
CloudAIBus: a testbed for AI based cloud computing environments

Sasidharan Velu1 • Sukhpal Singh Gill1 • Subramaniam Subramanian Murugesan1 • Huaming Wu2 •

Xingwang Li3

Received: 20 February 2024 / Revised: 3 May 2024 / Accepted: 8 May 2024
� The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
Smart resource allocation is essential for optimising cloud computing efficiency and utilisation, but it is also very

challenging as traditional approaches often overprovision CPU resources, leading to financial inefficiencies. Recently

developed Artificial Intelligence (AI) techniques have the potential to solve this problem efficiently; for example, deep

learning models can accurately forecast how resources will be used, allowing for more efficient distribution of those

resources. Despite these encouraging breakthroughs, researchers have not thoroughly investigated these AI models’

dynamic scaling potential. To address this gap, we developed a new testbed for an AI-driven cloud computing environment

called CloudAIBus for effective resource allocation. CloudAIBus employs a deep learning model named DeepAR to

provide a robust solution for forecasting CPU usage in order to make cost-effective resource allocation decisions. Fur-

thermore, we implement the DeepAR model using Amazon SageMaker, a robust platform that provides the infrastructure

for scalable and efficient training. We evaluated the performance of the DeepAR-based resource management approach

(CloudAIBus) using Google Colab, and results show that the proposed approach offers better performance than baselines

(LSTM and ARIMA-based resource management) in terms of Mean Absolute Error (MAE), Mean Absolute Percentage

Error (MAPE) and Mean Squared Error (MSE). The proposed approach cut the percentage of unused CPUs from 98.65 to

32.35% compared to the GWA-T-12 dataset. This showed that it was effective at reducing over-provisioning by making

accurate predictions.
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1 Introduction

The evolution of cloud computing has increasingly har-

nessed Artificial Intelligence (AI) to enhance resource

management, addressing the dynamic and often unpre-

dictable demands of modern cloud environments [1].

Research by Rao (2023) underscores the efficacy of AI-

driven strategies in optimizing cloud resources, highlight-

ing significant enhancements in both performance and cost-

efficiency [2].

Background and recent advancements: In the realm of

decision-making, Wang et al. [3] have demonstrated the

utility of data envelopment analysis for assessing efficiency

within cloud computing marketplaces, providing a robust

framework for evaluating cloud service providers. Addi-

tionally, the development of HUNTER [4] and HunterPlus

[5], AI-based holistic resource management systems, marks

a significant advance in sustainable cloud computing by

optimizing energy efficiency. These efforts have improved
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energy efficiency, but they have not investigated the impact

of these advancements on economics and environmental

aspects [6].

Economic and environmental insights: The economic

ramifications of resource allocation strategies are profound

[3–5], with strategic missteps potentially leading to sub-

stantial inefficiencies [6]. Niyato et al. [7] provide an

economic analysis highlighting how resource market

dynamics, including monopoly and oligopoly settings, can

influence cloud computing environments, affecting the

economic decisions of service providers.

Existing challenges: As cloud services become

increasingly complex, the need for sophisticated resource

management solutions becomes paramount [8]. Jeyaraj

et al. [9] discuss the integration of cloud computing with

Internet of Things (IoT) technologies, emphasizing the

critical role of efficient resource management in supporting

IoT applications.

Proposed solution: Against this backdrop, we introduce

a new testbed, called CloudAIBus, which leverages the

DeepAR model for predictive resource allocation. This

innovative approach aims to address the highlighted eco-

nomic and environmental challenges by providing a scal-

able and adaptable solution that significantly enhances the

efficiency and sustainability of cloud operations. Clou-

dAIBus promises to transform cloud resource management

by integrating advanced AI models that not only enhance

predictive accuracy but also operational efficiency. This

initiative aligns with global efforts to achieve sustainable

IT practices, significantly reducing the environmental

footprint of cloud services and optimizing economic out-

comes. In sum, CloudAIBus and its underlying technolo-

gies offer substantial implications for the cloud computing

industry, spanning financial, operational, and environ-

mental aspects. The introduction of this system provides a

timely response to the critical needs of modern cloud ser-

vice environments, promising significant advancements in

resource allocation and management.

1.1 Motivation and our contributions

As cloud computing environments become increasingly

dynamic, traditional static models struggle to cope with

fluctuating demands effectively, leading to resource

wastage and increased operational costs [10]. While

existing models have significantly improved resource

allocation in cloud computing [11], there remains an

underexplored potential in dynamically scaling AI models

to adapt to varying workload demands and environmental

sustainability considerations [12]. Dynamic resource allo-

cation is crucial for optimizing cloud resource scaling [13],

as evidenced by research leveraging Amdahl’s Law and

queueing theory to model service time and performance

scaling [14]. Proactive scaling techniques using prediction

models, such as those implemented in Kubernetes for auto-

scaling worker nodes [15], have shown potential to

improve utilization and reduce power consumption, sup-

porting dynamic and AI-driven workloads efficiently and

sustainably [16, 17]. Moreover, time series forecasting

models have been employed to predict cloud workloads

and adjust resources accordingly, maintaining optimal

operation and minimizing environmental impact [18].

Another research work is utilizing Long Short-Term

Memory (LSTM) for predictive scaling has also demon-

strated enhanced resource allocation efficiency and energy

consumption reduction by dynamically adjusting compute

resources based on predicted workloads [19]. Although

these works have improved energy efficiency, they fail to

consider how these advancements impact economics and

environmental factors [20].

This paper addresses the above-mentioned gaps by

introducing a novel testbed for an AI-driven cloud com-

puting environment, termed CloudAIBus, which utilizes

the DeepAR model for predictive resource allocation. The

motivation behind CloudAIBus stems from the necessity to

enhance cost efficiency, service quality, and environmental

sustainability in cloud resource management. CloudAIBus

has utilized the potential of deep learning or generative AI

models for predicting resource allocation in cloud com-

puting while taking into account the importance of the

statistical property of stationarity in time series data. The

main contributions of this research are:

• Develop a new testbed for AI-based resource manage-

ment in cloud computing environments, called Clou-

dAIBus, for cost-effective and sustainable cloud

computing.

• Utilize the DeepAR model in CloudAIBus for forecast-

ing CPU usage, which would help to make effective

resource allocation decisions as this is a critical factor

in cloud resource management.

• Implement the DeepAR model on the Amazon Sage-

Maker, a robust platform that provides the infrastruc-

ture for scalable and efficient training.

• Evaluate the performance of the CloudAIBus approach

using Google Colab by utilizing a dataset of 1750 VM

traces from Bitbrains.

• Compare the performance of the CloudAIBus approach

with existing approaches (LSTM and AutoRegressive

Integrated Moving Average (ARIMA)-based resource

management) in terms of Mean Absolute Error (MAE),

Mean Absolute Percentage Error (MAPE) and Mean

Squared Error (MSE).

• Measure the performance of the proposed approach

against the GWA-T-12 dataset in terms of unused

CPUs.
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When tested on both stationary and non-stationary data, the

DeepAR model-based proposed approach, called Clou-

dAIBus, has demonstrated versatility and robustness, pro-

viding accurate and reliable predictions for different types

of time series data. Prior to employing these models, we

conducted stationarity tests to understand the nature of the

time series data and identify the challenges and opportu-

nities it presents for each model. This step is crucial to

ensuring the accuracy and robustness of our predictions,

given the importance of stationarity in many forecasting

models [6]. This comparison is centered around key per-

formance metrics, such as use, MAE, MSE, and MAPE,

providing a comprehensive evaluation of each model’s

effectiveness in the domain of resource allocation predic-

tion while considering the issue of stationarity [21]. Our

contributions are twofold: First, we integrate the DeepAR

model into cloud resource management, demonstrating its

superiority over traditional LSTM and ARIMA models

through comprehensive performance evaluations. Second,

we implement this model on Amazon SageMaker, ensuring

scalable and efficient training that aligns with real-world

cloud computing demands. Practically, CloudAIBus sig-

nificantly reduces CPU over-provisioning-from 98.65% to

32.35% on the GWA-T-12 dataset-demonstrating its

effectiveness in enhancing resource utilization and reduc-

ing unnecessary expenditures. Such improvements pave the

way for more sustainable cloud computing practices, ulti-

mately contributing to reduced environmental impacts.

Lightweight testbed: This study aims to contribute to the

growing discourse around AI in cloud computing by

assessing the performance of these models for resource

allocation prediction, with a particular focus on their han-

dling of non-stationary data. The goal is to provide valu-

able insights for cloud service providers and develop a

lightweight testbed for AI-driven cloud computing services

that are more efficient, sustainable, and cost-effective.

1.2 Article organization

The rest of the paper is structured as follows: Section 2

discusses the related work. Section 3 presents a real-world

case study of adaptive resource management for a global

streaming service. Section 4 introduces the proposed

CloudAIBus system and provide detailed explanation.

Section 5 presents a performance evaluation and experi-

mental results. Section 6 discusses prediction accuracy,

efficiency in resource allocation using the DeepAR model,

and implications for scalability and environmental sus-

tainability. Section 7 concludes the paper and highlights

possible extensions of CloudAIBus testbed.

2 Related work

In this research, extensive investigations have been con-

ducted on the application of machine learning and statis-

tical models for optimal resource allocation [22]. This

literature primarily focuses on three critical aspects: (i) the

stationarity of data, (ii) the predictive algorithms utilized,

and (iii) the strategy for resource allocation, categorized as

proactive or reactive [23]. Stationarity plays a crucial role

in enhancing the accuracy of many forecasting models, as

consistent statistical properties over time are essential for

reliable predictions [24]. The distinction between proactive

and reactive allocation methods determines the system’s

responsiveness to dynamic workloads [25]. This section

offers a detailed review of contemporary studies that delve

into these aspects within the cloud resource allocation

framework, with a summarized overview presented in

Table 1.

Several researchers have employed ARIMA and

Autoregressive Moving Average (ARMA) models, focus-

ing on data stationarity. Zhang et al. [26] proposed an

intelligent workload factoring scheme for Virtual Machine

(VM)-based hybrid cloud computing, employing the

ARIMA technique. However, the shift towards container-

based systems and the often non-stationary nature of real-

world cloud workloads raise questions about the model’s

applicability. Fang et al. [27] developed a resource pre-

diction and provisioning scheme (RPPS) for container-

based systems, utilizing the ARMA technique. Their

approach assumes stationarity in the dataset, which may

not always hold in real-world cloud workloads. The RPPS

also includes a mechanism for dynamically adjusting

resources but may struggle with sudden load spikes. Cip-

taningtyas et al. [28] presented a proactive dynamic pro-

visioning architecture leveraging the ARIMA model,

achieving an impressive 91% in accuracy. However, the

assumption of stationarity in their dataset raises questions

about the model’s applicability to real-time workloads.

Calheiros et al. [29] developed a system using the ARIMA

model for predicting the number of requests, handling up to

57,750 requests with an error ratio of 7.83%. However, the

paper does not explicitly discuss the stationarity of the

dataset used. Kirchoff et al. [30] presented the advantages

and disadvantages of three workload prediction techniques

when applied in the context of cloud computing. Their

preliminary results compared ARIMA, Multilayer Percep-

tron (MLP), and Gated Recurrent Units (GRU) under dif-

ferent cloud configurations to help administrators choose

the more appropriate and efficient predictive model for

their specific problem.

Other works have explored different techniques without

explicitly discussing the stationarity of the dataset. Tang
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et al. [31] proposed a machine learning-based auto-scaling

solution leveraging LSTM networks, but the paper does not

explicitly discuss the stationarity of the dataset used, which

might limit its direct applicability to research. Yan

et al. [32] presented a novel approach to adaptive hori-

zontal scaling using a Bidirectional LSTM (BiLSTM)

model, but the dependency of the system’s effectiveness on

the prediction method could be a potential limitation.

Anupama et al. [33] proposed a hybrid prediction model

combining statistical and machine learning techniques,

including SARIMA (Seasonal Auto-Regressive Integrated

Moving Average) for seasonal workloads and LSTM or

ARIMA for non-seasonal workloads. Their experimental

results confirmed that the accuracy of the prediction of the

LSTM model outperformed ARIMA for irregular workload

patterns. Ashawa et al. [34] implemented an application of

the LSTM algorithm, showing an enhanced accuracy rate

by approximately 10-15% as compared with other models.

Prachitmutita et al. [35] developed a cost-effective auto-

scaling framework for microservices on Infrastructure as a

Service (IaaS), leveraging Artificial Neural Network

(ANN) and Recurrent Neural Network (RNN), with future

work on improving resource planning. Toka et al. [36]

made a significant contribution to the field of Kubernetes

auto-scaling with their exploration of AI-based prediction

models, providing a comprehensive evaluation of several

auto-scaling methods.

2.1 Critical analysis

The above-mentioned studies have significantly con-

tributed to the understanding and development of machine

learning models for resource allocation in cloud comput-

ing. The detailed analysis of these works highlights the

need for further research to adapt existing models to

modern cloud systems, energy efficiency, fairness, and

optimization of resource allocation. Exploring more precise

and sophisticated prediction models, shifting towards

proactive methods, and considering non-stationary data are

promising directions for future work [38]. Existing studies

have not fully explored the potential of these AI models in

dynamic scalability scenarios, as shown in Table 1. This is

particularly important in situations where there is an

increasing number of users, which can significantly impact

Table 1 Comparison of proposed CloudAIBus with existing works

Work Type Features AI

Model

Strategy Data

stationarity

Tool Metrics Dataset

Zhang

et al. [26]

VM Request

rate

ARIMA Reactive Stationary Amazon

EC2

Resource efficiency Yahoo! Video

workload

traces

Fang

et al. [27]

Container CPU ARMA Reactive Stationary Xen &

KVM

Prediction accuracy,

Throughput

Synthetic

workloads

Ciptaningtyas

et al. [28]

VM Request

rate

ARIMA Reactive Stationary Docker

containers

Running time, CPU, Memory

Usage

FIFA World

Cup 98

website

Calheiros

et al. [29]

Container Request

rate

ARIMA Reactive Stationary CloudSim Average service time,

Prediction accuracy

Wikimedia

Foundation

Prachitmutita

et al. [35]

VM Request

rate

ANN,

RNN

Proactive Stationary Docker

containers

Root mean squared error

(RMSE)

FIFA World

Cup 98

website

Imdoukh

et al. [37]

Container Request

rate

LSTM Reactive Stationary Docker

containers

Prediction accuracy FIFA world cup

98 website

Tang

et al. [31]

Container CPU Bi-

LSTM

Proactive Stationary Kubernetes

cluster

Prediction accuracy, RMSE Traced from

data center

with 500

containers

Yan et al. [32] Container CPU,

Memory

Bi-

LSTM

Hybrid Stationary Kubernetes

cluster

SLA conflicts and CPU

Utilization

Alibaba Cluster

Trace 2018

Toka

et al. [36]

Container Request

rate

AR,

HTM,

LSTM

Reactive Stationary Kubernetes

cluster

Number of lost requests NASA-HTTP &

FIFA World

Cup 98

CloudAIBus
TestBed

VM CPU DeepAR Proactive Both Google

Colab

Prediction accuracy, MAE,

MSE, MAPE, CPU Usage,

Execution time, Energy cost

Bitbrains
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resource allocation decisions [39]. Further, none of the

existing studies have tested their approach on the Birbrains

dataset or the Google Colab-based cloud environment.

Furthermore, they did not consider both computing and AI

parameters, as well as both types of data stationarity, when

evaluating performance.

To address this gap, we developed a new testbed for an

AI-driven cloud computing environment called CloudAI-

Bus, which employs a deep learning model named Dee-

pAR to provide a robust solution for forecasting CPU usage

in order to make cost-effective resource allocation deci-

sions. CloudAIBus is a VM-based proactive resource

management framework, and we have deployed it on

Google Colab, which excels in dynamic scalability sce-

narios. Specifically, we utilized the traces from the Bir-

brains dataset to evaluate Quality of Service

(QoS)/computing metrics such as execution time, energy

cost, and CPU usage, as well as AI parameters like pre-

diction accuracy, MAE, MSE, and MAPE, while taking

into account the stationarity of both types of data. We also

compare CloudAIBus’s performance to known bench-

marks [29] [31], which shows that it has the potential to

provide dynamic scalability in situations where the number

of users grows, which could have a great impact on deci-

sions about how to allocate resources.

3 Real-world case study: adaptive resource
management for a global streaming
service

A leading global streaming service experiences fluctuating

demands due to varying viewer preferences, new content

releases, and peak viewing times, such as during major

sports events or new series premieres [40]. Managing

compute resources dynamically to handle these fluctuations

without interruption is crucial to maintaining a high-quality

user experience and operational efficiency [41].

3.1 Implementation of adaptive resource
management

The streaming company implements several of the dis-

cussed adaptive resource management strategies to opti-

mize its cloud infrastructure, ensuring seamless service to

millions of concurrent users worldwide.

• Using empirical prediction models: The company

utilizes Neural Network and Linear Regression models,

as suggested by [42], to predict server load based on

historical viewership data and scheduled events. This

prediction helps in scaling resources up or down

automatically, ensuring adequate capacity during

high-demand periods and conserving resources during

off-peak times.

• Ensemble-Based Load Forecasting: Leveraging tech-

niques from [43], the service employs an ensemble of

models to forecast demand more accurately. This

ensemble approach aggregates predictions from multi-

ple models to handle unexpected load spikes during

sudden viral content trends or unexpected global events.

• ARIMA for short-term traffic prediction: Short-term

traffic predictions using the ARIMA model, as detailed

by [44], are particularly useful for minute-to-minute

resource adjustments, helping to handle sudden influxes

of users, which are common during live events.

• Agent-based dynamic provisioning: The Maximo

Application Suite (MAS)-Cloud system proposed by

[45] inspires the deployment of intelligent agents that

manage resources across different geographic regions,

adapting to local demand surges without human

intervention.

• QoS optimization: Applying fuzzy model predictive

control (FMPC), as explored by [46], allows the

streaming service to maintain stringent QoS standards,

dynamically allocating bandwidth and compute power

to preserve stream quality, even under variable network

conditions.

The application of these adaptive resource management

strategies has enabled the streaming service to:

1) Reduce operational costs by minimizing idle com-

pute resources.

2) Enhance viewer satisfaction by reducing buffering

and load times, even during peak traffic.

3) Improve scalability, seamlessly handling user growth

and global expansion without sacrificing service

quality.

This case study exemplifies how advanced predictive and

adaptive techniques in resource management can be

applied in high-demand, real-world scenarios. The

streaming service’s ability to dynamically adjust its

resources not only optimizes costs but also ensures a

consistent, high-quality user experience, demonstrating the

practical benefits of the theoretical models discussed. The

integration of sophisticated predictive models and real-time

adaptive management systems represents a significant

advancement in cloud computing. As technologies evolve,

these systems will become even more crucial in managing

the complexities of modern cloud environments, promising

further improvements in efficiency and performance across

various industries [40, 41]. Therefore, the proposed Clou-

dAIBus testbed has the potential to deal with adaptive

resource management for a global streaming service in a

proactive manner.
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4 CloudAIBus: proposed testbed

In this section, we discuss the proposed CloudAIBus test-

bed, including the system model, design & implementation,

data pre-processing and DeepAR model-based resource

allocation.

4.1 System model

The proposed system architecture consists of three main

components: the Workload Analyzer, Workload Predictor,

and Resource Manager. Together, they form a cohesive

framework for managing resource demands within a cloud

computing environment as shown in Fig. 1. The architec-

ture integrates real-time data monitoring, probabilistic

forecasting algorithms, and automated resource adjustment

mechanisms. The cloud scheduler plays a vital role in this

integration, initiating processes at regular intervals to

facilitate data flow across the tiers. The goal is to optimize

resource allocation in response to fluctuating workloads,

addressing challenges such as over-provisioning and under-

provisioning. The system’s ability to accurately predict

resource needs and make timely adjustments enhances

resource utilization, system performance, and cost-

effectiveness.

1) Workload analyser: It is the foundational layer of the

system architecture, tasked with continuous monitoring and

analysis of CPU utilization metrics. Activated by the cloud

scheduler at regular intervals (every X minutes), it collects

real-time data from the load balancer, maintaining a rolling

30-minute window of information. By identifying patterns

and trends in the workload profile, the Workload Analyzer

forms the basis for the predictive modeling phase. Its

ability to discern complex workload behaviors makes it an

essential component in the resource allocation model,

setting the stage for accurate forecasting and efficient

resource management.

2) Workload predictor (AI Module): It is the second tier

of the system architecture, and leverages the data collected

by the Workload Analyzer to forecast future workload

demands. This work mainly focuses on this module to

optimize the predictions. It employs the DeepAR model, a

state-of-the-art probabilistic forecasting algorithm [47],

capable of recognizing complex time-dependent patterns

and providing uncertainty estimates for future predictions.

Utilizing the most recent 30 min of CPU utilization data,

the Predictor formulates accurate workload projections for

the subsequent 30-minute period. The application of Dee-

pAR equips the Workload Predictor with the ability to

anticipate future resource needs, informed by both histor-

ical trends and current conditions. This enables a strategic

shift in resource allocation from a reactive model, where

resources are allocated based on immediate needs, to a

proactive model that pre-allocates resources in alignment

with predicted demands.

3) Resource manager: It is the final tier in the archi-

tecture, responsible for aligning CPU provisioning with

forecasted workload demands. Utilizing the Workload

Predictor’s forecast data, it calculates the required modi-

fications to CPU allocation based on the 90th percentile of

the predicted workload, applying specific weighting factors

derived from historical performance. The Resource Man-

ager then communicates the revised CPU requirements to

the Autoscaler/Load Balancer, enabling dynamic adjust-

ments to match anticipated demand. This process ensures

optimal resource utilization, avoiding both over-provi-

sioning and under-provisioning. The Resource Manager’s

precise translation of predictive data into actionable

resource decisions is central to the system’s proactive

resource management.

4.2 CloudAIBus design

This section provides UML diagrams (the sequence and

class diagrams) to show the interaction components of the

proposed CloudAIBus system, according to Fig. 1. Fig-

ure 2 shows the class diagram of the CloudAIBus Testbed,

illustrating the object-oriented structure and relationships

of the system components designed to optimize cloud

resource management. This diagram provides a detailed

view of the classes, their attributes, methods, and the

interactions between them, which are crucial for the

effective execution of cloud resource management tasks.

The following are the main classes of CloudAIBus:

• Users class: Represents the system users who interact

with the CloudAIBus environment. Attributes include

user_id: int, and methods such as
Fig. 1 Architecture of proposed CloudAIBus testbed
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generateLoad() and logActivity(), which

simulate user activities and interactions with the cloud

system.

• Workload analyzer class: Critical for monitoring and

analyzing the workload on cloud resources. It manages

data through data: DataFrame and includes meth-

ods like collectMetrics() to gather system usage

data and analyzePatterns() to identify trends

and anomalies in resource usage.

• Workload predictor class: Utilizes predictive models to

forecast future resource demands. It is equipped with

model: ForecastModel and uses fore-

castDemand() to predict upcoming loads and up-

dateModel(data) to continuously refine the

predictive accuracy based on new data.

• Resource manager class: Responsible for the dynamic

allocation of resources based on predictive insights. It

manages resources: ResourcePool and employs

methods such as calculateAdjustments() for

CloudAIBus

+ workloads 

+ resources 

+ workloadAnalyzer()

+ workloadPrediction()

+ resourceAllocation()

+ workloadExecution()

Workload Analyzer

data : DataFrame

collectMetrics()

analyzePatterns()

Users

user id : int

generateLoad()

logActivity()

Resource Manager

resources : ResourcePool

calculateAdjustments()

allocateResources()

Workload Predictor

model : ForecastModel

forecastDemand()

updateModel(data)

AutoScaler

scaling policy : Policy

scaleResources()

VM Auto Scaling Controller

vm list : VM[]

implementPolicies()

adjustVMSettings()

Resource Provisioning

provider : CloudProvider

provisionResources()

updateSystemTraces()

Fig. 2 Class diagram of CloudAIBus testbed
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determining necessary resource changes and allo-

cateResources() to execute these changes.

• Autoscaler class: Automatically adjusts the scaling of

resources to meet the predicted demands, managed

through scaling policy: Policy. Its primary

method, scaleResources(), ensures that the

resource levels are optimized for current and predicted

workloads.

• VM auto scaling controller class: Directly manipulates

VM configurations to align with scaling decisions,

using vm list: VM[] to manage a list of active VMs

and methods like implementPolicies() and

adjustVMSettings() to update VM operations

according to the autoscaling rules.

• Resource provisioning class: Handles the logistical

aspects of resource management, including the provi-

sioning and de-provisioning of cloud resources. It is

associated with provider: CloudProvider and

uses methods like provisionResources() and

updateSystemTraces() to maintain an audit trail

of resource allocation changes.

The class diagram encapsulates the modular architecture of

the CloudAIBus testbed, highlighting how each component

is designed to interact seamlessly to support scalable,

efficient, and responsive cloud resource management. This

structure promotes maintainability and scalability, ensuring

that the system can adapt to changes in workload and

technology over time.

Figure 3 shows the sequence diagram of the CloudAIBus

testbed, detailing the operational workflow and the interac-

tions between the various system components designed to

efficiently manage cloud resources. This diagram captures

the dynamic processes involved in monitoring, predicting,

and managing the resource demands in cloud computing

environments. The sequence begins with the User who

initiates the process by generating workload and logging

activities. This action triggers the Workload Analyzer,

which is responsible for collecting real-time CPU utilization

metrics at predetermined intervals. The collected data is then

sent to the Workload Predictor.

In the Workload Predictor, an AI Module, the data

undergoes preparation, including rolling window compu-

tation and feature extraction, crucial for accurate fore-

casting. The predictor updates or retrains its DeepAR

model with this historical data to ensure the model reflects

the latest patterns and trends.

Following the data preparation and model training, the

predictor forecasts future CPU demands for the next

30-minute window. These predictions are crucial for

proactive resource management. The forecast data is for-

warded to the Resource Manager, which calculates the

necessary resource adjustments based on the predicted

demand and predefined weights.

The Resource Manager sends these calculated adjust-

ments to the Autoscaler, which dynamically scales the

system’s resources up or down to match the forecasted

demand. This scaling process is vital for optimizing resource

utilization and cost-efficiency within the cloud environment.

Additionally, the sequence integrates the VM Auto

Scaling Controller and Resource Provisioning compo-

nents. The VM Auto Scaling Controller implements poli-

cies and adjusts VM settings to fine-tune the resource

allocation further. Concurrently, Resource Provisioning

handles the provisioning of VMs and other resources,

:User

start

:Workload Analyzer 

Generate Load

Log Activity   

:Workload Predictor
(AI Module)

:Resource Manager :Autoscaler

Collect Metrics (CPU utilization
metrics every x minutes) Prepare Data (rolling window,

feature extraction)

Train/Update DeepAR Model
with historical data

:VM Auto Scaling 
& Resource provisioning

Autoscaling

 Forecast Future Demand
(next 30 minute window)

Update System Traces

Calculate Resource Adjustments
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Fig. 3 Sequence diagram of CloudAIBus testbed
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ensuring that the system’s physical capabilities match the

scaling decisions made by the Autoscaler.

Finally, the Resource Provisioning component updates

the system traces, maintaining a log of all changes and

operations, which is critical for audit and review purposes.

This sequence diagram effectively outlines the automated

and interactive processes of the CloudAIBus testbed,

demonstrating the system’s capability to adapt to changing

workloads through intelligent data analysis, predictive

modeling, and resource management strategies.

4.3 DeepAR based predictive resource
recommendation

Algorithm 1 outlines the proposed architecture’s workflow.

It begins with the initialization of the three core compo-

nents and the continuous collection of CPU utilization

metrics C, summarized within a rolling window of size P

as Dpatterns. The DeepAR model then extrapolates future

workload demands (Dforecast), used with current provision-

ing Rcurrent and predefined weights W to ascertain adjust-

ments Radjustments. The median of the 90th percentile of

these adjustments yields updated CPU requirements

Rmedian. The Autoscaler is updated with Rmedian, aligning

resources with anticipated demand. The process iterates,

allowing dynamic adaptation to variable workloads.

Algorithm 1 DeepAR based predictive resource recommendation

4.4 Algorithm overhead analysis

The computational overhead, specifically the time com-

plexity, of the proposed DeepAR based Predictive

Resource Recommendation algorithm (Algorithm 1) is

primarily influenced by the operations within its iterative

loop, particularly the deep learning forecasting and

resource adjustment calculations. This subsection details

the analysis of the algorithm’s overhead.

1) Metric collection and pattern identification: Collect-

ing CPU utilization metrics (collectMet-

rics()) and identifying patterns

(identifyPatterns()) depend on the volume

of data and complexity of pattern detection tech-

niques. The rollingWindow() function, operat-

ing in linear time relative to the window size P, has a

complexity of O(P).

2) Deep learning forecasting: The deepAR() function

involves running a DeepAR model. The complexity

is dependent on the model architecture, particularly

the number of layers n, the number of neurons per

layer m, and the input sequence length l, typically

resulting in a time complexity of Oðn � m � lÞ.
3) Resource adjustment calculations: Functions calcu-

lateAdjustments() and computeMedian() adjust

resource provisioning based on forecasts, typically

operating in O(R), where R is the number of

resources. Updating the autoscaler (up-

dateAutoscaler()) involves system-level oper-

ations with complexity depending on cloud

infrastructure specifics.

4) Loop and system interaction: The main While loop

ensures continuous operation as long as the system is

running, indicating a constant monitoring and updat-

ing overhead.

5) Overall complexity: The overall complexity is dom-

inated by the deepAR() function, which is compu-

tationally intensive but optimized for performance on

scalable cloud infrastructures like Amazon

SageMaker.

The analysis indicates that while the algorithm is compu-

tationally intensive due to its deep learning operations, it is

designed for efficient execution on scalable cloud plat-

forms. This balance ensures the algorithm’s practicality

and efficiency in real-world environments, optimizing

performance without excessive resource consumption.

4.5 Bitbrains’ dataset based data pre-processing

The initial step in our research involved detailed analysis

and pre-processing of a substantial dataset. We focused on

the VM trace data from Bitbrains, containing records from
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1500 VMs. This data serves as the foundation of our

forecasting models, which include LSTM, ARIMA, and

DeepAR. The Bitbrains VM trace data provides a com-

prehensive overview of the system’s CPU utilization and

capacity provisioning. The dataset includes information

about the CPU capacity that was provisioned and the CPU

that was used, over a time period ranging from ‘2013-07-

01’ to ‘2013-10-01’ as shown in Fig. 4

1) Data analysis and interpretation: Our preliminary

data analysis was based on three key statistical measures -

median CPU usage, median CPU capacity provisioned, and

the 95th percentile of CPU usage. The median CPU usage

was found to be approximately 4,554,176 MHz, which is a

central value separating the higher and lower halves of

CPU usage data. On the other hand, the median CPU

capacity provisioned during the same period was notably

larger at approximately 45,484,316 MHz. This suggests

that the system’s CPU capacity was generally overprovi-

sioned relative to its actual use.

To examine the utilization further, we calculated the

95th percentile of CPU usage, which stood at approxi-

mately 11,136,863 MHz This percentile indicates that 95%

of the observed CPU usage values were less than or equal

to this value, while in 5% of the instances, CPU usage was

higher. The data analysis provides a detailed picture of the

system’s CPU utilization pattern. A cursory look at the

median values of CPU usage and provisioned capacity

shown in Fig. 4 suggests potential overprovisioning. The

provisioned capacity was far more than the average usage,

leading to the possibility of resource wastage.

However, a deeper look at the 95th percentile value

offers a more nuanced understanding. By provisioning

capacity based on the 95th percentile value, the system can

efficiently manage peak CPU usage for 95% of the time.

It’s a potentially more cost-effective approach to balance

between resource utilization and capacity provisioning.

2) Test for stationarity: Upon identifying potential

overprovisioning in the CPU, we proceeded to further

examine the stationarity of our time series data - a crucial

assumption for many time series forecasting models that

allows for accurate prediction of future values based on

historical patterns. To achieve this, we conducted the

Augmented Dickey-Fuller (ADF) test, which is a common

technique for verifying the stationarity of time series data.

In the ADF test, the null hypothesis assumes that the series

possesses a unit root and is non-stationary. The results

obtained from the test are given in Table 2.

The p-value, a feature of the null hypothesis, indicates

the probability of obtaining a test statistic that is as severe

or even more extreme than the reported one. Given that the

test statistic is less than all the critical values at the 1%,

5%, and 10% levels, and that the calculated p-value is

significantly smaller than 0.05, the basis exists for the

rejection of the null hypothesis. This, in turn, contributes

substantial empirical support to counter the premise of non-

stationarity within the series. Thus, a decisive inference can

be drawn, affirming the stationarity of the observed CPU

usage data. To complement these findings and to provide a

more intuitive understanding, we generated a plot show-

casing the original time series data along with its rolling

mean and standard deviation.

In Fig. 5, the blue line corresponds to the original time

series, while the red line represents the rolling mean, and

the black line denotes the rolling standard deviation. Sta-

tionarity demands that these lines remain approximately

constant over time. While the original time series (blue

line) may exhibit some fluctuations, the red and black lines

appear stable, suggesting that the rolling mean and standard

Fig. 4 CPU usage vs CPU

provisioned
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deviation of the CPU usage do not change significantly

over time. Therefore, both visually and statistically, we can

affirm that the time series data of CPU usage is stationary.

This conclusion paves the way for accurate forecasting

using time series analysis methods, reinforcing the relia-

bility and validity of the subsequent steps of our research.

3) Seasonality and trend analysis: To gain a deeper

understanding of the CPU usage data, we performed a

seasonal decomposition analysis, which revealed distinct

patterns in the seasonality and trend components of our

time series. Figure 6 shows the seasonality and trend

analysis.

• Seasonality: The seasonal component displayed regular,

repeating patterns with fluctuations ranging between the

interval of [-1, 1]. This indicates the presence of

significant seasonality in our data. The observed

patterns suggest that CPU usage experiences pre-

dictable increases or decreases during specific times

of the day, week, or year. The stability of the

seasonality over time implies that the timing and

magnitude of these fluctuations remain consistent. This

characteristic is valuable for forecasting, as we can

leverage the seasonality component to make accurate

predictions about future CPU usage. It is important to

note that while the magnitude of the seasonal fluctua-

tions appears relatively small, their impact on our

forecasts can be significant, particularly if the overall

CPU usage values are also small. Therefore, incorpo-

rating this seasonality into our chosen forecasting

model is crucial.

• Trend: The trend component of the data exhibited a

random pattern without a clear direction. This random-

ness in the trend suggests two possibilities. Firstly, it

could indicate the absence of an underlying trend in the

CPU usage data, apart from the seasonal fluctuations. In

other words, CPU usage does not consistently increase

or decrease over time. Secondly, it could suggest the

presence of a non-linear or complex trend that the

seasonal decomposition method fails to capture ade-

quately. Non-linear trends might include quadratic or

exponential patterns, while complex trends could

involve multiple interacting factors.

The apparent randomness in the trend component further

reinforces the observation that our data is relatively sta-

tionary, without a strong linear trend. This aligns with the

results of the Dickey-Fuller test, which also indicated sta-

tionarity in our CPU usage data. However, it is important to

consider that many time series forecasting models, such as

ARIMA, are designed to perform optimally with data that

exhibits a linear trend. In the presence of a non-linear or

complex trend, alternative models or data transformations

may be necessary to effectively capture and incorporate

this trend into our forecasting process.

4.6 DeepAR model-based resource allocation

The DeepAR model, as depicted in Fig. 7, is built on an

autoregressive recurrent network architecture. The model

Fig. 5 ADF test: rolling mean

and standard deviation

Table 2 Augumented Dickey-Fuller test

Measure Value

Test statistic � 6.63

p-value 5.65e� 09

Lags used 12

Critical value (1%) � 3.43

Critical value (5%) � 2.86

Critical value (10%) � 2.57
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distribution QHðzi;t0:T jzi;1:t0�1; xi;1:TÞ is assumed to be a

product of conditionals, where each conditional distribu-

tion is parameterized by a function of the previous target

values and covariates [47].

1) Parameter estimation: In the context of predictive

resource allocation in cloud computing, the DeepAR model

is trained on a dataset of time series fzi;1:Tgi¼1;...;N

representing historical resource usage data and associated

covariates xi;1:T , which could include factors such as time

of day, day of the week, and workload type. The parame-

ters H of the model are learned by maximizing the log-

likelihood, which is a measure of how well the model’s

predictions align with the actual observed data [47].

Fig. 6 Seasonality and trend

analysis

Cluster Computing

123



L ¼
XN

i¼1

XT

t¼t0

log ‘ðzi; tjhðhi; tÞÞ; ð1Þ

where hi;t is a deterministic function of the input. All

quantities required to compute this equation are observed,

so no inference is required, and the log-likelihood can be

optimized directly via stochastic gradient descent by

computing gradients with respect to H.

The training process generates multiple instances from

each time series by selecting windows with different

starting points, ensuring that the entire prediction range is

always covered by the available ground truth data. This

approach allows the model to learn the behavior of ‘‘new’’

time series, taking into account all other available features,

which is crucial for predicting resource requirements for

new workloads or services in the cloud [47].

2) Scale handling: In a cloud environment, resource

usage can exhibit a wide range of scales due to the diverse

nature of workloads and services. This variability in scale

follows a power-law distribution, which can pose signifi-

cant challenges for predictive models.

The DeepAR model addresses this issue by incorporat-

ing an item-dependent scale factor, mi. Specifically, the

autoregressive inputs zi;t (or ~zi;t) are divided by this scale

factor. This normalization step ensures that the inputs to

the model are within a similar range, regardless of the

original scale of the resource usage data.

Simultaneously, the scale-dependent likelihood param-

eters are multiplied by the same scale factor mi. This

adjustment ensures that the model’s predictions are

appropriately scaled to match the original scale of the

resource usage data.

l ¼ mi logð1þ expðolÞÞ and a ¼ logð1þ expðoaÞÞ=
ffiffiffiffi
mi

p
;

ð2Þ

where l and a represent the parameters of the likelihood

function, and ol and oa are the outputs of the network for

these parameters. By adjusting these parameters based on

the scale factor, the DeepAR model can effectively handle

data that spans a wide range of scales.

This scale-handling mechanism is crucial for predictive

resource allocation in cloud computing. It allows the model

to accurately predict resource requirements for a wide

variety of workloads and services, regardless of their scale.

This contributes to efficient resource allocation and

improved performance in cloud environments [47].

5 Performance evaluation

This section discusses the dataset preparation, model

training, experimental setup, evaluation metrics, and

results.

5.1 Dataset preparation

In our study, we leverage a rich dataset derived from the

Grid Workload Archive (GWA) to predict CPU utilization

[48]. The data collection methodology ensures the inclu-

sion of diverse patterns, trends, and fluctuations in CPU

usage, providing a robust foundation for our model. The

raw data consists of multiple time series, each representing

a unique VM. For each VM, there are recordings of CPU

usage over specific intervals along with a timestamp. This

structured data collection over a continuous time frame

enables us to perform time series forecasting. Our initial

data cleaning efforts involved parsing timestamps to a

suitable format and handling missing data. Timestamps

were converted from milliseconds to a more standard for-

mat, facilitating easier manipulation and interpretation of

the data. Any gaps in the series were filled using forward-

Fig. 7 DeepAR model architecture
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fill imputation to maintain data continuity and avoid loss of

information critical to model performance.

Furthermore, we conducted feature engineering by

extracting additional information from the dataset. This

involved the creation of new columns indicating the day of

the week, whether the day falls on a weekend, as well as

the specific month and day associated with each observa-

tion. This augmentation aimed to enable our model to

potentially identify any underlying seasonality or periodic

patterns in CPU usage. In addition to these temporal fea-

tures, we computed and incorporated the past values of

CPU usage, as well as the differences in CPU usage, net-

work received throughput, and network transmitted

throughput into the dataset. This comprehensive feature set

was designed to empower the model to capture depen-

dencies or autocorrelations within the series.

5.2 Model training and validation

For training the DeepAR model, we set up an instance on

Amazon Sagemaker, a robust platform that provides the

infrastructure for scalable and efficient training. We used

the pre-built container for the DeepAR algorithm available

in the specified region. Hyperparameters for the model,

including the frequency of the time series, prediction and

context lengths, number of layers and cells in the RNN, the

likelihood function, mini-batch size, learning rate, dropout

rate, and early stopping patience, were set according to our

problem requirements and computational resources. The

training data, formatted as a JSON Lines file, was uploaded

to an S3 bucket. The model was then trained on this data,

with SageMaker handling the provisioning of resources.

1) Data preprocessing: It is a critical step in ensuring the

reliability of our forecasting models. For our study, we

employed a comprehensive preprocessing strategy that

included:

• Handling missing data: We used forward-fill imputation

to address any gaps in the data, which helps maintain

the continuity of time series without introducing bias.

• Feature engineering: We extracted temporal features

such as the day of the week and the presence of

holidays, which are known to affect CPU usage

patterns. We also utilized derived statistical features

such as rolling means and standard deviations, which

help in capturing longer-term trends and cyclic behav-

iors within the time series.

The importance of these preprocessing steps is supported

by several studies, such as the work by Bassi, Gomekar,

and Murthy [49], which emphasizes the role of statistical

features in enhancing model performance for economic

time series. Yeh et al. [50] further highlight the significance

of preprocessing in building robust foundation models for

time series by utilizing unlabeled data across domains.

2) Model configuration and training: The training of the

DeepAR model was executed on Amazon SageMaker,

leveraging its scalable infrastructure. The model was con-

figured with specific hyperparameters tailored to the

nuances of our dataset:

• RNN configuration: We opted for LSTM cells due to

their efficacy in handling long sequence dependencies,

which is crucial for forecasting tasks in dynamic

environments like cloud computing.

• Hyperparameters: Settings such as the number of

layers, dropout rates, and learning rates were tuned

based on initial testing phases, ensuring optimal learn-

ing without overfitting.

This approach aligns with the findings of Ahmed et al. [51],

who discuss the impact of different preprocessing methods

and hyperparameter settings on the forecasting accuracy of

various machine learning models.

3) Validation strategy: We adopted a rigorous validation

strategy to ensure the robustness of our forecasts:

• Cross-validation: Employed a rolling window cross-

validation technique to assess the model’s performance

over different time periods, enhancing the generaliz-

ability of our results.

• Performance metrics: Utilized MAE, MAPE, and MSE

to evaluate model accuracy and reliability. These

metrics are crucial for understanding different aspects

of forecasting errors, as detailed by Venkatraman,

Hebert, and Bagnell [52], who underscore their impor-

tance in reducing multi-step prediction errors through

learned correction strategies.

To validate the efficacy of the DeepAR model, we com-

pared its performance with traditional models like ARIMA

and advanced neural network-based models such as LSTM.

The choice of DeepAR was vindicated by its superior

handling of non-stationary data and complex temporal

dependencies, which is particularly challenging in cloud

computing environments.

• Comparative analysis: Our results indicate that DeepAR

provides more accurate and consistent predictions than

the baselines [29] [31], particularly in scenarios with

abrupt changes and non-linear patterns in the data. This

supports the model’s suitability for applications requir-

ing high reliability and precision in forecasts.

The meticulous training and validation processes adopted

in this study, supplemented by strategic data preprocessing

and model tuning, have significantly enhanced the fore-

casting accuracy of the DeepAR model. This comprehen-

sive approach, backed by contemporary research and best
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practices in machine learning, ensures that our model can

effectively address the complex challenges in predicting

CPU utilization in cloud computing environments.

5.3 Evaluation metrics

To evaluate the performance of our DeepAR model-based

resource allocation, we employ three widely used metrics:

MSE, MAE, and MAPE. These metrics provide a com-

prehensive understanding of the model’s accuracy and

error distribution.

a) Mean absolute error (MAE): It quantifies the average

magnitude of the errors in a set of forecasts, without con-

sidering their direction. It is calculated as:

MAE ¼ 1

n

Xn

i¼1

yi � ŷij j; ð3Þ

where yi are the actual values and ŷi are the predicted

values. MAE is particularly effective for scenarios where

all errors are equally important. Its simplicity and clarity in

interpretation make it indispensable, especially in studies

requiring a straightforward representation of forecasting

accuracy.

b) Mean absolute percentage error (MAPE): It is the

average of the absolute percentage errors and is expressed

as:

MAPE ¼ 100%

n

Xn

i¼1

yi � ŷi
yi

����

����; ð4Þ

This metric provides a normalized measure of error,

allowing for meaningful comparisons across data with

varying scales and magnitudes. MAPE is particularly

valuable for its ability to provide a scale-independent

measure of error, which is crucial for studies comparing

performance across different datasets or market segments.

c) Mean squared error (MSE): It measures the average

of the squares of the errors:

MSE ¼ 1

n

Xn

i¼1

ðyi � ŷiÞ2; ð5Þ

MSE is highly sensitive to large errors, which makes it

suitable for applications where the avoidance of large

prediction errors is critical. This sensitivity to outliers can

be crucial in financial and risk management applications

where large errors can have disproportionately large

consequences.

5.3.1 Contextual justification for metric selection

The choice of MAE, MAPE, and MSE in this study is

strategically aligned with the need to comprehensively

evaluate forecast accuracy and reliability across various

scenarios and scales. These metrics were selected due to

their demonstrated utility in numerous similar studies, as

evidenced by their application in different forecasting

contexts:

• MAE and MAPE in seasonal time series forecasting: As

reported by Tseng, Yu, and Tzeng [53], these metrics

were critical in assessing the accuracy of hybrid models

in seasonal time series, highlighting their utility in

handling data with inherent seasonal fluctuations. Their

study not only validates the effectiveness of these

metrics in assessing forecast accuracy but also under-

scores their capacity to differentiate between model

performances in complex seasonal patterns.

• MSE in financial forecasting: Isiaka et al. [54]

employed MSE to evaluate Autoregressive Moving

Average (ARMA) models in forecasting exchange

rates, underlining MSE’s relevance in financial appli-

cations where the impact of large errors can be

substantial. Their use of MSE reflects its importance

in financial settings, where precision in prediction and

the minimization of large errors are critical for effective

risk management.

• Comprehensive model evaluation: In a study combining

SARIMA with neural networks, Tseng, Yu, and Tzeng

[55] utilized all three metrics to demonstrate the

superior performance of hybrid models over traditional

ones, validating their effectiveness in comparing com-

plex model architectures. This study particularly high-

lights the versatility of these metrics in evaluating and

comparing the performance of different types of

forecasting models, from classical statistical models to

modern machine learning approaches.

These metrics will serve as the foundation for evaluating

the performance of the proposed CloudAIBus approach,

i.e. DeepAR model-based resource allocation and facili-

tating a comparative analysis with the baseline resource

allocation models using ARIMA [56] and LSTM [57]. The

model that achieves the lowest values in terms of MSE,

MAE, and MAPE will be designated as the preeminent and

optimal-performing model. The inclusion of MAE, MAPE,

and MSE in our evaluation framework ensures a balanced

assessment of model performance, providing insights into

average errors (MAE), relative errors (MAPE), and the

severity of errors (MSE). This multi-faceted approach

allows for robust comparisons across different models and

contexts within our study, enhancing the reliability and

validity of our conclusions.

5.4 Experimental setup: Google Colab

We deployed proposed (DeepAR) and existing (ARIMA

and LSTM) models using Google Colab to evaluate the
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performance of resource allocation in cloud computing

environments. All models were trained on the same dataset

of 1,500 VM traces from Bitbrains to ensure a fair per-

formance comparison.

1) Platform description and rationale for selection: For

the evaluation of our predictive models, including Dee-

pAR, ARIMA, and LSTM, we chose Google Colab as our

primary computational platform. Google Colab is a cloud-

based environment that allows for the execution of Python

code through Jupyter notebooks, which are hosted and run

on Google servers.

a) Advantages : The following are the main advantages

of Google Colab:

• Accessibility and Scalability: Google Colab provides a

highly accessible platform with the advantage of using

Google’s robust hardware, including Graphics Process-

ing Units (GPUs) and Tensor Processing Units (TPUs),

at no cost. This accessibility is particularly beneficial

for data scientists and researchers requiring substantial

computational resources without the need for significant

infrastructure investment.

• Integration with Google Drive: Google Colab seam-

lessly integrates with Google Drive, making it easier to

manage and share large datasets and notebooks, which

facilitates collaboration among researchers.

• Pre-installed libraries: The environment comes pre-

configured with most of the popular data science and

machine learning libraries, reducing setup time and

allowing for rapid prototyping and testing.

b) Reason for selection The choice of Google Colab was

primarily motivated by its zero-cost access to high-per-

formance computing resources, enabling us to train com-

plex models more efficiently. Additionally, the ease of

setup and use allowed our team to focus more on model

development and less on computational issues. Studies by

Carneiro et al. [58] and Gujjar and Kumar [59] provide

detailed analyses of Google Colab’s performance, noting

its effectiveness in accelerating deep learning applications

and its role in democratizing access to advanced compu-

tational tools.

2) Limitations: While Google Colab offers numerous

advantages, several limitations were considered in the

context of our study:

• Session timeouts: Google Colab sessions are limited to

12 h, after which all progress is lost if not saved

externally. This aspect posed a challenge for training

models that require extended computation times.

• Data Privacy and Security: Since the data is stored and

processed in the cloud, there are inherent risks associ-

ated with data privacy and security. Sensitive data may

require additional measures to ensure compliance with

data protection regulations.

• Dependency on Internet Connectivity: Being an online

platform, Google Colab requires a stable Internet

connection. Interruptions in connectivity can lead to

loss of work or interruptions in model training.

3) Impact on the Study: Despite these limitations, the use of

Google Colab was deemed suitable for our study due to the

balance between computational power and cost-efficiency.

The platform enabled our team to efficiently train and

evaluate complex models, providing a robust environment

for comprehensive performance comparisons. However,

considerations regarding session management and data

security were meticulously managed to ensure the integrity

and continuity of our research.

Google Colab served as an effective platform for the

evaluation of our predictive models due to its computa-

tional capabilities and ease of use. While aware of its

limitations, careful planning and management allowed us

to leverage this environment to achieve insightful results

without compromising the quality or security of our

research.

5.5 In-depth analysis of the DeepAR model

This section delves deeper into the particular deep learning

models utilised in the study, examining the DeepAR

model’s architecture and characteristics while drawing

comparisons to other models such as LSTM and ARIMA.

1) Foundational Aspects of DeepAR: Introduced by

Flunkert et al. [60], DeepAR is a probabilistic forecasting

method that employs an autoregressive recurrent network

architecture. It is designed to handle the inherent uncer-

tainties in time series data by predicting the entire distri-

bution of future values, rather than just single points. This

approach allows for the quantification of prediction

uncertainties, making DeepAR particularly useful in fields

such as retail for inventory management and finance for

risk assessment [61]. The following are the main features:

• Recurrent Neural Network (RNN): Utilizes LSTM or

Gated Recurrence Unit (GRU) cells to capture time

dependencies, enabling memory of past events for long

sequences.

• Probabilistic Outputs: Instead of single point estimates,

it outputs a probability distribution for each future time

point, enhancing decision-making under uncertainty.

• Scalability: Capable of being trained across multiple

related time series, improving its accuracy and gener-

alization through shared learning.

2) Enhancements and Comparative Studies: The following

are the enhanced DeepAR models:
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• Liao and Liang [62] enhanced DeepAR for temperature

forecasting by adding convolutional layers and LSTM

within an encoder-decoder architecture, demonstrating

improved speed and accuracy.

• Jeon and Seong [63] adapted DeepAR for intermittent

time series by modifying the training process to

enhance robustness, which is critical for irregular data

patterns found in retail sales.

• Jungbluth and Lederer [64] developed the DeepCAR

method that extends DeepAR with change point

detection capabilities, crucial for managing abrupt

shifts in time series data.

• Shi et al. [65] introduced a CNN-LSTM Attention

DeepAR model that incorporates multi-scale and local

dependencies, showing versatility and superior perfor-

mance in complex forecasting environments.

The key differences between the DeepAR model and

LSTM & ARIMA are as mentioned below:

• DeepAR vs. LSTM: Both utilize RNNs, but DeepAR’s

probabilistic forecasting nature provides detailed uncer-

tainty estimates which are absent in standard LSTM

models. This makes DeepAR more suitable for appli-

cations requiring detailed risk assessment.

• DeepAR vs. ARIMA: Unlike ARIMA, which requires

data stationarity and primarily provides point estimates,

DeepAR handles non-stationary data and outputs prob-

ability distributions, offering broader applicability and

enhanced forecasting reliability.

3) Practical applications: The practical applications of

DeepAR span across various sectors due to its robust and

flexible architecture:

• In retail, it enhances inventory management by accu-

rately predicting demand fluctuations.

• In finance, it aids in risk management by forecasting

potential financial outcomes with quantified

uncertainties.

• In supply chain management, it predicts potential

disruptions, enabling proactive adjustments.

The DeepAR model represents a significant advancement

in the field of time series forecasting. Its ability to produce

probabilistic forecasts allows for better management of

uncertainties, making it a valuable tool across various

applications. The continuous enhancements and adapta-

tions of the model further attest to its versatility and

effectiveness in addressing complex forecasting

challenges.

a) Architectural framework of DeepAR: DeepAR

employs a sophisticated architecture primarily based on

RNNs with options for LSTM or GRU cells, which are

well-suited for modeling sequential data. The model is

structured to process input data through multiple hidden

layers, each capable of capturing different temporal

dependencies within the data [66]. Inputs to the model

typically involve sliding windows of past observations,

which are transformed into features that feed into the RNN

layers. The output layer of DeepAR is designed to predict

parameters of a probability distribution (such as Gaussian,

Negative Binomial, or others depending on the applica-

tion), which provides the basis for its probabilistic fore-

casts. The training of DeepAR involves optimizing the

parameters of the network to maximize the likelihood of

the observed data, using gradient descent methods. This

setup allows DeepAR to effectively model and forecast

complex patterns in time series data, adapting its predic-

tions to the inherent uncertainties and variabilities of real-

world scenarios.

4) Real-world applications: The following are key real-

world applications of DeepAR:

a) Demand forecasting in bike-sharing services Lim

et al. [67] utilized DeepAR for station-wise demand fore-

casting in bike-sharing services. By employing an RNN-

LSTM architecture, DeepAR was able to forecast param-

eters of distributions like normal, truncated normal, and

negative binomial. The study demonstrated DeepAR’s

superior performance in capturing complex demand pat-

terns and correlations between stations, significantly

enhancing inventory management and rebalancing

strategies.

b) Production forecasting in oilfields: Han and Xue [68]

highlighted DeepAR’s effectiveness in forecasting pro-

duction time series for oilfields. Their study leveraged

DeepAR’s forward architecture based on an autoregressive

recurrent neural network to predict the normal distribution

of outputs. The model’s ability to handle frequent changes

and classify predictions in a dataset of over 2000 wells

underscores its utility in complex, industrial contexts.

5.6 Performance comparison with baselines

The performance of the proposed (DeepAR) and existing

(ARIMA and LSTM) models is evaluated in cloud com-

puting environments.

1) ARIMA model-based resource allocation:

The ARIMA model, a popular method for time series

forecasting, was first introduced by Box and Jenkins [56].

Despite its widespread use in various fields, the ARIMA

model has limitations when applied to the context of pre-

dictive resource allocation in cloud computing [69].

Specifically, ARIMA models assume that the time series is

stationary, i.e., its properties do not change over time. This

assumption often does not hold in cloud computing envi-

ronments, where resource usage can exhibit non-stationary

behaviors such as trends or seasonality. The performance

of the ARIMA model, as shown in Fig. 8, indicates that
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while it can capture some of the temporal dependencies in

the data, it struggles with more complex patterns and

sudden changes in the series.

2) LSTM model-based resource allocation:

The LSTM model, a type of RNN, is capable of learning

long-term dependencies in time series data [57]. It has been

widely used in various tasks, including speech recognition,

natural language processing, and time series forecasting.

However, training an LSTM model can be computationally

expensive and requires careful tuning of the hyperparam-

eters [70]. Unlike ARIMA, LSTM does not require the data

to be stationary, making it a more flexible choice for pre-

dictive resource allocation in cloud computing. However,

as shown in Fig. 9, the LSTM model may still struggle

with data that exhibits complex temporal dependencies.

One of the main issues is the dynamic nature of cloud

environments. Resource usage can fluctuate significantly

over time due to varying user demands, making it difficult

for LSTM models to predict future resource needs [57]

accurately. [37]

In contrast to both ARIMA and LSTM, our proposed

DeepAR model is designed to handle both stationary and

non-stationary data, as well as capture complex temporal

dependencies. It does this by leveraging both historical and

covariate data, and by using a scalable and efficient train-

ing process on Amazon Sagemaker. This makes it a more

flexible and robust solution for forecasting resource allo-

cation in cloud computing environments, particularly in the

context of non-stationary data.

3) LSTM and ARIMA-based resource allocation models:

We have selected the best baselines from the literature,

which used ARIMA and LSTM for resource allocation in

cloud computing, to test the performance of our proposed

approach using the DeepAR model. Calheiros et al. [29]

developed a system using the ARIMA model for predicting

the number of requests, handling up to 57,750 requests

with an error ratio of 7.83%. However, the paper does not

explicitly discuss the stationarity of the dataset used. We

chose another Tang et al. [31] paper that suggested a

machine learning-based auto-scaling solution using LSTM

networks. However, the paper doesn’t talk about the sta-

tionary nature of the dataset used, which could make it less

useful for research. These works explored different tech-

niques without explicitly discussing the stationarity of the

dataset.

Table 3 presents a comparative analysis of the ARIMA,

LSTM, and DeepAR models based on three key perfor-

mance metrics, namely, MAE, MSE and MAPE. Fig-

ures 10, 11 and 12 show the performance comparison of

the proposed CloudAIBus approach (DeepAR) with base-

lines (ARIMA and LSTM) in terms of MAE, MSE, and

MAPE, respectively. The ARIMA model shows a rela-

tively high MAE of 10.86 and a substantial MSE of 511.39.

This suggests that the model’s predictions often deviate

from the actual values, both on average (as indicated by the

MAE) and in terms of larger errors (as indicated by the

MSE). The MAPE of 29.61 further confirms that these

errors represent a significant proportion of the actual val-

ues, which can be problematic in scenarios where precise

predictions are crucial. The LSTM model, while demon-

strating a lower MAE of 5.082, exhibits a considerably

higher MSE of 1415.5. This indicates the presence of larger

errors in the LSTM’s predictions, which can be particularly

detrimental in resource allocation tasks where over-provi-

sioning or under-provisioning of resources can lead to

significant costs or service disruptions. Furthermore, the

high MAPE of 69.5 suggests that these errors are not just

outliers, but represent a consistent over- or under-estima-

tion of the actual values by the LSTM model. Our proposed

DeepAR model, in contrast, strikes a balance between

these metrics. While its MAE of 19.25 is higher than that of

the LSTM model, indicating a higher average deviation

Fig. 8 ARIMA model (Actual

vs. Predicted)
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from the actual values, its MSE of 438.0 is significantly

lower than both the ARIMA and LSTM models. This

suggests that the DeepAR model is less prone to large

prediction errors. Most notably, the DeepAR model

achieves a MAPE of 16.75, which is substantially lower

than the other models. This indicates that the DeepAR

model’s predictions are more consistent and reliable, with

errors representing a smaller proportion of the actual

values. These results highlight the effectiveness of the

DeepAR model in handling the complex, non-stationary

time series data typically encountered in cloud computing

Fig. 9 LSTM model (actual vs.

predicted)

Fig. 10 Performance comparison of proposed CloudAIBus Approach

(DeepAR) with baselines (ARIMA and LSTM) in terms of MAE

Fig. 11 Performance comparison of proposed CloudAIBus Approach

(DeepAR) with baselines (ARIMA and LSTM) in terms of MSE

Fig. 12 Performance comparison of proposed CloudAIBus Approach

(DeepAR) with baselines (ARIMA and LSTM) in terms of MAPE

Table 3 Performance comparison of proposed CloudAIBus approach

(DeepAR) with baselines (ARIMA and LSTM)

Model MAE MSE MAPE

Calheiros et al. [29] (ARIMA) 10.86 511.39 29.61

Tang et al. [31] (LSTM) 5.082 1415.5 69.5

Proposed CloudAIBus (DeepAR) 19.25 438.0 16.75
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environments. By leveraging both historical and covariate

data, the DeepAR model is able to capture intricate tem-

poral dependencies and provide more accurate and con-

sistent predictions for resource allocation tasks.

5.7 Energy cost and execution time

Table 4 shows the training and prediction energy costs and

execution times for different models: ARIMA, LSTM, and

DeepAR. Table 4 highlights the differences in energy costs

and execution times among ARIMA, LSTM, and DeepAR

models. ARIMA has the lowest training and prediction

energy costs and times, followed by LSTM. DeepAR,

while having the highest costs and times, offers improved

predictive performance that can outweigh these higher

resource requirements, especially in dynamic cloud

environments.

6 Prediction accuracy and efficiency
for resource allocation using DeepAR
model

In this section, we critically evaluate the performance of

the DeepAR model in predicting CPU usage and allocation

using the GWA-T-12 dataset. Our experimental setup is

based on the Amazon SageMaker platform, which provides

a fully managed service for deploying machine learning

models. The model was given historical data with a context

length of 30 min and it gives a forecast of the utilisation for

the next 30 min. The evaluation focuses on three key

aspects: prediction accuracy, efficiency in resource allo-

cation and implications for scalability and environmental

sustainability. By testing the DeepAR model on both sta-

tionary and non-stationary data, we aim to evaluate its

performance under a variety of conditions and demonstrate

its versatility and robustness in handling different types of

time series data. The results of these tests, as shown in the

Fig. 13, suggest that the DeepAR model can provide

accurate and reliable predictions for both stationary and

non-stationary data, making it a promising tool for pre-

dictive resource allocation in cloud computing.

6.1 Prediction accuracy analysis

The DeepAR model’s prediction accuracy was critically

evaluated by using MSE, MSE and MAPE across four

different tests (Test#1, Test#2, Test#3, Test#4) as shown in

Table 5. The analysis provides a comprehensive under-

standing of the model’s performance in predicting CPU

usage within the GWA-T-12 dataset. The model exhibited

a relatively consistent performance, as evidenced by the

average MAPE of 8.5%. This consistency reflects the

model’s robustness in handling variations within the data-

set. The variation in MSE across tests further highlights the

model’s adaptability. Specifically, the MSE ranged from

37.80 in Test#2 to 522.83 in Test#4, with intermediate

values in Test#1 and Test#3, as shown in Table 5. The

corresponding MAE values ranged from 5.78 to 14.49,

demonstrating the model’s ability to capture complex

patterns and nuances.

The relatively low and consistent MAPE values suggest

a stable performance in terms of percentage errors. This

stability supports the model’s potential for accurately

allocating resources and reducing over-provisioning in

cloud computing services. The combined analysis of MSE,

MAE, and MAPE offers a balanced perspective on the

model’s accuracy. The variations in these metrics provide

insights into the magnitude and deviation of the errors,

while the MAPE offers a normalized comparison across

different scales.

The specific values of MSE, MAE, and MAPE across

tests substantiate the model’s performance, with an

emphasis on its adaptability and efficiency. The results

align with the research objective of optimizing resource

allocation, demonstrating the model’s potential in real-

world applications.

Table 4 Training and prediction

energy costs (in kWh) and times

(in ms) for different models

Model Training energy cost (kWh) Training Time (ms)

ARIMA [29] 3.60 3

LSTM [31] 43.20 36

DeepAR (CloudAIBus) 252.00 210

Model Prediction energy cost (kWh) Prediction time (ms)

ARIMA [29] 0.0036 0.003

LSTM [31] 0.60 0.5

DeepAR (CloudAIBus) 1.068 0.89
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Fig. 13 DeepAR model

prediction vs. resource

provisioned
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6.2 Efficiency in resource allocation

The efficiency of the DeepAR model was assessed through

a series of tests (Test#1, Test#2, Test#3, Test#4), com-

paring its performance with the actual CPU provisioning

and usage in the GWA-T-12 dataset. The evaluation

revealed significant insights:

1) Reduction in over-provisioning: The DeepAR model

consistently demonstrated a reduction in over-provisioning

across all tests. While the GWA-T-12 dataset exhibited a

high percentage of unused CPU, ranging from 97.45% to

98.65%, the DeepAR model managed to reduce this per-

centage to as low as 32.35%. This reduction indicates a

more balanced allocation, minimizing the gap between

provisioned and used CPUs.

2) Optimization of resources: The DeepAR model’s

ability to closely match CPU usage with allocation mini-

mizes waste. For instance, in Test#3, the DeepAR model

allocated only 271.38 MHz total CPU compared to GWA-

T-12’s 11703.99 MHz, reducing the unused CPU from

11520.41 MHz to 87.79 MHz. This optimization aligns

with the research objective of accurately allocating

resources to reduce over-provisioning.

3) Consistency in performance: The DeepAR model’s

consistent reduction in unused CPU across diverse sce-

narios within the GWA-T-12 dataset suggests robustness

and adaptability. This consistency is evident in the reduc-

tion of unused CPU percentage across all tests, showcasing

the model’s capability to minimize over-provisioning in

various contexts.

6.3 Scalability and environmental impact

:

The DeepAR model’s efficiency in resource allocation is

evident in its capacity to dynamically allocate resources

according to demand. In the conducted tests, the model

reduced unused CPU from 2533.64 MHz in Test#1,

5116.42 MHz in Test#2, 11520.41 MHz in Test#3, and

11546.19 MHz in Test#4, demonstrating adaptability

across diverse scenarios. This adaptability is a critical

factor for scalability in cloud computing, as it ensures that

resources can be effectively scaled up or down as needed.

The consistent performance in minimizing over-provi-

sioning across all tests substantiates the DeepAR model’s

potential for scalable cloud services.

The reduction in over-provisioning by the DeepAR

model translates to lower energy requirements, contribut-

ing to environmental sustainability. For example, the

decrease in unused CPU from 2533.64MHz to 205.03MHz

in Test#1 represents a potential energy saving of approxi-

mately 91.9% for that specific scenario. By avoiding

unnecessary CPU allocation, the model contributes to

sustainable computing practices. The average reduction of

unused CPU across all tests by 89.5% indicates a sub-

stantial decrease in energy consumption. Environmental

sustainability in cloud computing necessitates energy-effi-

cient practices, and the DeepAR model’s significant

reduction in over-provisioning, as evidenced by the test

results in Table 5, aligns with global efforts towards

reducing energy consumption and the associated environ-

mental footprint.

In the Fig. 14 we compare the traditional and proposed

approach in CPU resource provisioning. The ’CPU

Unused’ segment, representing the provisioned but unuti-

lized CPU resources, is noticeably smaller in our approach

compared to the traditional method. This difference

underscores the over-provisioning that often occurs in

traditional resource allocation strategies, where resources

are provisioned based on peak demand or worst-case sce-

narios. Our proposed method, leveraging the predictive

power of the DeepAR model, provides a more accurate

estimate of resource needs, thereby reducing the extent of

over-provisioning. This reduction in unused CPU resources

translates into more efficient use of provisioned resources,

which can lead to significant cost savings for cloud service

providers, as they can avoid paying for unused resources.

Moreover, the minimized over-provisioning also con-

tributes to energy efficiency. Given that unused CPUs still

consume power, accurately predicting resource needs and

reducing unused CPU time can significantly decrease the

energy footprint of the cloud infrastructure. This is par-

ticularly crucial in the current era, where energy efficiency

and sustainability are of paramount importance. Further-

more, by ensuring that resources are provisioned in line

with predicted demand, we can avert potential service

disruptions due to under-provisioning, thereby improving

user experience and maintaining adherence to service level

agreements (SLAs).

Table 5 Summary of prediction accuracy metrics for DeepAR model

Test MSE MAE MAPE %

Test 1 87.82 7.80 12.30

Test 2 37.80 5.78 7.10

Test 3 219.62 14.49 8.01

Test 4 522.83 13.59 7.66

Average 216.25 9.75 8.50
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Fig. 14 CPU provisioning:

GWA-T-12 vs. DeepAR model
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7 Conclusions and future work

This paper proposes a new testbed for AI-driven cloud

computing environments called CloudAIBus for effective

resource allocation in uisng the DeepAR model. Clou-

dAIBus utilises a deep learning model to forecast CPU

usage for making cost-effective resource allocation deci-

sions. The implementation of the DeepAR model for CPU

provisioning has been rigorously evaluated, revealing sig-

nificant insights into its accuracy, adaptability, and effi-

ciency. The efficiency of the DeepAR model was assessed

through a series of tests, comparing its performance with

the actual CPU provisioning and usage in the GWA-T-12

dataset. The evaluation revealed a consistent reduction in

over-provisioning across all tests. While the GWA-T-12

dataset exhibited a high percentage of unused CPU, rang-

ing from 97.45 to 98.65%, the DeepAR model managed to

reduce this percentage to as low as 32.35%. This reduction

indicates a more balanced allocation, minimizing the gap

between provisioned and used CPU, and aligns with the

research objective of optimizing resource allocation,

demonstrating the model’s potential in real-world appli-

cations. The implementation of DeepAR enables the

workload predictor to provide crucial insights into future

resource requirements based on historical patterns and

current demand. This predictive capability signifies a shift

in resource allocation strategy, transitioning from a reac-

tive approach, where resources are adjusted based on cur-

rent demand, to a proactive approach that adjusts resources

based on predicted future demand. This predictive resource

allocation significantly enhances the system’s ability to

respond and adapt to fluctuating workloads, leading to

more efficient resource utilization.

7.1 Possible extensions of CloudAIBus testbed

In the future, the proposed CloudAIBus Testbed can be

extended in the following ways:

1) Automatic resource allocation: Future research

should explore the integration of these models with exist-

ing cloud management systems, ensuring seamless and

automated resource allocation and scaling [6]. This would

involve addressing challenges related to real-time data

processing, model updating, and system integration. The

development of a specialized framework or integration

with existing cloud services could further streamline this

process. This direction provides a comprehensive and

technically advanced approach to resource allocation in

cloud computing, addressing not just the technical aspects

but also the financial and environmental implications.

2) Generative AI: The exploration of latest Generative

AI models, the development of more sophisticated

prediction models, and the assessment of the overall system

performance and cost-effectiveness represent additional

promising directions for future research and development

[1].

3) Sustainable cloud computing: Given the potential for

the proposed method to reduce energy consumption by

minimizing unused CPU time, future work could involve a

more detailed exploration of this aspect, including quanti-

fying the potential energy savings and investigating

strategies to further enhance energy efficiency [6].

4) Serverless edge computing: Future research should

focus on extending the application of the DeepAR model to

serverless architectures within multi-tenant edge-cloud

environments. This would involve developing a dynamic

resource allocation algorithm that can handle the event-

driven, stateless nature of serverless edge computing [71].

The algorithm should be capable of predicting resource

needs based on the diverse and fluctuating demands of

multiple tenants, taking into account factors such as func-

tion invocation frequency, execution time, and concurrency

requirements.

5) Carbon neutral computing: In addition, the research

should aim to optimize both cost and environmental

impact. This would require the development of a cost-op-

timization model that considers various factors such as the

pricing model of the cloud provider, the cost associated

with different resource types, and the penalties for under-

provisioning or over-provisioning resources [72]. The

model should also factor in the energy consumption of the

computing resources, with the aim of minimizing the car-

bon footprint of the cloud infrastructure. This direction

would provide a comprehensive and technically advanced

approach to resource allocation in cloud computing,

addressing not just the technical aspects but also the

financial and environmental implications.

6) Real-time data processing: Furthermore, the research

should explore the integration of these models with the

existing cloud management systems, ensuring seamless and

automated resource allocation and scaling based on the

predictions of the DeepAR model. This would involve

addressing challenges related to real-time data processing,

model updating, and system integration [73].

7) Statistical modelling: While the results from the

Augmented Dickey-Fuller test support the stationarity of

our data, we recognize that the evaluation lacks the nec-

essary rigor for a comprehensive scientific comparison of

stochastic algorithms. In future work, we will employ

statistical hypothesis testing methods, such as paired t-tests

or ANOVA, to ensure that the differences observed in the

figures are statistically significant and not due to random

chance. This will enhance the robustness of our compar-

isons, providing a more rigorous evaluation of our model’s

performance.
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8) Heterogeneous cloud environment: Further research

will also expand the analysis by testing the model under

varying scenarios and conditions, such as different data

sizes, hardware setups, and prediction horizons, to better

understand the model’s efficiency and scalability [74].

These improvements will help ensure the reliability of our

conclusions and the applicability of our approach in real-

world scenarios.

9) Security: CloudAIBus framework can be extended

against security threats in future studies. To do this,

behavioral and anomaly detection can be done using latest

AI models [23]. In this way, possible threats to cloud

environments can be detected in advance, and prevention

efforts can be carried out.

10) Privacy: Secure and robust cryptography techniques

can be used to ensure the privacy of all data used in the

CloudAIBus framework. Additionally, privacy standards

can be increased by using anonymization techniques in

data transmission processes [39, 70].

11) Net zero emissions: Green information technologies

can be used to increase energy efficiency and keep carbon

emissions to a minimum. To do this, it is a bright idea to

use AI models with low energy requirements and high

performance in future research [66].

12) Edge AI: The CloudAIBus framework can be

extended to edge systems used for optimization problems

such as latency and bandwidth efficiency and deployed at

the edge of the network [24]. In addition, higher perfor-

mance predictions can be obtained for the CloudAIBus

framework by developing Edge AI models to be used for

complex tasks [71].

13) Industry 4.0: The CloudAIBus framework can be

expanded and used for solutions such as predictive main-

tenance in Industry 4.0 applications integrated with cloud

systems [61]. In this way, system failures can be predicted

with the Deep learning (DL) models available in Clou-

dAIBus, production processes can be optimized and effi-

ciency can be maximized.

14) Quantum cloud computing: It is certain that quantum

computing, which is currently in its infancy, will shape

many new fields with its high speed and capabilities such

as easily solving complex problems [75]. One of these

areas is cloud computing [76]. CloudAIBus framework can

be developed and used for new paradigms such as quantum

cloud computing (resource management etc.)

15) IoT: Devices with low processing capacity, such as

IoT, can be integrated with systems such as edge and cloud

and used in applications that require high processing power

[69]. To do this, IoT data is usually sent to cloud servers

over the internet and processed in systems on the cloud. As

the amount of processed data reaches huge levels, problems

such as optimizing network traffic and energy efficiency

arise [21]. This is where CloudAIBus can come into play

and notify cloud systems of times of demand fluctuation

(monitoring network traffic). In this way, cloud systems

can automatically scale resources to respond to increases in

demand.

16) 6 G and beyond: The future of CloudAIBus lies in

its ability to adapt to the rapidly evolving landscape of

connectivity driven by 6 G and beyond. With ultra-low

latency, higher data rates, and increased connectivity, 6 G

networks will demand more advanced resource allocation

strategies. CloudAIBus will leverage 6 G’s capabilities to

efficiently manage cloud resources, utilizing predictive AI

models to ensure real-time scalability and distribution [6].

The framework will integrate seamlessly with 6 G’s

advanced AI and security measures, enabling enhanced

predictive accuracy and privacy. Additionally, with 6 G’s

emphasis on energy efficiency, CloudAIBus will optimize

its resource allocation models to minimize environmental

impact, thus aligning with the global effort toward carbon

neutrality.

17) Large-scale ML: The future of CloudAIBus will

involve integrating large-scale machine learning capabili-

ties in alignment with the findings of Hazra et al. [73].

Leveraging collaborative offloading techniques, CloudAI-

Bus will efficiently manage the offloading of computa-

tionally intensive ML tasks from edge devices to fog and

cloud layers. This approach will enable the framework to

handle complex models effectively while ensuring optimal

transmission scheduling to minimize latency and energy

consumption. By incorporating dynamic resource alloca-

tion and adaptive load balancing strategies, CloudAIBus

will ensure that computational resources are utilized effi-

ciently to support large-scale ML applications. In the

context of industrial IoT, where real-time data analytics

and predictive maintenance are essential, CloudAIBus will

provide robust support for large-scale ML by harnessing

the combined power of fog and cloud computing.

18) Federated learning: The future of CloudAIBus will

incorporate federated learning to meet the privacy and

efficiency challenges in modern computing [6]. With fed-

erated learning, CloudAIBus will enable decentralized

machine learning across distributed edge devices, ensuring

data privacy by keeping data local while sharing only

model updates. This aligns perfectly with the framework’s

aim to leverage edge computing for scalable and secure

resource management. By utilizing the computational

power of distributed systems, federated learning within

CloudAIBus will enhance efficiency in model training

without the need for centralized data storage, crucial in

privacy-sensitive and bandwidth-constrained environ-

ments. However, challenges like handling heterogeneous

data, optimizing communication, and maintaining model

accuracy will require advanced coordination, which the

framework aims to address. Through this integration,
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CloudAIBus will support applications in IoT, healthcare,

and smart cities, enabling efficient and privacy-preserving

model training in these domains.

19) Quantum AI: As we look towards the future, the

CloudAIBus framework will need to adapt to the evolving

landscape of quantum computing and AI integration, as

outlined by Pinto et al. [74]. Privacy-aware IoT systems

will face new challenges and opportunities with the rise of

quantum computing. Quantum AI, with its superior com-

putational capabilities, will enable the processing of vast

amounts of data for improved decision-making while also

posing a potential threat to data privacy [75]. To address

this, CloudAIBus will integrate quantum-resistant crypto-

graphic techniques to safeguard personal data against

quantum-based attacks. By incorporating AI and quantum

computing for privacy-preserving methods, CloudAIBus

aims to develop innovative strategies that not only leverage

the power of quantum AI but also ensure robust data pri-

vacy in IoT environments. This will pave the way for

privacy-focused applications that are resilient to future

computational advancements.

20) Explainable AI (XAI): In its future evolution,

CloudAIBus will integrate XAI into its distributed AI

frameworks, particularly in edge networks, as emphasized

by Hazra et al. [72]. With the growing adoption of zero-

touch provisioning, ensuring transparency in distributed AI

is crucial for clarity and confidence. CloudAIBus will

embrace models that allow users and stakeholders to

clearly understand the reasoning behind AI-driven deci-

sions. Utilizing XAI, CloudAIBus aims to build user trust

and acceptance by offering traceable, dependable, and

understandable decision-making in distributed AI systems.

This will empower the framework to self-manage autono-

mously while maintaining trustworthiness in edge network

environments.
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