
245979-8-3503-0375-9/23/$31.00 ©2023 IEEE

Intelligent Parking Lot System Based on Automatic
Parking Hybrid Controller

Junyi Li∗, Yixiao Wang†, Songxin Lei∗, Xinyao Guo∗, Lu Zheng∗, Yu Zhang∗, and Huaming Wu†
∗School of Mathematics, Tianjin University, China

†Center for Applied Mathematics, Tianjin University, China

E-mail: {junyi li, wang yixiao, whming}@tju.edu.cn

Abstract—Recently, the automobile industry has experienced
rapid growth, driven by increasing population and living stan-
dards, resulting in a surge of vehicles in cities. Many large
parking lots lack intelligent parking space management systems,
leading to low efficiency and confusion for users. Existing intel-
ligent parking systems primarily rely on automatic timing and
charging, closed-circuit television, and video recorder systems,
which are insufficient to handle complex terrain and high traffic
flow. This often leads to traffic congestion and unreasonable
parking space occupation. Additionally, parking lots in China
face issues such as difficulty and high costs associated with
parking, primarily due to the imperfect utilization and allocation
of resources. To address these issues, we propose a smart parking
system that maximizes the efficiency of existing parking spaces
instead of solely focusing on increasing the size and number of
parking lots.

Index Terms—AC-PPO algorithm, MPC algorithm, digital
twins, unmanned driving, IoT, automobile industry

I. INTRODUCTION

With the improvement of people’s living standards and the

rapid increase in population, the number of automobiles has

skyrocketed in cities, leading to significant growth in the

automobile industry. While this is a positive reflection of

our country’s rapid economic development, it also presents

considerable challenges to the city’s parking system. It is

crucial to address the parking situation and improve parking

facilities urgently.

Currently, many large parking lots in China still lack

comprehensive intelligent parking space management systems.

Some ordinary parking lots only provide parking spaces with-

out proper management and charging systems, while others

are paid parking lots equipped with access gates, parking

managers, and cashiers. However, for users, quickly finding

an available parking space in a large parking lot remains a

relatively challenging task. This results in low overall oper-

ational efficiency and management confusion due to parking

inconveniences.

Existing intelligent parking systems primarily rely on auto-

matic timing and charging systems, closed-circuit television,

and video recorder systems to monitor the parking lots. While

these systems have significantly improved the parking situation

compared to ordinary parking lots, parking lots with complex

terrain and high traffic flow still experience issues such as

traffic congestion, long waiting times for parking, difficulty in

finding suitable parking spaces, and unreasonable occupation

of parking spaces. Additionally, due to the imperfect utilization

and allocation of resources, parking in China often faces

problems of being difficult and expensive.
The evidence suggests that while increasing the supply of

parking spaces is important, it is more feasible to maximize the

utilization efficiency of existing parking spaces. Therefore, it

is essential to consider not only expanding the size and number

of parking lots but also optimizing the use of current parking

space resources.
In the field of automatic parking, there have been many

research results on unmanned driving and path planning,

and various technical means and analysis methods have been

adopted. Wang et al. [3] utilized the Levenberg-Marquardt

algorithm for image mosaicking to generate omnidirectional

bird’s eye view images, extracted parking space features using

Radon transform, and achieved autonomous parking through

double circular trajectory planning and preview control strat-

egy. However, this method performs poorly in dimly lit indoor

parking lots. Ávalos et al. [14] complemented this objective by

proposing a novel approach that combines deep learning and

sensor fusion techniques to accurately detect and track parking

spaces in real-time, enhancing the capabilities of the computer

architecture for the distributed system and further improving

the efficiency of guiding drivers to available parking spots.

However, this study has been criticized for overestimating the

complexity of the parking lot environment, leading to more

time costs. The algorithm mentioned above partially represents

the limitations of traditional path control strategies and neural

network methods in parking lot environments. In an attempt to

address this, we aim to combine these two types of algorithms

to construct a novel control model.
This paper presents a hybrid controller designed to auto-

mate the search for parking vacancies and perform parking

operations. The hybrid controller utilizes model predictive

control (MPC) to navigate along the reference path within the

parking lot when only one car is present. Additionally, a deep

reinforcement learning (DRL) agent, trained specifically for

parking operations, is employed to handle the task of parking

once a vacancy is identified. In scenarios where multiple cars

exist within the parking lot, the hybrid controller integrates the

AC-PPO algorithm along with a global environment model

to achieve an optimal solution at a global level. The key

contributions of this research can be summarized as follows:

• A method of fully automated parking lot scheduling based

20
23

 C
hi

na
 A

ut
om

at
io

n
Co

ng
re

ss
 (C

AC
) |

 9
79

-8
-3

50
3-

03
75

-9
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
CA

C5
95

55
.2

02
3.

10
45

11
02

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on March 27,2024 at 08:33:35 UTC from IEEE Xplore. Restrictions apply.

246

on DRL and combined with an MPC controller is pro-

posed to deal with complex scenarios in fully automated

parking lots and achieve intelligent automation.

• By adopting centralized training and distributed execution

policies, the algorithm’s computational complexity is

reduced, making it suitable for problems where multiple

agents cooperate in large-scale fully automated parking

lots.

• Techniques such as discretization processing and impor-

tance sampling are used to improve the efficiency and

accuracy of the algorithm, which has a wide range of ap-

plication prospects and practical significance in achieving

intelligent automation, improving parking efficiency, and

optimizing vehicle flow in fully automated parking lots.

II. ESTABLISHMENT OF PARKING ENVIRONMENT

As shown in Fig. 1, we first establish the environment model

of the fully automatic parking lot. The functional areas of

parking lots include exits, entrances, parking spaces, lanes and

specific functional areas. Rasterize the area, where each exit

and entrance occupies a grid and each parking space occupies

a grid. Lane is divided into different grids according to the size

of parking spaces. The white grid indicates the feasible area

and the black grid indicates the obstacles. For the simplicity

of path planning calculation, the grids are numbered from the

upper left corner of the map.

Fig. 1. Typical environment

To ensure the stability of the system and avoid collision

between agents, we put forward the following assumptions:

• Each grid can only pass through or accommodate one

agent at the same time

• Only one-way driving is allowed in the lane to avoid

collision

• The agent moves at a fixed uniform speed V to avoid

rear-end collision

• Set the priority of agents, and the agents with higher

numbers have higher priority to avoid cross-collision

III. HYBRID CONTROLLER BASED ON MPC AND AC-PPO

A. MPC Control Theory

The symbols that may appear in this section are shown in

Table I.

1) Parking environment and vehicle kinematics model cre-
ation: The parking process is a low-speed running scene, and

in the low-speed running scene, the bicycle kinematics model

can meet the requirements. Therefore, we mainly realize the

TABLE I
DEFINITIONS OF SYMBOLS

Symbol Definition

ψ The heading information of the vehicle
u Control deviation of the vehicle
δt The heading angle of the vehicle at time t
δf (δf ref) Front wheel angle input(expected input)
δr(δrref) Rear wheel angle input(expected input)
L The wheelbase of the vehicle
v The speed of the vehicle
eψ The angle between the vehicle and the road centerline
cte Deviation between the vehicle and the reference path
cteref The reference values of lateral offset
eψref The reference values of angle
eL(eLref) Lateral offset error and its reference value
eSp(eSpref) Speed error and its reference value
eAng(eAngref) Angle offset and its reference value
J The loss function
A State transition matrix
B(W) Control input matrices

MPC algorithm based on the bicycle kinematics model. The

model is as follows:⎧⎪⎨⎪⎩
x′ = v ∗ cosψ,
y′ = v ∗ sinψ,
ψ′ = v ∗ tan(δf)/L,

(1)

where (x′, y′) respectively represents the lateral and lon-

gitudinal position information of the vehicle; ψ represents

the heading information of the vehicle; δf is the corner of

the vehicle; L represents the wheelbase of the vehicle; v
represents the speed. According to the control model of the

MPC algorithm under the framework of Autoware:

x′ = f(x) =

{
y′ = v ∗ sinψ,
ψ′ = v ∗ tan(δf)/L,

(2)

For the linearization process of the above system, refer to

the article -Linearization of Nonlinear Systems with Extended

Kalman Filter (EKF), and get the above state transition matrix

A, control input matrices B and W . And the final linearization

model can be obtained by taking the derivative near the

equilibrium point (0, 0):

x′ = A ∗ x+B ∗ u+W ∗ δfref. (3)

There are many forms of discretization of the control

system, and we use Bilinear transformation and the Euler

method to discretize the system.

By Bilinear transformation and Euler change we can finally

get the state space model needed by MPC:

x(k + 1) = A ∗ x(k) +B ∗ u(k) +W ∗ δfref, (4)

where the expected front wheel angle input δfref can be

inferred from Ackerman’s rotation angle theorem, and the

control model required by the MPC algorithm is completed.

The following describes how the MPC control algorithm is

applied to the specific environment: when the discrete state

equation of the system is obtained, the state equation can be

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on March 27,2024 at 08:33:35 UTC from IEEE Xplore. Restrictions apply.

247

used to predict the state of multi-gait and the discretized state

equation can be rewritten as:

x(k + 1) = Ak ∗ x(k) +Bk ∗ u(k) +Wk ∗ δfref. (5)

2) Automatic parking model creation: Here, it is assumed

that the deviation angle of the vehicle’s heart side remains

unchanged during steering, that is, the instantaneous steering

radius of the vehicle is the same as the radius of curvature of

the road.

At the rear wheel axis (Xr, Yr), the speed is:

vr = Xr cosψ + Yr sinψ. (6)

The kinematic constraints of the front and rear wheels are:{
Xf sin(ψ + δf)− Yr cos(ψ + δr) = 0,

Xr sinψ − Yr cosψ = 0.
(7)

The following results can be obtained by simultaneous

expression: {
Xr = vr cosψ,

Yr = vr sinψ.
(8)

According to the geometric relationship between the front

and rear wheels: {
Xf = Xr + cosψ,

Yf = Yr + sinψ.
(9)

Then the yaw rate can be obtained as: ω = vr tan δf . Based

on yaw rate and vehicle speed, the steering radius and front

wheel deflection angle can be obtained:{
R = vr/ω,

δf = arctan(1/R).
(10)

The obtained vehicle kinematics model is as follows:⎡⎣Xr

Yr

ψ

⎤⎦ =

⎡⎣ cosψ
sinψ

(tan δf)/L

⎤⎦ ∗ vr. (11)

The vehicle state is denoted as (xt, yt, ψt, vt), where auto-

mobile world coordinates xt, automobile world coordinates yt
and driving speed vt. The control input of the vehicle is (δt, a).
Two state variables, eψt and ctet, are added to the complete

model to describe the included angle between the vehicle

and the road centerline and the lateral deviation between the

vehicle and the reference trajectory. The reference trajectory

is based on the polynomial fitting the curve expression f(xt),
and the lateral offset ctet is obtained in real time based on

f(xt).The complete model is as follows:

xt+1 = xt + vt ∗ cosψt ∗ dt, (12)

yt+1 = yt + vt ∗ sinψt ∗ dt, (13)

ψt+1 = ψt + vt/Lf ∗ δt ∗ dt, (14)

vt+1 = vt + a ∗ dt, (15)

ctet+1 = f(xt)− yt + vt ∗ sin(eψt) ∗ dt, (16)

eψt+1 = ψt+1 + vt/Lf ∗ δt ∗ dt. (17)

Rolling optimization is to obtain the optimal control so-

lution, and based on constraints, make one or some perfor-

mance indicators achieve the optimal control function. Then

designing an appropriate optimization objective function is the

key to the superiority of the result. The objective function is

expressed as a quadratic function of state and control input: s

J =

N∑
t=1

[
(ctet − cteref)

2 + (eψt − eψref)
2+

(eLt − eLref)
2 + (eSpt − eSpref)

2+

(eAngt − eAngref)
2
]
, (18)

where J is the loss function, N is the prediction time domain,

cteref and eψref are the reference values of lateral offset

and angle, respectively. The square is to unify the symbols,

and the weight difference should not be too wide. There are

dimensional differences between the data itself. Since there is

no normalization, special attention should be paid to the trade-

off between weights. The parameters of the loss function are

arranged according to priority in Table II.

TABLE II
ORDER OF THE PARAMETERS

Order of the parameters

A Lateral offset error eL
B Speed error eSp
C Angle offset eAng

After building the loss function, you also need to set

constraints: In the project, the control output is (δt, a), that

is, the steering and acceleration of the vehicle. We have

restrictions here {
−1 ≤ a ≤ 1,

−15 ≤ δt ≤ 15.
(19)

B. AC-PPO Algorithm

The symbols that may appear in this section are shown in

Table III.

TABLE III
DEFINITIONS OF SYMBOLS

Symbol Definition

Xt The state of the system at time t
xt
i The state of the agent i at time t

ai The action of the agent i
di The target point position of the agent i
vti The linear velocity of agent i at time t
wt

i The angular velocity of agent i at time t
N The prediction time domain
Dt Distance between the agent and target point at time t
Ak The advantage estimates
ri The reward function

θQi Parameters of Critic Network for each agent i
θμi Parameters of Old-Actor network for each agent i

θμ
′

i Parameters of New-Actor network for each agent i

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on March 27,2024 at 08:33:35 UTC from IEEE Xplore. Restrictions apply.

248

1) Establishment of agent:
• State: The state of the system at time t is defined as:

Xt = [xt
1, x

t
2, . . . , x

t
N], (20)

where xt
i is the state of agent i, and N is the number of

agents allowed to be active at the same time, that is, the

sum of the total number of parking and picking up cars.

For agent i, the state of time t is defined as:

xt = [sti, di, v
t
i , w

t
i], (21)

where sti denotes the position of agent i at time t,
representing the numerical value on the grid map. di
is the target point position of the agent i, specifically

referring to the number assigned to the designated parking

space on the grid map. To ensure consistency, the linear

velocity of agent i at time t is denoted as vti , normalized

within the interval [0, 1]. Additionally, we employ wt
i to

represent the angular velocity of agent i at time t, which

is normalized to the range of [−1, 1].
• Action: ITo facilitate the agent’s movement towards the

target point, the allowed actions are moving forward,

turning left, turning right and standing still. Therefore,

the agent’s action is defined as a control instruction

encompassing both linear velocity and angular velocity,

denoted as ai = (vti , w
t
i).

• Reward function (reward): Agent i takes the reward

function of behavior at at time t and state Xt.

ri(st, vt) =

⎧⎪⎨⎪⎩
ra, if Dt

i < Darrive,

rb, if Ct
i < Dcollsion,∑N

i=1 d(D
t−1
i −Dt

i), otherwise,

(22)

where Dt
i signifies the distance between agent i and its

target point at time t. If this distance falls below the

threshold value Darrive, it is considered as reaching the

target point, leading to the reward represented by the first

item. If the distance between the agent and an obstacle

is less than the safety threshold Dcollision, it is deemed

as an impending collision, resulting in a punishment

represented by the second item. The third item is to guide

the agent towards its target point. Each agent i measures

the distance Dt−1
i from his target point at time t− 1 and

the distance Dt
i from his target point at time t. If it is

farther away from its target point at time t, then it will be

punished, otherwise, it will be rewarded. d is the reward

parameter. The distance function Dt
i adopts Manhattan

distance, which can be formulated as:

Dt
i = dist(sti, di) = |xi − xj |+ |yi − yj |, (23)

where si is the number of the agent i on the grid map

at time t, and di is the number of the target point

on the grid map. Specifically, (xi, yi) denotes the row

and column coordinates corresponding to the position of

agent i represented by sti, while (xj , yj) denotes the row

and column coordinates corresponding to the target point

represented by di.

Algorithm 1: PPO Algorithm

1 Initialization: θQ, θμ
′
= θμ, rt

2 for k = 0, 1, 2, . . . do
3 while Experience pool is Full do
4 Input environment information into μ′;
5 Construct a normal distribution;

6 Sample a from the normal distribution;

7 Input a into the environment and obtain r;

8 Store S[X, a, r];

9 According to [16] compute the advantage estimates

Ak;

10 Loss = mean(square(Ak));
11 use backpropagation to update Q;

12 for Step = 1 to Step = Update Steps do
13 Obtain the normal distributions N1, N2;

14 get prob1 and prob2 from N1 and N2;

15 ratio = prob2/prob1;

16 According to [16], for ε ∈ [0, 1]
17 aloss = mean(min((ration ∗

Ak, clip(ratio, 1− ε, 1 + ε)∗;

18 use backpropagation to update μ′;

19 use backpropagation to update μ;

2) Establishment of network model: To implement the

proposed approach, three neural networks are constructed for

each agent: Critic Network (Q), New Actor Network (μ′), and

Old Actor Network (μ). The network parameters of each agent

i are denoted as θQi , θμ
′

i , and θμi , respectively. Initially, the

parameters of the New Actor Network are set to be the same as

the Old Actor Network, i.e., θμ
′

i = θμi . The state space X0 and

an experience replay buffer are initialized. The experience pool

serves as a repository for storing training samples in the format

of [xt, At, rt, X
′
t]. Here, xt = [xt

1, x
t
2, . . . , x

t
n] represents

the current state, encompassing the observation values of N
agents. Similarly, At = [at1, a

t
2, . . . , a

t
n] denotes the behavior

executed by the N agents. Furthermore, rt = [rt1, r
t
2, . . . , r

t
N]

corresponds to the respective return values associated with the

state and action pairs.

Fig. 2. The structure of DRL Agent

The updating process is presented in Algorithm 1, which

outlines the sequence of steps involved in the training pro-

cedure. Moreover, to provide a visual representation of the

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on March 27,2024 at 08:33:35 UTC from IEEE Xplore. Restrictions apply.

249

AC-PPO agent in relation to the specified settings, we depict

its structure in Fig. 2.

C. Training Process

Algorithm 2 outlines the training process, which consists of

two fully connected layers, each with 128 neurons. Both layers

utilize the Tah activation function to stabilize the network

model during reward function calculation. The second fully

connected layer employs the ReLU activation function to

promote sparse activation of the neurons.

Algorithm 2: Training process

1 Initialize state S[X, a, r];
2 Reward in each round epr = 0;

3 while need to complete an iteration do
4 determine the action that the car should take;

5 increase motion noise, and restrain a, r;

6 get the next state S′[X ′, a′, r′] and reward R;

7 record the data and store S′;

8 if the experience replay pool is full then
9 gradually reduce noise;

10 use PPO algorithm to learn;

11 else
12 S = S′, epr+ = R, then stop;

IV. EXPERIMENTS

A. Model Training

In the training process, exceptional parking actions and

states from the experience replay pool are sampled with a

step size of 20 rounds. The reward value converges over

10,000 rounds throughout the entire training process of the

PPO algorithm. Fig. 3 illustrates the progressive convergence

of the car parking reward value from -30 to near -20, indicating

successful algorithm convergence.

Fig. 3. DRL model training

B. Experiment and Analysis

Combining the MPC Control algorithm and AC-PPO agent

we built, we achieve the final version of the agent, which is

shown in Fig. 4. Based on the model, we try to show that our

hybrid controller is effective by doing experiments.

Fig. 4. Structure of the Hybrid controller

1) General Experiment: Modify the starting position of the

car and conduct a set of generalization experiments. Implement

the automatic parking model established in this paper. Among

the many experimental results, we selected two categories of

the most representative experiments for demonstration, one is

to test the controller’s suitability for vertical parking spaces,

and the other one is to test the controller’s suitability for

horizontal parking spaces. The target pose of the cars in

each environment is shown in Fig. 5.

(a) Environment 1 (b) Environment 2

Fig. 5. General experimental environments

The result of the experiment is shown in Fig. 6. The change

of car’s location (x, y) [Line 1 and Line 2] and ψ [Line 3]

during the parking process is divided into two stages. Stage
1 echos to the MPC controller and Stage 2 echos to AC-PPO

Agent. A car equipped with autonomous driving functions

drove into a parking lot, The network of the parking lot

took control of the autonomous car and operated the onboard

camera and radar. The autonomous car first cruised along

the purple reference path guided by the MPC controller, as

shown in Stage 1 of the experiment. When the onboard camera

detected an empty parking space, the vehicle began to call the

AC-PPO module for operation and the car starts parking in

the green area as shown in the figure, controlled by the AC-

PPO controller, corresponding to the results of Stage 2 in the

experiment, until the car is parked in the blue target position.

2) Comparative Experiment: For the two mentioned envi-

ronments, we conducted comparative experiments using mul-

tiple algorithms, and the results are presented in Table IV.

From the experimental results, we can observe that our Hy-
brid controller retains the advantages of the MPC algorithm

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on March 27,2024 at 08:33:35 UTC from IEEE Xplore. Restrictions apply.

250

(a) Experiment 1 (b) Experiment 2

Fig. 6. Results of general experiments

in the first stage and demonstrates fast convergence similar to

the DRL algorithm in the second stage.

The total time of the parking process guided by our Hybrid
controller ranked among the top in both environments. How-

ever, we note that in Experiment 1, the Rule-based control

strategy showed better performance, mainly due to the longer

cruising phase in that specific environment, highlighting the

strengths of the Rule-based control strategy. Nonetheless,

our model’s performance is superior to traditional machine

learning algorithms.

TABLE IV
COMPARATIVE EXPERIMENT

Experiment 1 Stage 1(s) Stage 2(s) Total(s)

Rule-based control strategy 25.7 7.8 33.5
Optimization-based method(A∗) 26.0 8.8 34.8
Pure Model Predictive Control 26.4 7.9 34.3
DDPG Algorithm 27.1 7.5 34.6
Hybrid controller 26.3 7.6 33.9
Experiment 2 Stage 1(s) Stage 2(s) Total(s)

Rule-based control strategy 16.8 8.3 25.1
Optimization-based method(A∗) 17.3 8.4 25.7
Pure Model Predictive Control 17.5 8.0 25.5
DDPG Algorithm 19.0 8.2 27.2
Hybrid controller 17.1 7.8 24.9

V. CONCLUSION

We found that combining the MPC algorithm with DRL

retains the simplicity and responsiveness of MPC in fixed-path

scenarios, as well as the fast and accurate guidance of DRL in

the parking process, reducing the parking time of autonomous

vehicles and improving their efficiency. Experimental results in

a simple parking lot environment demonstrate the feasibility of

our algorithm. Comparative experiments with other algorithms

have demonstrated that our algorithm can improve operational

efficiency, which means our architecture has the potential for

practical application in parking environments.

However, it should be noted that our assumptions did not

fully consider how the onboard cameras and radar detect the

environment and convert environmental features into data, as

well as the braking response in unexpected situations, such as

the sudden appearance of pedestrians. These aspects can be

further improved in future work.

ACKNOWLEDGMENT

This work is supported by the National Natural Science

Foundation of China (No. 62071327), Tianjin Science and

Technology Planning Project (No. 22ZYYYJC00020). Huam-

ing Wu is the corresponding author.

REFERENCES

[1] Sun Yinjian, ”Research on trajectory tracking control algorithm of
unmanned vehicle based on model predictive control,” 2015.

[2] Peng Xiaoyan, ”Research on local path planning algorithm for unmanned
vehicles,” Automotive Engineering, 2020.

[3] Wang C, Zhang H, Yang M, et al. Automatic parking based on a bird’s
eye view vision system[J]. Advances in Mechanical Engineering, 2014,
6: 847406.

[4] AdamShan, ”Introduction to self-driving car systems (Part
10) - Model predictive control based on kinematic model,”
https://blog.csdn.net/AdamShan/article/details/112868531, 2021.

[5] Liu Qing, Liu Bin, Wang Guan, Zhang Chen, Liang Zhixing, and Zhang
Peng, ”Research on digital twin model, problems and progress,” Journal
of Hebei University of Science & Technology, vol. 40, no. 1, 2019.

[6] Chen J, Xue Z, and Fan D, ”Deep reinforcement learning based left-
turn connected and automated vehicle control at signalized intersection
in vehicle-to-infrastructure environment,” Information, 2020.

[7] Engstrom L, Ilyas A, Santurkar S, Tsipras D, Janoos F, Rudolph L, and
Madry A, ”Implementation matters in deep policy gradients: A case
study on PPO and TRPO,” arXiv preprint arXiv:2005.12729, 2020.

[8] Han Shi-Yuan and Liang Tong, ”Reinforcement-learning-based vibra-
tion control for a vehicle semi-active suspension system via the PPO
approach,” Applied Sciences, vol. 12, no. 6, p. 3078, 2022.

[9] Li Dianzhao and Okhrin Ostap, ”Modified DDPG car-following model
with a real-world human driving experience with CARLA simulator,”
Transportation Research Part C: Emerging Technologies, vol. 147, p.
103987, 2023.

[10] Mahmud SA, Khan GM, Rahman M, Zafar H, et al., ”A survey
of intelligent car parking system,” Journal of Applied Research and
Technology, vol. 11, no. 5, pp. 714–726, 2013.

[11] Thomas Diya and Kovoor Binsu C, ”A genetic algorithm approach to
autonomous smart vehicle parking system,” Procedia Computer Science,
vol. 125, pp. 68–76, 2018.

[12] Lv Liangheng, Zhang Sunjie, Ding Derui, and Wang Yongxiong, ”Path
planning via an improved DQN-based learning policy,” IEEE Access,
vol. 7, pp. 67319–67330, 2019.

[13] Kober Jens, Bagnell J Andrew, and Peters Jan, ”Reinforcement learning
in robotics: A survey,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1238–1274, 2013.

[14] Ávalos H, Gómez E, Guzmán D, et al. ¿ Where to park? Architecture
and implementation of an empty parking lot, automatic recognition
system[J]. Enfoque UTE, 2019, 10(1): 54-64.

[15] Li Junzuo, Long Qiang. ”An Automatic Parking Model Based on Deep
Reinforcement Learning”, Journal of Physics: Conference Series, 2021.

[16] Schulman et al, ”Proximal Policy Optimization Algorithms”, 2017.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on March 27,2024 at 08:33:35 UTC from IEEE Xplore. Restrictions apply.

