof. We establish this theorem through a proof by contradiction. 
Suppose there exists values 𝑚′ ≥𝑚 and 𝑘′ ≥ 𝑘 for which 𝐱 is not (𝑚′, 𝑘′)-
SSA. In such a case, there must be a pair of subsequences 𝐲 = 𝑅𝐶(𝐳)
with a length of 𝑚′ and 𝑑(𝐲, 𝐳) ≥ 𝑘′ ≥ 𝑘. Now, since the lengths of both 
𝐲 and 𝐳 are 𝑚′ > 𝑚, it follows that 𝐲 must contain a subsequence of 
length 𝑚 denoted as 𝐲′, and 𝐳 must have a subsequence of length 𝑚 as 
well, denoted as 𝐳′. Importantly, 𝑑(𝐲′, 𝐳′) ≥ 𝑑(𝐲, 𝐳) ≥ 𝑘, signifying that 
𝐲′ and 𝐳′ are reverse-complements with a length of 𝑚 and a loop of 
length greater than or equal to 𝑘. Consequently, it implies that 𝐱 is not 
(𝑚, 𝑘)-SSA, leading to a contradiction. □

4. Constructions of (𝒎, 𝒌)-SSA codes for 𝒎 ≥ 𝟐 𝐥𝐨𝐠𝟐 𝒏 + 𝟐

Given the conditions: 𝑛 > 𝑚 > 2, 𝑛 > 26, 𝑚 ≥ 2 log2 𝑛 + 2, and 𝑘 ≥
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4, we establish a parameter 𝑡 = 0.5𝑚 = log2 𝑛 + 1 for later reference. 
Additionally, let 𝑢 ∈𝑛−1 represent the message DNA sequence, which 
is the original sequence before encoding.

4.1. Encoder

Our encoding algorithm can be simply divided into three steps to 
execute sequentially:

• Step 1 (prefix): In the encoding process, we initiate by adding the 
nucleotide 𝑇 as a prefix to the message DNA sequence 𝐮 ∈𝑛−1, 
resulting in a sequence 𝐱 ∈ 𝑛 = 𝑇 𝑢. Subsequently, we assess 
whether the sequence 𝐱 is already an (𝑚, 𝑘)-SSA DNA sequence. If 
it satisfies the (𝑚, 𝑘)-SSA criteria, the encoder directly outputs the 
sequence 𝐱, otherwise, it proceeds to the next step in the encoding 
process. For more specific information, please refer to Algorithm 1.

• Step 2 (replacing): Next, the encoder conducts a left-to-right scan 
of the entire sequence, aiming to identify the earliest occurrence 
of a pair of non-overlapping subsequences, denoted as 𝐲 and 𝐳, 
each with a length of 𝑡, that meet the condition 𝐳 = 𝑅𝐶(𝐲). Here, 
𝐲 initiates at position 𝑖, 𝐳 begins at position 𝑗, and the separation 
between these starting positions, denoted as 𝑗 − 𝑖, must be greater 
than or equal to 𝑡 + 𝑘. Alternatively, the encoder also looks for 
the initial occurrence of a subsequence 𝐬 within the input 𝐱 that 
conforms to the pattern 𝐬 = (𝑥1𝑥2)𝑡∕2, where 𝑥1, 𝑥2 ∈.

– Case 1: If it finds a pair of reverse-complement subsequences 𝐲
and 𝐳 of 𝐱, we can write 𝐱 =𝑋1𝐲𝑋2𝐳𝑋3, where 𝑋1, 𝑋2 and 𝑋3
are all subsequences of 𝐱. We solve this problem with so-called 
“C”-replacement as follows:

𝑋1𝑦𝑋2𝑧𝑋3
𝑗−𝑖−𝑡≥𝑘
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→𝑋1𝑦𝑋2𝑋3 → 𝐶𝐾𝛼𝑋1𝑦𝑋2𝑋3 (1)

When multiple secondary structures exist, repeating this process 
is straightforward, as outlined in Eq. (2). In this case, we have 
two pairs of reverse-complements: 𝑦1 and 𝑧1, as well as 𝑦2 and 
𝑧2. These pairs are defined with 𝑦1 and 𝑧1 starting at positions 𝑖1
and 𝑗1, and 𝑦2 and 𝑧2 starting at positions 𝑖2 and 𝑗2.

𝑋1𝑦1𝑋3𝑦2𝑋3𝑧1𝑋4𝑧2𝑋5
𝑗2−𝑖2−𝑡≥𝑘
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
𝑗1−𝑖1−𝑡≥𝑘

𝑋1𝑦1𝑋2𝑦2𝑋3𝑋4𝑋5 →

𝐶𝐾2𝛼2𝐶𝐾1𝛼1𝑋1𝑦1𝑋2𝑦2𝑋3𝑋4𝑋5 (2)

The encoder establishes a pointer denoted as 𝑃 = 𝐶𝐾𝛼. This 
pointer functions as a prefix that encodes information about the 
loop size and the reverse-complement position. Specifically, 𝐶
represents a single nucleotide that denotes the reverse comple-

ment, 𝐾 stands for the DNA-encoded representation of the length 
of loop 𝑘, and 𝛼 represents the DNA-encoded representation of 
the position 𝑖 at which the sequence 𝐲 begins. It is worth noting 
that we define the starting index of 𝐳 as 𝑗. Both 𝐾 and 𝑖 have 
a length of log4 𝑛. Consequently, the pointer 𝑃 is of a length of 

1 + 2 log4 𝑛 = 1 + log2 𝑛. Following this, the encoder proceeds to 
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Fig. 3. While previous work removes the entire 𝐳 of length 6 when the encoder finds the reverse-complement of length 𝑙 > 6 > 𝑚 = 4, our work removes exactly the 
𝑚 = 4 sign and no secondary structure is formed.
remove the sequence 𝐳 from 𝐱 and adds the prefix 𝑃 to the be-

ginning of 𝐱.

Remark 2. The subsequence 𝐳 that has been removed has a 
length of 𝑡 = 0.5𝑚 = 1 + log2 𝑛. The pointer 𝑃 that has been 
added at the beginning also has a length of 1 + log2 𝑛. Notably, 
if 𝑚 ≥ 2 + 2 log2 𝑛, the length of the insertion pointer 𝑃 is either 
less than or equal to the length of the subsequence 𝐳 that was 
removed. Thus, this specific method of sequence replacement, 
which we refer to as “C”-replacement, does not result in an in-

crease in the overall length of the sequence 𝐱.

– Case 2: If the encoder finds the subsequence 𝐬 of 𝐱 of the form 
𝐬 = (𝑥1𝑥2)𝑡∕2, where 𝑥1, 𝑥2 ∈ . We can write 𝐱 = 𝑋1𝐬𝑋2 =
𝑋1(𝑥1𝑥2)𝑡∕2𝑋2. In particular, we solve this problem with a so-

called “A”-replacement as follows:

𝑋1(𝑥1𝑥2)𝑡∕2𝑋2 →𝑋1𝑋2 →𝐴𝑥1𝑥2𝛽𝑋1𝑋2. (3)

The encoder sets a pointer 𝑄 = 𝐴𝑥1𝑥2𝛽, where 𝐴 as a single 
nucleotide stands for the repeated patterns of size 2, 𝑥1𝑥2 stands 
for the repeated words 𝑥1 and 𝑥2, and 𝛽 stands for the DNA-

representation of 𝑖 which is the position where 𝐬 starts.

Remark 3. Given that 𝛽 has a length of log4 𝑛, the pointer 𝑄 is 
1 + 2 + log4 𝑛 = 3 + 1

2 log2 𝑛 in length. Consequently, when we 
calculate 1 + log2 𝑛 − (3 +0.5 log2 𝑛), it results in 12 log2 𝑛 −2. Im-

portantly, this quantity is greater than 1 when 𝑛 > 26. Therefore, 
the replacement reduces the length of the sequence 𝐱 by more 
than one symbol, specifically 1

2 log2 𝑛 − 2, when 𝑛 exceeds 64
(i.e., 𝑛 > 26).

• Step 3 (adding suffix): The encoder repeats these scanning and se-

quence replacing steps until the sequence 𝐱 no longer contains any 
reverse-complement pairs, and 𝐬 = (𝑥1𝑥2)𝑡∕2 has a length greater 
than or equal to 𝑡 = 0.5𝑚. Importantly, as our sequence replace-

ment method consistently reduces the length of the sequence, this 
process is guaranteed to eventually terminate. In our sequence 
replacement strategy, the encoder aims to reduce the length of 
the current sequence 𝐱 while preserving its (𝑚, 𝑘)-SSA properties. 
When the length of the current sequence is denoted as 𝑛′, where 
𝑛′ < 𝑛, the encoder appends a suffix of length 𝑛𝑠 = 𝑛 − 𝑛′ to extend 
the sequence to the desired length 𝑛.

In selecting unpaired nucleotides as a suffix, we consider the poten-
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tial benefits of maintaining a GC content closer to 50%. To ensure that 
the generated suffix complies with the (𝑚, 𝑘)-SSA condition, preserving 
the integrity and effectiveness of our output codeword, we employ a 
suitable and efficient method as follows:

• If the length of the suffix 𝑛𝑠 is even, we append 𝐫 = (𝐺𝑇 )𝑁1∕2 to 
the end of the current sequence 𝐱.

• If the length of the suffix 𝑛𝑠 is odd, we append 𝐫 = (𝐺𝑇 )𝑁1−1∕2𝐺 to 
the end of the current sequence 𝐱.

Remark 4. In our work, we only delete part of the whole subsequence 
that is exactly 𝑚 in length, and keep the rest (see Fig. 3), because they 
are not long enough to form a secondary structure (see Fig. 4). The 
reduced length of the pruned subsequence helps to reduce the num-

ber of operations and improve the success rate of decoding, and makes 
it possible to handle sizes of 𝑚 that are closer to biochemical needs 
(2 log2 𝑛 + 2). Even if our operations form new secondary structures or 
repeated patterns, since our algorithm keeps repeating, eventually all 
(old, new) secondary structures and repeated patterns of size 2 will be 
processed.

We denote the encoder as Enc that 𝐱 = 𝐄𝐧𝐜(𝐮), when 𝐱 is the se-

quence after 𝐮 is encoded.

Theorem 2. 𝐱 = 𝐄𝐧𝐜(𝐮) is (𝑚, 𝑘)-SSA for all 𝐮 ∈𝑛−1.

Proof. Suppose 𝐱 = 𝐱𝟏𝐱𝟐 = 𝐄𝐧𝐜(𝐮) ∈ 𝑛 is the output of our encoder, 
where 𝐱𝟏 and 𝐱𝟐 are subsequences of 𝐱. 𝐱𝟏 is (𝑡, 𝑘)-SSA and the length of 
the repeated patterns (mentioned in the step 3 in Encoder algorithm) of 
size 2 in 𝐱𝟏 is of length at most 𝑡 = log2 𝑛 +1, and 𝐱𝟐 is the generated suf-

fix of 𝐱𝟏 at the suffix adding phase. Consider an arbitrary subsequence 
of length 𝑚, 𝐲 = 𝐲𝟏𝐲𝟐, where 𝐲𝟏 is the subsequence of 𝐱𝟏 and 𝐲𝟐 is the 
subsequence of 𝐱𝟐.

As depicted in Fig. 5, we consider the following cases due to possible 
different positions of 𝑦 in 𝑥 as follows:

• Case 1: If 𝐲𝟏 is of length more than or equal to 𝑡 = 0.5𝑚 (partic-

ularly including the case that 𝐲𝟏 is of length 𝑚 which means 𝐲 is 
totally a subsequence of 𝐱𝟏), since 𝐱𝟏 is (𝑡, 𝑘)-SSA, 𝐲𝟏 cannot find its 
reverse-complement whose loop is of length more than or equal to 
𝑘 and stem of length more than or equal to 𝑡 in 𝐱𝟏, and since 𝐱𝟐 is 
of the form “𝐺𝑇𝐺𝑇 …”, there are no such repeated patterns of size 
two of length more than or equal to 𝑡 in 𝐗𝟏 due to the construc-

tion of our encoder, the same for 𝐲𝟏 because 𝐲𝟏 is its subsequence. 
Thus, 𝐲𝟏 cannot find its reverse-complement in both 𝐱𝟏 and 𝐱𝟐.

• Case 2: If the length of 𝐲𝟏 is less than 𝑡 = 0.5𝑚 (partically includ-

ing the case where 𝐲𝟏 has length 0, indicating that 𝐲 completely 

constitutes a subsequence of 𝐱𝟐). Simultaneously, the length of 𝐲𝟐, 
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Fig. 4. The removal of shorter sequences that do not form secondary structures.
Fig. 5. Positions of 𝐲 in 𝐱.

which consists of repetitive patterns of size 2, exceeds 𝑡, leading 
to the inability to identify its reverse-complement within 𝐱𝟏 due to 
the constraints of the encoder’s design. Furthermore, the reverse-

complement of 𝐲𝟐 cannot be located within 𝐱𝟐 either, as instances 
such as “𝐺𝑇𝐺𝑇 …” do not possess a viable reverse-complement, 
where 𝑇 and 𝐺 do not conform to the Watson-Crick complemen-

tarities. □

Algorithm 1: Framework of 𝑚-SSA Encoding.

Input: Message DNA sequence: 𝐮; Stem length: 𝑚; Loop length: 𝑘.

Output: (𝑚, 𝑘)-SSA codeword: 𝐱.

𝐱 = 𝑇𝐮
while 𝐱 is not (𝑚, 𝑘)-SSA do

while 𝐱 has a reverse-complement pair of subsequence do
“C”-replacement

while 𝐱 has subsequence 𝐬 = (𝑥1𝑥2)(𝑡∕2) do
“A”-replacement

𝐱 adds the suffix 𝐺𝑇 …
return 𝐱
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4.2. Decoder

Given a received DNA sequence 𝐱 with a length of 𝑛, our decoding 
procedure involves a sequential scan of the sequence from left to right. 
During this scanning process, the decoder examines the first symbol in 
the sequence.

• Case 1: If the first symbol corresponds to “𝑇 ”, it serves as a signal 
that the subsequent 𝑛 − 1 symbols collectively form a (𝑚, 𝑘)-SSA 
sequence. Under this circumstance, the decoder promptly removes 
the terminal symbol 𝑇 , and proceeds to identify the ensuing 𝑛 −
1 symbols as the message DNA sequence. This identified message 
DNA sequence is then extracted and outputted by the decoder.

• Case 2: If the first symbol is “𝐶”, the decoder scans from left to 
right and takes the prefix of length 1 + log2 𝑛 as the pointer 𝑃 , 
which is prepended to the sequence after the “𝐶”-replacement. We 
consider the pointer 𝑃 to be of the form 𝐶𝐾𝛼. The decoder calcu-

lates the positive integers whose DNA representation is 𝐾 , and 𝛼, 
and sets 𝑘 and 𝑖 to be these two integers, they are the length of the 
loop of secondary structure and the start of 𝐲 which is 𝑅𝐶(𝐳). Thus, 
the decoder removes the pointer 𝑃 = 𝐶𝐾𝛼 and inserts 𝐳 = 𝑅𝐶(𝐲)
to sequence 𝐱 at index 𝑖 + 𝑘 +𝑚′.

𝐶𝐾𝛼𝑋1𝑦𝑋2𝑋3 →𝑋1𝑦𝑋2𝑋3 →𝑋1𝑦𝑋2𝑧𝑋3. (4)

• Case 3: If the received sequence starts with 𝐴, the decoder scans 
from left to right and takes the prefix of length 3 + 0.5 log2 𝑛 as 
the pointer 𝑄, which is prepended to the sequence after the “C”-

replacement. We consider the pointer 𝑄 to be of the form 𝐴𝑥1𝑥2𝛽, 
where 𝑥1 and 𝑥2 are the two symbols in the repeated patterns of 
size 2 and 𝛽 is the DNA representation of where the repeated pat-

terns “(𝑥1𝑥2)𝑡∕2” was. The decoder calculates the positive integer 
“𝑗” whose DNA-representation is 𝛽, and then removes the pointer 
𝑄 =𝐴𝑥1𝑥2𝛽 and inserts (𝑥1𝑥2)𝑡∕2 to 𝐱 at index 𝑗.

𝐴𝑥1𝑥2𝛽𝑋1𝑋2 →𝑋1𝑋2 →𝑋1(𝑥1𝑥2)𝑡∕2𝑋2. (5)

• Case 4: In the event that the received sequence initiates with the 
nucleotide 𝐺, which deviates from our intended design expecta-

tions, the decoder promptly identifies and reports errors. Subse-

quently, the decoder leverages error-correcting codes to rectify 

these errors.
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The decoding process concludes when the initial symbol in the se-

quence corresponds to the symbol “𝑇 ”, which serves as a terminal 
marker. At this point, the decoder considers the subsequent (𝑛 − 1)
symbols in the sequence, disregarding any additional symbols and suf-

fixes that might have been introduced during the encoding stage. These 
(𝑛 − 1) symbols are then recognized and treated as the message data, 
containing the essential information intended for extraction and inter-

pretation from the decoded sequence.

Remark 5. If the length of the cycle 𝑘 is given or has already been 
traversed during the search for a palindrome sequence, then it elimi-

nates the necessity of storing this value in the pointer. Consequently, the 
pointer representation, initially expressed as 𝑃 = 𝐶𝐾𝛼, can be simpli-

fied to 𝑃 = 𝐶𝛼. This simplification does not compromise the generality 
of our conclusion. Therefore, our findings can be extended to situa-

tions where 𝑚 satisfies 𝑚 ≥ log2 𝑛 +2. This condition aligns more closely 
with the practical requirements of biochemical experiments, providing 
greater relevance and applicability to real-world scenarios.

4.3. Numerical results

Algorithm 2: Calculation of RC pairs reduced rate.

Input: Length of message DNA sequence: 2𝑛; Stem length: 𝑚 ≥ 2 log2 𝑛 + 2; Loop 
length: 𝑘.

Output: RC pairs reduced rate: (𝑅 −𝑅′)∕𝑅.

𝑖 ← 0
while 𝑖 ≤ 10, 000 do

Randomly generate a 2𝑛 long DNA sequence.

Scan and count the number 𝑅 of RC pairs.

Encode the DNA sequence.

Scan and count the number 𝑅′ of RC pairs again.

𝑖 = 𝑖 + 1
return (𝑅 −𝑅′)∕𝑅

We devised an experiment to determine the count of reverse-

complementary sequence pairs with a length of 𝑚 within randomly 
generated DNA sequences, while varying the values of 𝑛 and adjust-

ing the values of 𝑚 accordingly.

We randomly generated a total of 60,000 DNA sequences of varying 
lengths (128, 256, 512, 1024, 2048, and 4096) with 10,000 sequences 
for each length category. We then quantified the count of reverse-

complementary sequences under different values of 𝑚. In addition, 
for the scenario where 𝑚 = 2 log2 𝑛 + 2, as explored in our study, we 
applied our encoding scheme to represent the original random DNA se-

quences. The encoded sequences obtained through this method exhibit 
the property of being (𝑚, 𝑘)-SSA. Our findings reveal that when 𝑚 is 
significantly large (such as 3 log2 𝑛 + 4 in [11]), numerical experiments 
suggest that it becomes exceedingly improbable to identify such lengthy 
pairs of reverse-complementary subsequences within a DNA sequence. 
However, when 𝑚 is appropriately adjusted to a smaller but still sub-

stantial value, our encoding scheme proves to be effective, as illustrated 
in Fig. 8. Compared with [11], our work can deal with the secondary 
structure caused by the reverse-complementary sequences with smaller 
values of 𝑚, as shown in Fig. 6.

The relationship between 𝑛, 𝑚, and 𝑘 is illustrated in Fig. 7, where 
we select the top 25 values and the top 20% after sorting 𝑘 in ascending 
order. When the stem length 𝑚 ≥ 2 log2 𝑛 +2, it becomes highly probable 
that reverse-complementary sequences will emerge. The length of these 
reverse-complementary sequences significantly influences the stability 
of DNA sequences.

In Fig. 8, our findings demonstrate that when 𝑚 = 3 log2 𝑛 + 4, as 
described in [11], DNA sequences exhibit minimal formation of ex-

tended reverse complementary pairs (as indicated by the blue line, 
which closely aligns with the x-axis). In such cases, there is no pressing 
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need for specialized encoding and decoding methods. Conversely, when 
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Fig. 6. The stem length 𝑚 that both algorithms can handle.

𝑚 = 2 log2 𝑛 +2, the count of potential reverse complementary pairs sig-

nificantly increases (as seen by the orange line). However, our encoding 
approach effectively circumvents these reverse complementary pairings 
(as represented by the dashed red line).

Next, we conducted numerical experiments using Algorithm 2 to 
quantify the reduction of reverse-complement pairs in the original DNA 
sequence achieved through our encoding process. We compared the 
count of these pairs before and after encoding. The experimental re-

sults, as visualized in Fig. 8, clearly demonstrate the effectiveness of 
our encoding method in eliminating all reverse-complement pairs with 
a “distance” greater than 𝑘. This is because the count 𝑅′ of reverse-

complement pairs is reduced to zero after encoding. Essentially, the 
sequences after encoding are all (𝑚, 𝑘)-SSA, and the reduction rate of 
reverse-complement pairs, quantified as (𝑅 −𝑅′)∕𝑅, is equal to 1.

4.4. Homopolymer avoiding analysis

Reading and writing of a nucleotide at consecutive positions are one 
of the significant causes of insertion and deletion errors [16,17]. A ho-

mopolymer of run-length 𝑟 is a DNA string with a sub-string of length 𝑟, 
where all nucleotides of the sub-string are the same. For example, the 
DNA string CGGGGGATTC has a sub-string GGGGG, and therefore, has 
a homopolymer of run-length five.

Unfortunately, in our algorithm, adding prefixes and deleting sub-

sequences may both generate homopolymers. How to reduce or even 
avoid the influence of homopolymers is an issue that must be consid-

ered, and we take the homopolymer of run-length five into account.

As said above, adding a prefix 𝐶𝐾𝛼 or deleting subsequence 𝑧 may 
generate homopolymers, we take 𝑛 = 1024 for example:

• Case 1: Adding prefix 𝐶𝐾𝛼. As mentioned above, 𝐶 is an individual 
base, 𝐾 and 𝛼 are both of length log4 𝑛, that is, of length 5. We 
can calculate the probability of generating new homopolymers on 

a case-by-case basis, and the result is: 
4+3+4+3∗4∗ 1

4 ∗2+4∗3∗4∗
4

4∗4 ∗2
45 =

41
1024 .

• Case 2: Deleting 𝑧. We can also calculate the probability when 𝑋2

and 𝑋3 create new homopolymer: 
3∗4∗ 1

4 ∗2+4∗3∗4∗
4

4∗4 ∗2
45 = 30

1024 .

As a result, the probability of generating new homopolymers is 71
1024

when there is a secondary structure, which is rather small, which means 
when the encoding finds an encoded sequence with homopolymers, we 

can recode until no homopolymers appear.



Computational and Structural Biotechnology Journal 23 (2024) 140–147R. Zhang and H. Wu

Fig. 7. The relationship between 𝑛, 𝑚 and 𝑘.

Fig. 8. Average number of reverse-complements under different values of both 𝑛 and 𝑚.
4.5. Application to short DNA strings

Presently, synthesis technology falls short in generating lengthy 
DNA strands, with current technologies limited to producing oligonu-

cleotides of a maximum length of 300. It is pragmatic to conduct 
research within the confines of existing science and technology. The 
proof of Theorem 2, validating the correctness of our algorithm, is 
independent of the selection of 𝑛. Whether 𝑛 is small (e.g., around 100-

200 base pairs) or large (up to 4,000 base pairs), the same algorithm 
is applicable. It’s worth highlighting that our method also outperforms 
existing approaches in the context of contemporary DNA synthesis tech-

nologies, which often involve shorter sequences (e.g., around 100-200 
base pairs), as depicted in Fig. 8. Importantly, our work demonstrates 
versatility by effectively accommodating short DNA strings as well. This 
adaptability underscores the extensive range of applications for our al-
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gorithm.
4.6. Complexity analysis

The time complexity of both the encoder and the corresponding de-

coder for a codeword of length 𝑛 is linear in 𝑛. This is due to the fact 
that the number of sequences replacing operations during the encod-

ing process is at most 𝑛 −𝑚, which is represented as (𝑛). Additionally, 
each replacing operation, which includes steps like prepending a prefix 
or converting the quaternary representation to the DNA representation 
of an integer, has a constant time complexity of (1).

As a result, the overall time complexity of the encoder and decoder 
operations remains linear with respect to the length of the codeword 
𝑛. This linear complexity is advantageous as it ensures efficient and 
manageable processing times for DNA code construction and decoding, 
making it suitable for handling large-scale data storage and retrieval 

tasks.
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5. Conclusion

In this study, we have proposed a novel approach to tackle the 
challenge of avoiding secondary structure formation during DNA stor-

age. Additionally, we have put forth a new definition of (𝑚, 𝑘)-SSA to 
describe the secondary structure. Our method has demonstrated its ef-

fectiveness, particularly for moderately large values of the parameter 
𝑚. Meanwhile, for stem lengths 𝑚 ≥ 2 log2 𝑛 + 2, we have introduced 
an algorithm that incorporates a single redundant codeword, thereby 
achieving linear complexity in the transformation of regular codewords 
into secondary structure-avoiding codes. Compared to previous algo-

rithms, our proposed method exhibits broader applicability and lower 
computational complexity. In future work, we aim to reduce the large 
value of 𝑚 and incorporate error correction codewords into the current 
algorithm.
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