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Abstract

Deoxyribonucleic acid (DNA) is an attractive medium for long-term digital data storage due to its extremely high storage density,
low maintenance cost and longevity. However, during the process of synthesis, amplification and sequencing of DNA sequences with
homopolymers of large run-length, three different types of errors, namely, insertion, deletion and substitution errors frequently occur.
Meanwhile, DNA sequences with large imbalances between GC and AT content exhibit high dropout rates and are prone to errors. These
limitations severely hinder the widespread use of DNA-based data storage. In order to reduce and correct these errors in DNA storage,
this paper proposes a novel coding schema called DNA-LC, which converts binary sequences into DNA base sequences that satisfy both
the GC balance and run-length constraints. Furthermore, our coding mode is able to detect and correct multiple errors with a higher
error correction capability than the other methods targeting single error correction within a single strand. The decoding algorithm has
been implemented in practice. Simulation results indicate that our proposed coding scheme can offer outstanding error protection to
DNA sequences. The source code is freely accessible at https://github.com/XiayangLi2301/DNA.

Keywords: DNA-based data storage, Constrained codes, Error-detecting codes, GC-content

Introduction
With the advent of the era of big data, massive data are gener-
ated and collected every day by different types of sensors and
devices, and the ever-increasing data of humans have brought
huge pressure on traditional storage methods, e.g. magnetic disks,
optical disks and hard disks, which are no longer sufficient for
long-term digital data storage [1]. Along with the maturity of
DeoxyriboNucleic Acid (DNA) synthesis and sequencing technolo-
gies, DNA emerges as a promising medium for cold data (i.e. infre-
quently accessed data) storage. DNA strings are composed of four
types of nucleotides: Adenine (A), Thymine (T), Guanine (G) and
Cytosine (C), while satisfying multiple constraints for robustness.
DNA shows some remarkable and overwhelming advantages, e.g.
enormous information storage density, low maintenance cost,
strong stability and long longevity [2]. However, there still exist
many technological difficulties in DNA storage systems that need
to be overcome.

One of the dominant difficulties is that synthesizing and
sequencing DNA sequences are still far from perfect [3].
During the synthesis, amplification and sequencing procedures,
there may occur insertion, deletion and substitution errors
of nucleotides in individual DNA molecules [4]. To tackle
this challenge, many prior studies have attempted to design
various error correction methods based on the biochemical
characteristics of DNA. Oligos with a large unbalance between
GC and AT content exhibit high dropout rates and are prone
to errors [5]. In other words, DNA sequences with GC content
occupying exactly 50%, also known as GC-AT balance [6] (i.e. the

sum of Gs and Cs is the same as the sum of As and Ts in each
DNA codeword), are much more stable than those with higher
or lower GC content. In addition, ROSS et al. [5] also reported that
repetitions of the same nucleotide, i.e. a homopolymer run-length,
can significantly increase the probability of errors in sequencing.
Then, the common thread of later researchers is trying to
construct DNA sequences with these constraints in theory.

In recent years, there have been many studies aimed at
constructing DNA sequences with multiple constraints [7–12].
For instance, Song et al. [7] designed a novel method to translate
binary sequences into DNA sequences that satisfy the constraints
of GC-content and run-length. Benerjee et al. [9] considered
reverse and reverse-complement constraints in DNA codewords,
and then designed a reverse-complement DNA code. Dube et al.
[10] constructed a code satisfying Run-Length Limitation Three
(RLL-3) constraint and Knuth-Like Balancing of the GC Contents.
Chee et al. [11] proposed a novel approach to encoding quaternary
data into strands of GC-balanced codewords, which could correct
at most three long tandem duplications. Park et al. [12] applied
the greedy algorithm to iterative encoding DNA sequences with
GC balance and run-length constraints. However, all of the above
studies only considered multiple constraints for DNA codewords,
while ignoring error correction schemes.

The error rate of DNA storage is greatly affected by the bio-
chemical structure of DNA [12–14]. Apart from the intrinsic fea-
tures of DNA molecules for data storage, it is often required that
the DNA code has certain error correction abilities in the face of
biochemical errors in DNA sequences [15, 16]. There have been
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Figure 1. Multiple errors occurred within one strand.

multiple efforts that focus on error correction for DNA-based
storage systems from the perspective of theory and experiments.
Earlier, Levenshtein [17] first proposed a code for correcting one
single synchronization error on the binary alphabet, which laid
the foundation for much research later. DNA Fountain code [18,
19] was proposed for multiple errors correction/detection on the
binary alphabet that enables efficient encoding of information.
Chandak et al. [20] applied Low-Density Parity-Check codes (LDPC)
[21] of a large block length to handle insertions and deletions.

By far, on the basis of the Levenshtein code, some systematic
codes have been designed and practically applied to the DNA
storage system [22–25]. For instance, Weber et al. [26] established
one single-error-detecting code with GC-weight and run-length
constraints for DNA storage. Xue et al. [27] proposed a systematic
single insertion/deletion/substitution error correction code, for
convenience, called DNA-XL in this paper, which can be used
to construct GC-balanced DNA sequences. DNA-XL code is quite
effective when the error rate is low, however, with the increase in
the error rate, multiple errors are prone to occur within one single
sequence. To demonstrate the motivation for our work, we list an
example as shown in Figure 1, in which case the DNA-XL code, as
well as many other DNA codes, fails to work since multiple errors
occur within one strand. Recently, Nguyen et al. [28] presented a
simple and efficient (ε, �)-constrained encoder that can correct a
single indel/edit error. Unfortunately, these existing DNA encoding
methods still suffer from high complexity. What is more, the run-
length constraint and GC-balanced constraint cannot be guaran-
teed simultaneously in the component strand.

As far as we know, no previous work has been conducted
on designing DNA sequences that satisfy the above two con-
straints simultaneously, and in the meantime are capable of
efficiently correcting multiple insertion, deletion or substitution
errors. Therefore, inspired by this, we desire to design an unprece-
dented code with constraints enabling multiple errors correction
within one strand for DNA-based data storage, where our incen-
tive exactly lies.

In this paper, we adopted a binary encoding scheme. Moreover,
in each single strand, our encoding mode called DNA-LC enables
the detection and correction of multiple errors. To the best of our
knowledge, DNA codes satisfying the two constraints for multiple
errors correction within one strand have not been studied in the
literature.

The main contributions of this work can be summarized as
follows:

• GC-content of any DNA sequence constructed is exactly 50%,
and any homopolymer is avoided in our DNA sequence.

• In each single strand, our encoding mode can detect and
correct multiple errors in some situations.

• The decoding algorithm is implemented in practice. We con-
duct several experiments in terms of error rate for different

DNA coding techniques, which show that our code achieves
higher error correction capability and low time complexity.

The rest of this paper is arranged as follows: In Section 3,
we introduce our DNA-LC code and prove its intrinsic strengths.
In Section 3, we provide the proposed decoding algorithms for
correcting one single error and multiple errors, which is also one
of the greatest strengths of our code. In Section 3, we discuss the
capabilities of DNA-LC code, implement performance evaluation
and present one of its extensions theoretically. Section 3 summa-
rizes the features of our DNA-LC code and points out the future
work direction.

Encoding of our DNA-LC code
In this section, we first give the overall architecture of the DNA-
based data storage system and review the Levenshtein code, and
then we introduce our coding mode, called DNA-LC code, and
finally prove its strengths.

System model
The general DNA-based data storage system is shown in Figure 2.

The details of the DNA-based data storage process are as
follows: First, the message to be stored is converted into long
binary sequences and divided into short ones after segmentation.
Then, the short binary sequences are encoded and synthesized
into DNA strands. Finally, the original message will be retrieved
after sequencing and decoding with error correction, where short
binary sequences are assembled into long binary sequences. Since
multiple errors are prone to occur in synthesis and sequencing,
sequence encoding and error correction are required with the
inner code. In practice, in order to improve the reliability of
information storage, it is necessary to detect errors, mark them
as erasures, and hand them over to the outer code for correction
twice. In this work, we focus on the design of the inner code.

Review of levenshtein code
Levenshtein codes are a class of binary algebraic codes that
contain all binary codewords of length n satisfying as follows [17]:

L(n, a, U) =
{
x ∈ {0, 1}n :

n∑
i=1

xi ∗ i ≡ a mod U
}
. (1)

For any integer U ≥ 2n and 0 ≤ a ≤ U − 1, it has been proven that
these codes can correct a single insertion, deletion or substitution
error. There have been quite numerous studies on Levenshtein
codes and many excellent scholars have made great contributions
in this field. Here, we only introduce what is relevant to our coding
mode.

To enable the codeword to correct a single edit error, the basic
idea is to insert parity check bits at the 2i-th positions to ensure
that it has the desired syndrome. What deserves our attention is
that the second-to-last position is for a message bit and the last
position is for a parity bit. When the length of the message bits is
k, the codeword after processing has a length of n, which can be
computed by

(P) n = min n′, (2)

s.t. : k = n′ − �log2 n′	 − 1. (3)

Theorem 1. For a given specific message of length k and a fixed
value U with 2n ≤ U ≤ n + 2n−k−1, there exists at least one set of
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Figure 2. A typical DNA-based data storage system.

Table 1. Modulation of the bit pairs x2i−1x2i to the nucleotide
base pairs.

x2i−1x2i 00 01 10 11
base pairs AC AG TC TG

parity-check bits {p1, p2, · · · , pr} satisfying

n∑
i=1

xi ∗ i ≡ a mod U. (4)

DNA-LC code
In this subsection, we introduce the proposed coding mode that
satisfies the GC content constraint, as well as the homopolymer
constraint.

Let a = 0 and U = 2n for convenience. Through the process
shown above, a k-bit message sequence is processed into an n-bit
codeword, which satisfies the condition as follows:

n∑
i=1

xi ∗ i ≡ 0 mod 2n. (5)

Note that we require n to be an even number for our encoding
mode. Theorem 2 illustrates the equivalent condition for it.

Theorem 2. We can choose an even n if and only if

k = 2m + l − m − 2, l = 2 ∗ 2, · · · , 2 ∗ 2m−1, m ≥ 2.

Proof. Based on the Levenshtein code, we can know that k = n −
�log2 n	−1. Now we choose an even number n = 2m + l ∈ (2m, 2m+1]
and m satisfying m ≥ 2. Then we can conclude that k = (2m + l) −
(m + 1) − 1 = 2m + l − m − 2. �

The modulation strategy we adopt for the DNA-LC code is pre-
sented in Table 1, where bit pairs 00, 01, 10 and 11 are modulated
to base pairs AC, AG, TC and TG, respectively.

Definition 1. For the four nucleotide bases, we define an A or T as
an odd base, while a C or G is defined as an even base.

Definition 2. Misplacement in this paper refers to the three fol-
lowing cases:

1. An odd base is situated in an even position.
2. An even base is situated in an odd position.
3. An odd base is situated in the last position.

For the first two cases, we record the position of the wrong
base. For the last case, we record the position after the wrong base.
In our work, we need to detect and record all the misplacement
positions. On the basis of these definitions, we can naturally
obtain the following Lemmas.

Lemma 1. If no error has occurred, misplacement would not
happen in the DNA-LC code, i.e. all the odd or even bases are in
the corresponding odd or even positions.

Proof. As shown in Table 1, A or Ts are always situated in the odd
positions, while C or Gs are in the even positions. Hence, all the
odd or even bases are in the corresponding positions. �

Lemma 2. GC-content of any DNA-LC code is exactly 50%, which
is also referred to as GC-balanced.

Proof. For our encoding, we have required the length of the
sequence n to be even. Then, according to Lemma 1, the even bases
G and C are always placed in the even positions. Hence, the sum
of G and Cs in any DNA-LC code is n/2, indicating the GC-content
is 50%. �

Lemma 3. Any homopolymer is avoided in our DNA-LC code.

Proof. As is known to all, any two adjacent positions must be one
odd and one even. As illustrated in Lemma 1, the base in an odd
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Table 2. Positions of the message bits in the Levenshtein sequence. The blank cells are reserved for the parity-check bits.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
xi 0 1 0 0 1 0 1 1 0 1 1 0

Table 3. Levenshtein sequence consisting of both message and parity-check bits. Parity bits added are special underlined.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
xi 0 1 0 1 1 0 0 0 1 0 1 1 0 1 1 0 0 0

position should be an A or T, while the base in an even position
should be a C or G. As a result, the bases in any two adjacent
positions can never be the same. �

Combining all the lemmas above, we finally confirm our
conclusion that our DNA-LC code simultaneously satisfies GC-
content balance and has no homopolymer. This is also one of its
greatest strengths, which has not been gained with such a small
complexity in the previous work.

A simple example is listed as follows, which does help make
out the whole coding process in a short time.

Example 1 Assuming the message sequence is 010010110110 and
a = 0. Solving Problem P shows a codeword length of n = 18 bits.
We arbitrarily choose U = 2n = 36. Then we need to add six parity-
check bits to satisfy Eq. (1).

Compute the syndrome of bits by

∑
xi ∗ i = 5 + 9 + 11 + 12 + 14 + 15 = 66.

Therefore, the blank bits in Table 2 should have the syndrome of
2U−66 = 6, whose binary form is 000110. Then the result is shown
in Table 3.

Employing Table 1, we then encode the Levenshtein sequence
010110001011011000 into a DNA-LC code AGAGTC-ACTCTGAGTC
AC. Conspicuously, this DNA-LC code is balanced with a GC-
content of 9 = n/2 and has no homopolymer.

Decoding of our DNA-LC code
The decoding methods discussed below are aimed at one strand,
i.e. a short binary sequence. In this part, we first introduce the
DNA-LC code’s algorithm for correcting a single error, and on this
basis, develop an algorithm for correcting multiple errors.

Let r = (r1, r2, · · · , rn), ri ∈ {0, 1}, for i = 1, 2, · · · , n denote a
random binary sequence. Moreover, we denote S as the syndrome
of a binary sequence, which is computed by

S =
l∑

i=1

ri ∗ i mod 2n. (6)

Compared with the general Levenshtein algorithms, our decod-
ing algorithm not only includes the correction for one single error,
but also contains multiple errors within one strand, which is
actually our contribution lies in.

Decoding for one single error correction
On account of the situation where only one single error occurred,
it is quite briefer and easier to carry out our algorithms, as shown
in Algorithm 1. Based on the hypothesis that only one or no error
occurred, the length of the received sequence, l, has three possible
values n, n−1 and n+1. In order to avoid unnecessary trouble and
be unified with the multiple errors correction mechanism, let us
make a point. When the base in the last position denoted as j is
an A or T, we still deem that a misplacement occurs and mark the
misplacement position as j + 1. As we will see later, this is very
convenient.

Lemma 4. If only one base is different between two DNA-LC
sequences, their binary sequences differ from only one position.

Proof. As shown in Table 1, there are four cases where only
one base is different, i.e. AC&AG, AC&TC, AG&TG, TC&TG. Evi-
dently, in each case, their binary sequences only have a one-bit
difference. �
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Lemma 4 ensures the general Levenshtein algorithm for single
error correction is valid here. Detailed decoding of the DNA-LC
code is presented in three cases below.

Case 1: l = n
Most importantly, on the basis of ‘misplacement’ defined in
Definition 2, we can quickly determine the error position and
restore the right sequence, thereby reducing the complexity of
correction. Theorem 3 states the principle of this step.

Theorem 3. Assuming that only one single error has occurred,
the misplacement position detected is exactly the place where a
substitution error occurred. Furthermore, through calculation, we
can distinguish the right one from the two correction schemes.

Proof. Obviously, the occurrence of misplacement is owed to an
insertion, deletion or substitution error. Given that l = n, the error
type must be a substitution. According to the DNA pairs set {AC,
AG, TC, TG}, we have two correction schemes to try and then
decode both of the DNA-LC sequences into binary sequences. By
computing the syndrome S of them, we adopt the scheme whose
syndrome S is 0. �

Example 2. Suppose that the received DNA sequence is ACTGTT.
Obviously, the last nucleotide base T is misplaced. After cor-
rection, we attain two possible sequences: ACTGTC or ACTGTG.
Decode both of them into binary sequences: 001110 / 001111.
Given that the length n here is 6, we arbitrarily choose U = 12.
According to Eq. (1), we have their syndromes S1 = 0 and S2 = 6.
So 001110 is exactly what we need.

When misplacement does not occur, we directly decode the
DNA-LC code into a binary sequence and then employ the classical
Levenshtein algorithm for correction:

• If S = 0, there is no error in the received sequence.
• If both 0 < S ≤ n and rS = 1 are satisfied, we turn the value of

rS into 0.
• If both S ≥ U − n and rU−S = 0 are satisfied, we turn the value

of rU−S into 1.

Case 2: l = n − 1
In this case, it is judged that a deletion error has occurred. It is
evident that bits before the deletion (insertion) error position are
not misplaced. In view of our definition of odd and even bases, we
add the relevant base before the base is misplaced. Similarly, we
have two schemes for correction.

In particular, what needs to be pointed out is that if the base
in the last position n − 1 is an A or T, as described above, we will
mark the misplacement position as n. In this case, we add an even
base to the n-th position, and there are two correction schemes.
Decode both of them by computing the value of S to distinguish
which one is correct. In order to better understand this process,
we use a simple example to illustrate it.

Example 3. Supposing that the received DNA sequence is ACTGC,
the length of it should be 6 and there is a deletion error occurring
in it. We should add an A or T before the last position. After
supplement and decoding, we get such binary sequences: 001110,
001100. Therefore, the correctly transmitted sequence is 001110.

Case 3: l = n + 1
In this case, it is judged that an insertion error has occurred.
To quickly determine the insertion position, we now introduce
Lemma 5.

Lemma 5. Denote j(b) as the first misplacement position, and then
we can draw a conclusion that the base inserted is rj(b) or rj−1(b).

Proof. Assuming that the base inserted into the DNA-LC code is
an odd base, i.e. A or T, the insertion position may be

• one position before an odd position j′, then the first misplaced
base rj(b) = rj′ (b), so the base inserted is rj−1(b).

• one position before an even position j′, then the first mis-
placed base rj(b) = rj′−1(b), so the base inserted is rj(b).

The same is true for the even base. �

On the basis of Lemma 5 illustrated above, when finding the
base is misplaced, we choose to delete itself or the one before it
and then decode the two sequences into binary sequences. Finally,
the one satisfying S = 0 is exactly what we want.

In particular, there are two special cases where only one correct
sequence is generated, which saves us the workload of calculating
S. If the base in the last position n + 1 is an A or T, we mark
the misplacement position as n + 2 and delete the last base
directly. Similarly, if the first base is a C or G, we just need to
delete it. For example, assuming that the received sequence is
AGTCTCT, we can easily find that the n + 1 = 7th base is T.
Delete it and then get the correct sequence AGTCTC without
calculation.

Decoding for multiple errors correction in one
strand
Systematic decoding algorithms for correcting multiple errors
within one strand are also what we are interested in, which are
rarely mentioned by existing literature. Fortunately, our coding
mode enables multiple errors to be corrected under certain
conditions, and the detailed algorithmic process is shown in
Algorithm 2.

The new preparations required to realize multiple errors cor-
rection are presented as follows. First, we need to find all mis-
placements as follows. For the definition of misplacement, refer
to Definition 2. When the first misplaced base is detected, we
record the position, and then delete it and move the next one to
its position. Continue to detect if the new base is misplaced right
here until all locations are detected. Repeat this process until all
the bases are detected. The concept of the misplacement index is
introduced in Definition 3 for counting.
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Definition 3. Whenever a misplacement is detected in this way,
the misplacement index goes up by one, which is hereinafter
denoted as m in brief.

Example 4. Since this concept is indeed a bit abstract, we take
a random sequence ACGCACAACTT for example. The first mis-
placed base is the 3-th base ‘G’. Then delete it and move the next
one ‘C’ to its position, we also find that the fourth base ‘C’ is
misplaced. Similarly, the eighth base ‘A’ and the 11-th base ‘T’ are
misplaced. What is more, the last base ‘T’ is an odd base, so the
misplacement index goes up by one. All in all, the misplacement
index of this sequence is 5, and the misplacement index list is [3,
4, 8, 11, 12].

Definition 4. Type 1 error refers to the case where an odd (even)
base is substituted for an odd (even) base. And other types of
substitution errors are classified as Type 2 errors.

Lemma 6. The index of misplacement caused by a Type 1 error
is 0, while that of a Type 2 error is 2. What is more, the index of
misplacement caused by an insertion or deletion error is 1.

Proof. Since the occurrence of a Type 1 error would not cause any
misplacement, the index in this case is 0. Furthermore, according
to Definition 3, one base is detected to be misplaced when a
base is inserted or deleted, which indicates that the index is 1.
When it comes to a Type 2 error, we can view it as a composite
of an insertion error and a deletion error. So the index here
is 1+1=2. �

As mentioned above, a Type 2 error can be viewed as a com-
posite of an insertion error and a deletion error. Hence, all possible
errors can be divided into: Type 1 errors, insertion errors and dele-
tion errors. Given that Type 1 errors can be split into an insertion
error and a deletion error of the same type in adjacent positions,
the mixed error of deletion and insertion we are going to talk
about does not include this case, which offsets the misplacement
index and causes troubles. Instead, we still view it as a Type 1
error. Thus, an insertion error or a deletion error certainly causes
changes in the misplacement index without offset. Lemma 7
states the relationship among the misplacement index m and the
three types of errors.

Lemma 7. Assuming that there are no consecutive insertion or
deletion errors, we have m ≥ |n − l|.

Proof. Denote s, t, w as the number of discrete insertion, deletion
and Type 1 errors, respectively. Then we have

|n − l| = |s − t|, and m = s + t.

So we have that m = s + t ≥ |s − t| = |n − l|. �

Having all the preliminary work done, we can finally display
our algorithm for multiple errors correction. The parameters
mentioned in the following part are consistent with their mean-
ings in the preceding section. Once the DNA sequence is received,
we will correct it in the following four steps.

• Step 1: We first need to calculate the values of parameters s
and t. We need to solve the equations as follows:

{
s − t = n − l,
s + t = m.

(7)

If no non-negative integer solution is found, an uncorrectable
error has occurred. If a set of non-negative integer solutions
is found, then proceed to Step 2.

• Step 2: Find out all the positions of misplacement. At m
positions of misplacement, we perform s steps to correct
insertion errors and perform t steps to correct deletion errors.

• Step 3: Decode all of these we got in Step 2, and then we get
no more than 2 ∗ 2Cs

m feasible solutions in total. Computing
their syndrome S, we output the sequences satisfying S = 0.

• Step 4: If in Step 3 we get no sequences finally, we regard it as
a Type 1 error, then we do the single error-correction decoding
of our mode. If in Step 3 we get at least a sequence satisfying
S = 0, pass Step 4.

Assuming that the number of sequences that the output con-
tains the correct sequence is v, then the probability of successful
corrections is 1/v.

Theorem 4. When there are t(s) inconsecutive deletion (insertion)
errors occurring in one strand, we can recognize all the errors
correctly. Particularly, the probability of success corrections is
100% when t(s) = 2.

Proof. Since the situation where multiple insertion errors
occurred is parallel with that of deletion errors, we just study
the situation of deletion errors here. Firstly, we detect the strand
to obtain the value of m. Then we work out the value of t from
t = m and restore the strand into possible DNA-LC sequences of
length n. According to Lemma 4, there are at most t bits differences
among their binary sequences. Denote i1, i2, · · · , im as the restored
positions. Let

S′ = xi1 ∗ i1 + xi2 ∗ i2 + · · · + xit ∗ it

= [i1, i2, · · · , it]

⎡
⎢⎢⎢⎢⎣

xi1

xi2
...

xit

⎤
⎥⎥⎥⎥⎦ , (8)

where xi1 , xi2 , · · · , xit ∈ {0, 1}.
• If t = 2, then S′ = xi1 ∗ i1 + xi2 ∗ i2, whose possible values are 0,

i1, i2, i1 + i2. When i1 
= i2, these values are different from each
other. Moreover, the gap among them does not exceed U. So
we can use Eq. (5) to determine the correct sequence.

• If t > 2, we denote (xi1 , xi2 , · · · , xit ) as the one that enables
S = 0. Supposing that xik1

= xik2
= · · · = xikp

= 1, xil1
= xil2

=
· · · = xilq = 0. If the equation

[ik1 , ik2 , · · · , ikp ]x = [il1 , il2 , · · · , ilq ]y + kU (k ∈ N)

has no solution, where

x = [a1, a2, · · · , ap]T, a1, a2, · · · , ap ∈ {0, 1},
y = [b1, b2, · · · , bp]T, b1, b2, · · · , bp ∈ {0, 1},

we can correct errors and get a unique sequence. If the
equation has r solutions, we get r + 1 sequences corrected.
More interestingly, if we record the remainder of the sequence
divided by 2nU, we only need to record this information with
n bits, but we can use this information to correct at most
2n+1 inconsecutive deletion (insertion) errors based on the
fact that the gap among all S of feasible solutions won’t
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exceed 2nU. We suppose that the practical significance of this
discovery is great. �

Theorem 5. Our algorithm can correct a Type 2 error with a
successful probability of 100%.

Proof. When a Type 2 error occurred, the misplacement index m
is 2. Denote i1, i1 + 1 as the misplacement positions.

• Suppose that the error in position i1 is an insertion error,
while the one in position i1 + 1 is a deletion error. In this
way, we carry out corresponding correction procedures and
decode the sequences into binary sequences. Compared with
the correct one, they can be different in positions i1 − 1, i1.

• Suppose that the error in position i1 is a deletion error, while
the one in position i1 + 1 is an insertion error. In this way, we
carry out corresponding correction procedures and decode
the sequences into binary sequences. Compared with the
correct one, they can be different in positions i1, i1 + 1.

To conclude, there are at most two bits differences between
the correct one and the restored sequences. For convenience, we
denote i′1, i′1 + 1 as the two positions. And

�Smax ≤ i′1 + i′2 ≤ U. (9)

�

In a nutshell, our algorithm for multiple errors correction is
able to correct all types of one single error. As illustrated above,
the steps of correcting a Type 1 error, an insertion or a deletion
error are consistent with the algorithm for one single error. As
for Type 2 error, Theorem 5 has proved that it can be successfully
corrected.

Performance evaluation
In this section, we will conduct extensive experimental simu-
lations to evaluate the error performance of the proposed sys-
tematic DNA-LC code in comparison with previously well-known
encoding schemes:

• DNA-XL code [27]: It represents a class of methods that can
correct a single error.

• HEDGES code [29]: It is a well-designed convolutional code,
and able to correct insertions and deletions directly in a single
strand of DNA.

In addition, we also compare the time complexity of different
types of error-correcting codes.

Metrics
Let Ps, Pd and Pi denote the rate of substitution, deletion and
insertion error, respectively, and Pc denotes normal transmission
rate. In particular, the two kinds of substitution errors mentioned
above are not distinguished here.

As is known to all, if a DNA sequence with a length n is uncoded,
the probability of having no edit error in a strand is calculated by

Puncoded = (Pc)
n. (10)

The probability of having no more than one edit error in a
strand is calculated by

Psingle = Pn−1
c (n − Pc(n − 1)). (11)

The error rate is used as a metric to evaluate the performance
of the DNA-LC code. By default, each position has the same error
probability. The longer the length, the higher the error rate.

Parameter setting
Both DNA-LC and HEDGES codes can correct multiple errors, and
they all have hyperparameters that reflect a tradeoff between
computational workload and decoding probability. Therefore, in
this part, we introduce the parameter design adopted in this paper.

• m is the mistake index that reflects the number of mis-
placement detected in the DNA-LC code. The mistake index
is related to the number of feasible solutions to be identified
whether their syndrome is 0 or not. In practice, we bound
m, which means that we limit the number of errors we can
handle and if m exceeds the pre-set value, we then declare
the decoding failure. The rationality we do this is as follows:
(i) The DNA-LC algorithm is theoretically guaranteed to have
no more than two error positions in a single DNA sequence,
especially insertions and deletions. However, if the number of
error positions in a single DNA sequence is beyond a certain
level, usually five or more, as shown in Figure 5, the reliability
of the DNA-LC algorithm will be very low. So, bounding m
avoids unnecessary waste of time on problems that are not
suitable for the algorithm. (ii) At the same time, from the
perspective of erasure-correcting codes, such as RS code,
it can correct twice as many erasures as substitutions; for
the outer code, the residual erasures are less harmful than
substitution. It is more efficient to only detect these indel
errors, then mark them as erasures and hand them over
to the outer code for recovery. (iii) The analysis of existing
DNA sequencing experimental data indicated that the con-
ventional DNA-based storage system suffers a low raw error
rate, almost 1% [4, 18]. So the number of error positions is
not large in a single DNA strands, especially including tens of
nucleotides.

• Pok is a ‘greediness’ parameter that mitigates the tendency
of the heap to expand exponentially. Good values for various
code rates are given on strand lengths in the range of hun-
dreds of nucleotides in the third column of Table 4 [29], and
we have tuned it for best performance (See Fig. 3) to balance
computational workload and decode probability, on strand
lengths in the range of tens of nucleotides.

• Hlimit is the pre-set size of heap in the HEDGES code. If the
heap is larger than Hlimits, then declare a decode failure in the
HEDGES code. Since our generated DNA sequence is not long,
with tens of nucleotides, the default number Hlimit = 105 is
reasonable.

For comparison under the same conditions, we adopt a modi-
fication of the HEDGES algorithm with a coding rate of 0.5, a GC
content of 40–60%, no homopolymer and without any duplication
and outer code. So we select the pattern ‘1, 1, · · · ’ in HEDGES code.
What is more, the sliding window to observed local constraints
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Table 4. Parameters used for the simulations

Parameter Paraphrase Default

m the mistake index in DNA-LC 5
Pok greediness parameter in HEDGES −0.07
Hlimit the size of heap in HEDGES 105

Pattern the encoding pattern in HEDGES 1, 1, · · ·
The window width a window to observe local constraints 40
Runout bytes message zeros padded in HEDGES 2

Figure 3. Change pok from -0.14 to -0.04, and observe the time cost of error
correction and the variation of the error rate with pok. 33 message bits are
encoded in HEDGES code.

was set as 40 in the HEDGES code. This is a relatively relaxed
constraint. Besides, in the HEDGES code, the rate of decoding
errors rises in the last several bytes of the message, because some
incorrect chains do not have time to accumulate bad scores. To
counter this, two ‘runout bytes’ of message zeros are padded in
each strand at encoding. In this paper, we also tried one runout
byte.

Impact of the length of DNA sequences
As depicted in Figure 4, we plot the decoding nucleotide error rate
for different lengths of DNA sequences assuming that Ps = Pd =
Pi = 5 ∗ 10−3. The length of DNA sequences increases from 20 to
150 nt. When a DNA sequence is 150 bases long, the error rate of
DNA-LC is below 20%. However, the error rate of the uncoded DNA
sequence is about 90%. The effect of DNA storage at this point is
so poor.

Experimental verification of theorems
According to Theorem 4, when two inconsecutive deletion (inser-
tion) errors happened, the probability of success is 100% no matter
how the length of the DNA-LC code varies. We generated 10
000 binary sequences containing 33 message bits and encoded
them into DNA sequences of 40 bases in the DNA-LC code. We
randomly applied some inconsecutive insertions or deletions to
each sequence, and found that the error correction rate was 100%
when two inconsecutive insertions occurred in one single strand.
As a comparison, we also generated 10 000 binary sequences of
the same length, which were then encoded into HEDGES code. The
relative results are displayed in Figure 5, which shows that our
code is sensitive to deletions (similarly to insertions), especially
inconsecutive, but both the DNA-LC code and the HEDGES code
perform poorly when the number of errors in a single sequence is

Figure 4. Ps = Pd = Pi = 5 ∗ 10−3, the length of DNA sequences increases
from 10 nt to 150 nt.

Figure 5. The error correction success rate as a function of the number
of (inconsecutive) deletions.

a lot. It also reflects the rationality of our previous restriction on
m. Besides, according to Figure 5 bottom, the DNA-LC code does
not perform well while allowing consecutive types of deletions to
occur.

Performance comparison
A hypothesis was made that all three types of errors would occur
with the equal probability increasing from 10−3 to 10−2, and we
conducted 10 000 times simulations for each. Now 33 message
bits are encoded into a DNA sequence of 25 bases in DNA-XL
code, while they are encoded into a DNA sequence of 40 bases
in our work. The results can be seen in Figure 6, showing that
our proposed design can offer better error protection to DNA
sequences. When compared with DNA-XL code that can only
correct a single error with G-C balanced for DNA-based data
storage, our proposed error-correcting coding scheme is capable
of correcting certain multiple errors, while the coding rate is
sacrificed. We also compared the error rate between the DNA-LC
code with the HEDGES code. Due to the existence of runout bytes,
although both the DNA-LC and HEDGES code enjoy One-Half code
rates, when 33 message bits are encoded into DNA sequences, 41
bases are needed in HEDGES with one outrun byte (8 bits) and 49
bases are needed in HEDGES with two outrun bytes (16 bits), 40
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Figure 6. Performance of different codes with Ps = Pd = Pi increasing from
10−3 to 10−2.

Figure 7. Performance of different DNA codes with Pd = Pi increasing from
10−3 to 10−2 and Ps = 0.

bases are needed in the DNA-LC code. At the same time, the DNA-
LC code could get better performance than the HEDGES code with
one outrun byte. The results reflect that the need for runout bytes
makes the HEDGES algorithm inefficient (and thus unsuitable) for
an application needing short DNA strands (e.g. tens rather than
hundreds of nucleotides) [29].

To demonstrate the DNA-LC code can better handle deletion
and insertion errors in DNA-based storage systems, we also
encode 33 message bits into the DNA-XL code, DNA-LC code and
HEDGES code. To be specific, let Pd = Pi increase from 10−3 to
10−2 and Ps = 0. Here, we made an assumption that only deletion
and insertion errors occurred. Likewise, we did 10 000 times of
simulations for each error rate, whose results are displayed in
Figure 7. The gap is evident. When Pd = Pi < 10−3, the error rate of
DNA-LC is no more than 0.1%. When Pd = Pi = 10−2, the error rate
of DNA-LC code is no more than 2%, while that of DNA-XL is nearly
10%. In particular, the DNA-LC code could get better performance
than the HEDGES code both with one outrun byte and two outrun
bytes. In view of our error correction mechanism, we can easily
conclude that our algorithm is more efficient when dealing with
insertion and deletion errors.

Table 5. Comparison of edit correction coding schemes

Coding Schemes Error correction Decoding complexity

RS code [10] substitutions O(n log n)

Convolutional code [29] stochastic edit errors O(2n)

Sima et al. [25] t-deletions O(n2t+1)

Cai et al. [22] single edit error O(n)

Xue et al. (DNA-XL) [27] single edit error O(n)

This work (DNA-LC) stochastic edit errors O(n)

Time complexity comparison
Some coding schemes that perform well in errors correction may
not be suitable for DNA storage due to their decoding complexity.
In this respect, the DNA-LC code we propose enjoys low time
complexity. Both encoding and decoding complexity in the DNA-
LC code is linear. Table 5 shows the time complexity comparison
among different codes.

The encoding scheme in DNA-LC code inherits the Levenshtein
strategy, and then the binary sequence is converted bit-for-bit into
a DNA sequence. So the conclusion that the time complexity of
encoding is linear is trivial. The decoding scheme actually consists
of two parts: errors detection and correction. For errors detection,
the time complexity is O(n) since we probe the location of the
errors sequentially from the beginning to the end of the sequence.
For errors correction, we need to correct the errors that occur,
resulting in several probably correct solutions. Then, for each fea-
sible solution, determine whether it is the optimal solution with
S = 0. Obviously, the best time complexity is O(n), where only two
sequences need to be identified, but the worst time complexity is
also related to the number of feasible solutions, which is related
to the misplacement index, denoted as m. As mentioned in the
previous section on parametric design, we bound m in practice,
then in turn we bound the number of feasible solutions to be
identified. So the worst time complexity is O(n) too.

We also tested the error correction time of DNA-LC code and
HEDGES code under the same platform and experimental environ-
ment. Assume that the probability of error in each DNA sequence
is ps = pd = pi = 5 ∗ 10−3. We changed the length of DNA sequence
from 10 to 50 nt. We denote the time for error correction of a 10
nt long DNA sequence using the DNA-LC algorithm as unit time.
As shown in Figure 8, it can be found that with the increase of
DNA sequence length, the error correction time of HEDGES code
changes exponentially, while the change of DNA-LC code is very
gentle. The gap between the error correction time of the two
algorithms is getting larger. The results illustrate the advantage
of the lower complexity of the DNA-LC code, especially for DNA
sequences with low error rates.

Extension of DNA-LC code
Admittedly, our DNA-LC code still has a shortcoming of a low
storage density. Based on hachimoji DNA with eight building bases
[30], we broaden the previous odd and even base subset to {A,
T, P, Z} and {C, G, B, S}, respectively. The mapping is embodied in
Table 6.

The design of the coding scheme satisfies the condition of
Lemma 4. Therefore, it can be found that the new code inherits
the strengths of the DNA-LC code and the algorithm for correcting
one single error. If the DNA-LC encoding scheme is generalized
to hachimoji DNA, the storage density can be improved. Since
the multi-error correction algorithm is actually a single-error
error correction step by step according to the error location, our
proposed multi-error correction framework can also be extended
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Table 6. Modulation of the bit pairs x3i−2x3i−1x3i to the nucleotide base pairs.

x3i−2x3i−1x3i 000 001 010 011 100 101 110 111
base pairs AC AG TC TG PB PS ZB ZS

Figure 8. The consumption of decoding time varies with the length of the
DNA sequence in DNA-LC code and HEDGES code.

to Hachimoji DNA indiscriminately. In the 4-base system, two
nucleotides can store 2 bits of encoded information, but for the
8-base system, two nucleotides can store 3 bits. As mentioned in
[30], the measured thermodynamic parameters predict the sta-
bility of hachimoji duplexes, allowing hachimoji DNA to increase
the information density of natural terran DNA. However, we lack
the information illustrating the condition of its stability. With the
progress of life science and the improvement of DNA synthesis
and sequencing technology, the use of artificial bases to store
information may also be a way to expand DNA storage technology.

Conclusion
In this work, we designed a systematic code called DNA-LC. Con-
structed on the basis of the Levenshtein code, our DNA-LC code is
excellent in that it is GC-balanced and avoids any homopolymer.
It also has a relatively stable error correction ability, low time
complexity and high recognition ability for insertion and deletion
errors. However, the DNA-LC code is insensitive to consecutive
errors. The proposed DNA-LC code is highly scalable and can
be easily extended to hachimoji DNA with eight building bases
to improve the storage density. For future work, we will further
improve the code’s ability to identify sequence reconstruction
errors in DNA data storage.

Key Points

• We employed a binary encoding scheme under which the
constructed DNA sequence had exactly 50% GC content
and any homopolymer is avoided in the DNA sequence.

• We designed an error-correcting code for this encoding
scheme. In each single strand, our encoding mode can
detect and correct multiple errors in some situations.
Moreover, a theoretical analysis of error correction per-
formance is provided.

• We have implemented the decoding algorithm in prac-
tice to test the theory. We conduct several experiments in

terms of error rate for different DNA coding techniques.
Experiment results demonstrate that our code achieves
high error correction capability and low time complexity,
especially for inconsecutive insertions and deletions.

Supplementary data
Supplementary data is available online at https://github.com/
XiayangLi2301/DNA.
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