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Abstract—Vehicular Edge Computing (VEC) has garnered sub-
stantial attention owing to its capacity to provide ample compu-
tational resources for computation-intensive tasks. However, how
to flexibly allocate computing tasks within vehicles and efficiently
manage the resources consumed by tasks has emerged as a chal-
lenge. To tackle this issue, this research advances the proposition
of employing an auxiliary vehicle (AV) for task offloading and
introduces a novel Auxiliary Vehicle Algorithm (AVA). AVA in-
tegrates both federated learning and multi-agent reinforcement
learning to fully utilize computing resources in the vehicular envi-
ronment, and simultaneously achieves task delay reduction, energy
consumption minimization, and task completion rate augmenta-
tion. Moreover, we establish a federated learning framework to
judiciously determine the proportion of resource allocation of AV
through the implementation of inventive mechanisms. Experiment
results validate that our approach not only leads to the improve-
ment of key system performance indicators, but also ensures the
comprehensive exploitation of the computing resources of mobile
vehicles.

Index Terms—Edge computing, federated reinforcement lear-
ning, task offloading, vehicular networks.

I. INTRODUCTION

THE rapid advancement of wireless communication tech-
nology, along with the emergence and progression of

cloud computing, edge computing, and other technologies, has
accelerated the development of the Internet of Vehicles (IoV),
consequently fostering the advancement of autonomous driving
and related technologies [1], [2]. During autonomous driving,
a large amount of data is generated, such as road condition
information, traffic flow, etc. The vehicle needs to process the
above information and make corresponding decisions to control
the vehicle to ensure a normal running process. How to process
the above data in real-time is crucial for ensuring the safety of
vehicle running. However, the escalating user demand and the
high mobility of vehicles raise challenges to the development of
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autonomous driving technology, as they need to deal with large
volumes of data within limited computing resources. Limited
local resources of vehicles result in large delays and energy
consumption when processing tasks involving large volumes of
data [3].

Meeting the latency requirements for processing massive
tasks of vehicles with limited computing resources has emerged
as a critical challenge [4]. To this end, research has been con-
ducted on task offloading for the Internet of Vehicles, that is,
how to transfer large-scale tasks to edge or cloud computing to
alleviate local computing pressure. Initially, cloud computing
was introduced to help process local data to mitigate this issue.
However, the proliferation of vehicle terminals, the expansion
of task data, and the considerable distance between the cloud
and the local terminals have led to several challenges, including
heightened latency and network congestion [5], [6]. To address
the limitations of cloud computing in IoV applications, Vehicu-
lar Edge Computing (VEC) has attracted great attention because
it is much closer to vehicles and offers advantages in alleviating
network congestion and latency [7], [8], [9], [10].

There are studies on different performance indicators, such
as latency, energy consumption, etc., in the decision-making of
Iov tasks. When optimizing performance indicators, the high
mobility of vehicles is also a critical factor to consider, as
high-speed movement of vehicles can lead to unstable com-
munication. The consideration of task dependencies and en-
ergy consumption of edge servers, along with the utilization
of a table-based algorithm for making offloading decisions, has
demonstrated its limited suitability for scenarios characterized
by high dynamism and significant dimensionality [11]. To ad-
dress task offloading challenges in complex and dynamic IoV
scenarios, Yu et al. [12] proposed a task offloading approach
that integrates an enhanced fuzzy C-means algorithm with Deep
Q-Network (DQN). Clustering vehicles has been shown to
reduce communication overhead and improve communication
reliability [13]. Yang et al. [14] employed a vehicle clustering
strategy to designate cluster head vehicles, aiming to ensure the
stability of data transmission while optimizing energy consump-
tion and delay. However, this approach failed to fully utilize the
available computing resources of the vehicles. Raza et al. [15]
proposed task offloading onto neighboring vehicles to mitigate
time costs. However, it lacked specific vehicle selection strate-
gies and did not consider energy consumption. TOERT [16]
aims to eliminate redundancy in tasks while enhancing resource
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utilization. Nevertheless, it is worth noting that this approach
solely concentrates on optimizing task completion rates and does
not take into account metrics related to energy consumption.
Feng et al. [17] focused on reverse offloading tasks to vehicles
to reduce time-related costs incurred by servers. However, it
ignored the consideration of energy consumption, and it was
based on a greedy algorithm, which made it less adaptable to the
intricacies and dynamism inherent in complex environments.

Due to cost and other reasons, the distance between edge
servers is often large, and the communication range of edge
servers is limited, which leads to queuing when facing a large
number of simultaneously generated tasks, resulting in addi-
tional delay. To solve such problems, attention has been paid
to idle vehicle resources. VEC servers can allocate their idle
resources to nearby vehicles [18]. However, the rational selec-
tion of allocated vehicles and the proportion of allocated re-
sources have not been fully discussed. This dramatically affects
the efficiency of utilizing vehicle resources. In complex edge
computing scenarios, federated reinforcement learning can be
employed for task offloading to optimize returns [19], [20],
[21], [22]. Li et al. [23] explored the incentive mechanism
of federated learning, which dynamically adjusts participants’
weights based on statistical features to mitigate the impact of
malicious users. This mechanism not only mitigates potential
harm but also encourages active participation. Inspired by this,
we apply this mechanism to the IoV, where vehicles assigned
tasks are treated as participants, and the allocation proportions
of resources as weights, effectively addressing the challenge of
proportional allocation.

Vehicles, due to their high maneuverability, generate signif-
icant volumes of data during the driving process. The timely
processing and feedback of this data are crucial determinants
of decision-making accuracy within the vehicle networking
environment. Large models enhance decision-making accuracy
and timeliness in connected vehicle contexts by analyzing vast
amounts of data and real-time information. In order to process
large-scale data in time, we introduce large models. The term
“large language model”, or “large model” refers to machine
learning models characterized by a substantial number of pa-
rameters and extensive training data [24], [25], [26]. Compared
to traditional small models, large models, owing to their greater
parameter count and more intricate structures, exhibit stronger
learning, generalization, and computing capabilities, rendering
them suitable for applications such as autonomous driving and
road condition prediction in vehicular networking scenarios.
Using large models in vehicular networking contexts yields more
robust and accurate performance in complex driving environ-
ments [27].

In the decision-making stage of the task, traditional methods
rely on predefined models and rules to achieve optimal solu-
tions, lacking adaptability and primarily serving static problems.
In contrast, multi-agent reinforcement learning defines a state
space, selects appropriate actions, and sets rewards for executing
actions, thereby continuously interacting with the connected
vehicle environment to learn and make real-time task-offloading
decisions in dynamic and complex environments. The incor-
poration of deep learning further enhances the capabilities of

multi-agent reinforcement learning models, improving decision
accuracy and enabling the handling of complex problems and
long-term reward considerations that traditional methods cannot
achieve. In comparison to single-agent reinforcement learning,
multi-agent systems facilitate collaborative problem-solving,
enhancing efficiency and generalization abilities. Therefore, in
this paper, we employ multi-agent reinforcement learning as
the underlying algorithm that makes the final task-offloading
decisions.

For the above issues, this article is the first to study how to
scientifically use the idle computing resources of surrounding
vehicles to achieve low delay, low energy consumption, and high
task-offloading completion rate when edge computing power is
tight. To address the gaps in the above research, we present an
innovative approach that integrates AVs. Our primary aim is
to efficiently utilize spare computing resources of vehicles to
alleviate the pressure of shortage of edge computing resources
and optimize delay, energy consumption, and completion rate.
The primary contributions of this paper are threefold:
� This paper introduces a federated learning incentive mech-

anism to solve the problem of offloading waiting caused
by edge-computing resource constraints, by effectively
utilizing nearby vehicle spare resources. Compared with
single edge-computing task offloading schemes, this mech-
anism improves communication stability and releases the
problem of long waiting time caused by the lack of edge
computing resources.

� In order to solve the problems of data explosion and
communication instability caused by high-speed vehicle
movement, this paper combines deep reinforcement learn-
ing with federated learning and introduces large models to
adapt to highly dynamic environments and process large
amounts of data in a short time, ensuring accurate and
timely vehicle decision-making.

� This paper proposes a total cost as a system evaluation
indicator that integrates delay, energy consumption, and
completion rate under the maximum allowable energy,
delay threshold, and limitations on computing resources.
This enables the optimization of overall performance based
on user preferences while considering multiple indicators,
making the evaluation system more comprehensive.

The remainder of this paper is organized as follows. Section II
provides an overview of federated learning and the incentive
mechanisms adopted in this study, and provides a review of the
literature on DRL and large model algorithms. In Section III, we
present the system model and define the task offloading model.
Section IV offers a detailed exposition of the AVA algorithm.
Simulation results, comparative experiments, and the evaluation
of our algorithm are presented in Section V. Finally, Section VI
concludes the paper.

II. RELATED WORK

This section will discuss the research related to federated
learning and incentive mechanisms, DRL, and large models,
and elucidate the rationale behind certain innovative aspects
highlighted in the paper.
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A. Federated Learning-Based Approaches

Federated learning is a machine learning algorithm that con-
sists of two main components: the client and the server. The
model training takes place on the client side, and then the model
parameters from the clients are uploaded to the central server for
aggregation [32]. Because the models on the client side do not
share parameters during training, federated learning is typically
used to address privacy protection issues while also reducing the
computing burden on the server side [33].

In federated learning, incentive mechanisms encourage
clients to participate and share their models. This is because
when clients participate in federated learning, they expend
their resources, and the incentive mechanism provides model-
based compensation to the clients to promote their involve-
ment. In [34], the incentive mechanism of federated learning is
used in the edge-cloud collaborative scenario of blockchain to
compensate participants to balance system overhead and model
performance. In mobile edge computing, federated learning can
also be used to enhance privacy and decentralization, and [35]
discussed several significant issues that need to be addressed,
including the incentive mechanism. Therefore, it can be inferred
that when a task is offloaded to a vehicle in transit, the computing
resources the vehicle provides represent a cost to its resources.
In order to allocate resources reasonably, we can incorporate the
incentive mechanism of federated learning here to fairly evaluate
the contribution of the vehicle and provide appropriate rewards
to encourage the vehicle to contribute more resources for task
offloading.

B. DRL-Based Approaches

DRL combines deep learning and reinforcement learning
to help learn optimal strategies through environment interac-
tion [36]. Its application in automotive networks is widespread
due to the complex and dynamic nature of vehicular environ-
ments, enabling intelligent agents to make adaptive decisions
regarding task offloading and resource allocation [37]. Task
offloading is an important issue in in-vehicle networks and is
frequently tackled using DRL techniques for decision-making,
including multi-agent DRL methods [38].

In [39], DRL is applied within the incentive mechanism
of federated learning in Intelligent Cyber-Physical Systems to
offer long-term incentives for model participants operating in
dynamic environments. The multi-agent game is formulated
as a Markov decision process to devise allocation strategies
efficiently. This inspired employing DRL as the underlying
algorithm for federated learning, enabling real-time dynamic
decisions for task offloading in vehicular networking.

In recent years, OpenAI’s GPT family has attracted
widespread attention, such as ChatGPT [40]. This is a large
language model with many parameters and data that provides
strong learning capabilities and the ability to solve complex
problems [26]. In the highly dynamic and complex environment
of connected vehicles, ordinary models may struggle to ensure
the accuracy of decisions, potentially impacting critical issues
such as vehicle safety [41]. Therefore, large models can be
introduced into connected vehicles to ensure the accuracy of

decisions. However, the accuracy of large models comes at the
cost of high computing resources, which is difficult for ordinary
vehicles to satisfy locally [42]. Hence, we can alleviate this
burden by leveraging task offloading to nearby edge or cloud
computing resources [43], which offer significantly enhanced
computing capabilities. The task offloading process can employ
appropriate decision algorithms to assign large model tasks
for processing either in the cloud or at the edge, aiming to
mitigate the high delay and low-quality issues arising from local
computing resource constraints [44].

Numerous delay-sensitive applications demand substantial
computational resources, such as autonomous driving and ve-
hicle queuing [45]. It is necessary to offload and deploy large
model application tasks within the IoV onto nearby edge servers
for computing processing. However, due to the significant com-
puting requirements of large model applications, deploying them
extensively on edge servers is not feasible due to the high config-
uration costs. Therefore, vehicles equipped with high computing
capabilities emerge as alternative offloading targets, leading to
the issue of vehicle selection and resource allocation. This paper
will elaborate on the specific implementation of such offloading
schemes.

C. DRL Under Federated Learning Framework

There has been growing interest in combining federated learn-
ing frameworks with reinforcement learning decision-making to
address various challenges in distributed systems.

For instance, Yu et al. [46] introduced the I-UDEC framework,
which enables heterogeneous resource allocation and hybrid
computing offloading. They proposed a DRL approach to op-
timize delay, considering varying levels of delay sensitivity.
Additionally, federated learning was employed to ensure the se-
curity of private data. Wu et al. [47] introduced an asynchronous
federated learning scheme to address local model failure due
to high vehicle mobility, which can lead to inaccuracies in
global models. They also developed a collaborative caching
scheme using an adversarial DQN algorithm to minimize content
transmission delay. In [48], DRL is employed for resource
allocation to reduce the total delay and energy consumption of
federated learning. However, the use of federated learning here
is only for privacy security. Wang et al. [49] applied federated
learning to protect data privacy in the IoV, and used DRL for
wireless network selection to improve learning performance.
Al-Maslamani et al. [50] integrated DRL as a reputation model
within the edge server of federated learning. This integration
aimed to enhance the accuracy of the global model while also
strengthening data privacy measures.

Compared to the contributions of the studies above, this
paper offers several advantages. Firstly, while previous articles
investigate the offloading of tasks from mobile devices, they do
not extend their theories to address task offloading in the context
of IoV. In contrast, our paper leverages federated learning and
reinforcement learning to tackle task-offloading challenges
within IoV scenarios. Secondly, whereas previous studies
primarily aim to optimize delay, our paper takes a broader
approach by introducing a comprehensive metric capable of
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TABLE I
COMPARISON OF THE PROPOSED SCHEME WITH PRIOR STUDIES

Fig. 1. System model.

concurrently measuring delay, energy consumption, and
completion rate. Lastly, in terms of algorithms, previous studies
primarily utilize federated learning frameworks for privacy
protection. In contrast, our study focuses on leveraging federated
learning incentive mechanisms to optimize the resource alloca-
tion ratio of auxiliary vehicles to enhance the contribution ratio
of vehicles to other vehicle offloading tasks and provide addi-
tional resources for vehicle networking task offloading. Overall,
our paper presents innovative applications by integrating feder-
ated learning and DRL within the context of connected vehicles.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Model

Fig. 1 illustrates the network model, which comprises a macro
cell base station (MCBS), multiple small cell base stations
(SCBSs), and a fleet of vehicles denoted as i (i ∈ N ) [16].
The SCBSs and vehicles are situated within the communication
range of the central MCBS, and the SCBSs have a coverage
radius of 200 meters. The SCBSs are connected to the MCBSs
through wired cables. Each vehicle is equipped with a single
antenna and has communication and computing capabilities.
Vehicles communicate with each other using radio technology,
whereas the SCBSs are connected to the MCBSs through wired
cables.

TABLE II
NOTATIONS AND DEFINITIONS

We assume that each vehicle is assigned a task, which can be
divided into M subtasks. The amount of CPU cycles required to
complete subtask j (j ∈M ) of vehicle i is represented as Bi,j .
The priority of subtasks is pref(nj). The predecessor subtasks
need higher priorities relative to their successor subtasks. The
CPU frequency associated with vehicle i and the SCBS is
denoted as fvi and fS , respectively. However, offloading all
tasks to the SCBS would inevitably lead to network congestion
and a surge in time delay. Consequently, this paper focuses
on reducing system costs by leveraging the inherent resources
of each vehicle. The decision variable is defined as a three-
dimensional matrixY of dimensionsN ×M × 3. Each element
Yi,j,k ∈ [0, 1]denotes the offloading decision for the j-th subtask
of vehicle i, where i ∈ N , j ∈M , andk ∈ [1, 2, 3]. Whenk = 1,
the j-th subtask for vehicle i is processed locally, while k = 2
or k = 3 indicates offloading to the SCBS or Auxiliary Vehicle
(AV), respectively. The symbols and their detailed meanings can
be found in Table II.
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We can calculate the distance of vehicles operating within the
coverage area of SCBS as follows [15]:

Si = 2
√
r2 − e2, (1)

where r is the radius of the SCBS and e is the vertical distance
from the SCBS to the road surface.

The duration for which the vehicle remains within the cover-
age area of the SCBS is given by:

tV 2Ir
i,S =

Si

vi
, (2)

where vi represents the velocity of vehicle i.

B. Auxiliary Vehicle

We introduce an Auxiliary Vehicle (AV) into the problem
scenario to assist SCBS in computing offloading tasks for other
vehicles. Without loss of generality, the AV may also equip tasks
that need to be computed. Therefore, we introduce a variable R
to represent the proportion of the AV’s resources used to compute
offloading tasks for other vehicles.

To effectively conduct computations, it is essential to select
a suitable vehicle as an AV based on the criterion CSi. Consid-
ering both the distance and computing capacity of the vehicles,
this can be formulated as P1:

(P1) max : CSi = αDi + βfvi (3)

s.t. : α+ β = 1, (4)

where α and β represent the weighting factors for distance and
computational capabilities, respectively, determined based on
user requirements.

The average distance between vehicle i and other vehicles is
given by:

Di =
1

N − 1

N∑
j=1,j �=i

‖li(t)− lj(t)‖, (5)

where the variables li and lj represent the coordinates of vehicle
i and vehicle j, respectively. The distance between the two
vehicles is obtained through the Euclidean distance formula.
Then, the total distance between vehicle i and all other vehicles
is divided by the total number of vehicles minus one to obtain
the average distance between vehicle i and other vehicles.

We quantify the computing resources utilized by the AV for
the computation of tasks assigned to other vehicles as fAV =
R× fA, where fA represents the computing capacity of the AV.

C. Communication Model

The communication model encompasses two distinct modes:
vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)
communication [51]. We employ Dedicated Short Range
Communication (DSRC) for V2V communication and LTE-
Advanced (LTE-A) for V2I communication. Orthogonal fre-
quency is typically utilized for V2V communication, while
we assume a Rayleigh fading channel for the channel model.
The Rayleigh fading channel model is frequently employed
to characterize multipath fading in wireless communication.

This model, rooted in the Rayleigh distribution, posits that
signals traverse multiple reflective paths before reaching the
receiver, leading to fluctuations in signal strength across time
and space. In the context of VEC environments characterized
by vehicle mobility and dynamic communication, the Rayleigh
fading channel model remains applicable for describing signal
multipath effects.

According to [52], we can determine the path loss of commu-
nication of V2V and V2A as follows, respectively:

losV 2V
i = 10

−63.3+17.7 lg (di,A(t))

10 , (6)

losV 2I
i = 10

−63.3+17.7 lg (di,S(t))

10 , (7)

where 0 ≤ di,A ≤ Climit and di,S(t) represent the distance
between vehicle i and vehicle A, and between vehicle i and the
SCBS at time t, respectively. These distances can be expressed
as follows:

di,A(t) = ‖li(t)− lA(t)‖, (8)

di,S(t) = ‖li(t)− lS(t)‖, (9)

where li(t), lA(t) and ls(t) denote the positions of the vehicle i,
vehicleA, and the SCBS at time t, respectively.Climit represents
the maximum communication range between vehicles.

The uploading transmission rates from vehicle i to the AV and
the SCBS are given by [17]:

RV 2V
vi,A

= BV 2V log2

(
1 +

Pilos
V 2V
i ‖h2‖
N0

)
, (10)

RV 2I
vi,S

= BV 2I log2

(
1 +

Pilos
V 2I
i ‖h2‖
N0

)
, (11)

whereBV 2V denotes the bandwidth between vehicles, andBV 2I

denotes the bandwidth between the vehicle and SCBS. Pi is the
transmitting power of the vehicle’s onboard device. N0 repre-
sents the power of white Gaussian noise. The channel fading
coefficient h follows a Rayleigh distribution, and the path loss
is characterized by dσ , where σ denotes the path loss exponent.

Similarly, the downloading transmission rates of AV and
SCBS to the vehicle i are given by:

RV 2V
A,vi

= BV 2V log2

(
1 +

PAlos
V 2V
i ‖h2‖
N0

)
, (12)

RV 2I
S,vi

= BV 2I log2

(
1 +

PSlos
V 2I
i ‖h2‖
N0

)
, (13)

where PS and PA represent the transmitting power of the SCBS
and the AV, respectively. The AV’s CPU frequency and the CPU
frequency allocated to the other vehicles by the AV are denoted
by fi and fA (cycles per second), respectively.

The average uploading transmission rates of the vehicle i to
AV and SCBS are given by [15].

RV 2V
vi,A =

∫ tV V r
i,A

0 RV 2V
vi,A (t)dt

tV 2Ir
i,A

, (14)

RV 2I
vi,S =

∫ tV V r
i,S

0 RV 2I
vi,S(t)dt

tV Ir
i,S

. (15)
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Similarly, the average downloading transmission rates for
V2V and V2I communication channels are provided by [15].

RV 2V
vi,A =

∫ tV V r
i,A

0 RV 2V
vi,A (t)dt

tV V r
i,A

, (16)

Rvi,S
V 2I =

∫ tV Ir
i,S

0 Rvi,S
V 2I (t)dt

tV Ir
i,S

. (17)

D. Task Offloading Decision

As to the task offloading decision, we can divide it into three
parts according to different processors.

1) Local Computing: yi,j,1 = 1 means the jth subtask of the
ith vehicle is computed locally. The delay and energy consump-
tion associated with the local computation of the jth subtask for
the ith vehicle are expressed as:

T l
i,j =

Bi,j

fvi

, (18)

El
i,j = W l

CT
l
i,j = μfvi

ν2 Bi,j

fvi

. (19)

whereWC represents the energy consumption of the CPU, ν rep-
resents the effective capacitance coefficient for each CPU cycle,
and v corresponds to the working voltage. The energy consump-
tion mentioned here specifically refers to the local computing
energy of vehicles, which can be calculated by WC = μfν2.

2) AV Computing: yi,j,3 = 1 indicates that the jth subtask of
the ith vehicle is offloaded to the AV for computation, and the
processing results are subsequently sent to the corresponding
vehicles.

The delay associated with uploading the subtask data to
the AV and downloading it back to the vehicle is defined as
follows [15]:

Tup toA
i,j =

Dataupi,j
RV 2V

vi,A

, (20)

T downtovi
i,j =

Datadown
i,j

RV 2V
A,vi

. (21)

where Dataupi,j and Datadown
i,j represent the sizes of the upload-

ing and downloading data volumes for the jth subtask of the ith
vehicle, respectively.

The time required for processing tasks on the AV is given by:

TAexe
i,j =

Bi,j

fA
. (22)

The total delay of the jth subtask of the ith task with AV comput-
ing comprises the task-uploading time, task-downloading time,
and processing time.

TTA
i,j = Tup toA

i,j + TAexe
i,j + T downtovi

i,j . (23)

Similarly, the total energy consumption comprises the energy
used for uploading tasks, the energy used for processing tasks
by the AV, and the energy spent on result retrieval.

ETA
i,j = Etrans

vi,A
+ EAexe

i,j + Edowntovi
i,j , (24)

where the required energy to transmit the task from vehicle i vi
to AV is given by;

Etrans
vi,A

= W trans
vi,A

Tup toA
i,j . (25)

The required energy that takes for the task to be executed on AV
is:

EAexe
i,j = W exe

A TAexe
i,j = μAfAν

2
AT

Aexe
i,j . (26)

The required energy for downloading the task to the original
vehicle is:

Edowntovi
i,j = W trans

A,vi
T downtovi
i,j = μAfAν

2
AT

downtovi
i,j .

(27)

3) SCBS Computing: yi,j,2 = 1 means the SCBS helps to
compute the jth subtask of the ith vehicle and send the results
back.

The total delay of the ith task with SCBS computing com-
prises several components, including the delay of uploading the
task data to the SCBS and receiving the results, the processing
time of the task on the SCBS, and the executing time of all
predecessor tasks for the jth subtask of the ith vehicle. Where
the required delay to transmit the task from vehicle i to SCBS is

Tup toV 2I
i,j =

Dataupi,j
RV 2I

. (28)

The required energy that takes for the task to be executed on AV
is

TSexe
i,j =

Bi,j

fs
. (29)

The required waiting time for the task is

Twait
i,j = max

k∈pred(Ti,j)
TSexe
i,k , T downtovi

i,j =
Datadown

i,j

RV 2I
S,vi

, (30)

where TSexe
i,k represents the task processing time of the jth

subtask of the ith vehicle on the SCBS.

TTS
i,j = Tup toV 2I

i,j + TSexe
i,j + max

k∈pred(Ti,j)
TSexe
i,k + Twait

i,j .

(31)
The total energy consumption consists of the energy used for

uploading tasks, the energy expended during task execution, and
the energy required for downloading the results.

The energy required to transmit the task from vehicle i to
SCBS is given by:

Etrans
vi,S

= W trans
vi,S

Tup toV 2I
i,j . (32)

The energy required for the task to be executed on the SCBS is
given by:

ESexe
i,j = W exe

S TSexe
i,j = μSfSν

2
ST

Sexe
i,j . (33)

The energy required for downloading the subtask data to the
vehicle from the SCBS is given by:

EStrans
i,j = W trans

S Tup toV 2I
i,j

= μSfSν
2
ST

up toV 2I
i,j , (34)

where the transmitting energy consumption of V2I is W trans
S .
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Therefore, the total energy consumption is given by:

ETS
i,j = Etrans

vi,S
+ ESexe

i,j + EStrans
i,j . (35)

E. Task Completion Rate

To ensure the successful completion of a task, we introduce the
concept of task completion rate. Task completion is contingent
upon the successful execution of the last subtask. If the previous
subtask fails, it implies that the result fails to be transmitted to
the vehicle before it exits the communication range of the SCBS
or AV. The total number of completed tasks is denoted as

Tf = ΣN
i=1Tfi, (36)

where Tfi indicates whether the ith task has been completed.
If tV Ir

i,S − tM−1
to ≥ T toS

i,M ≥ 0 and tV 2Ir
i,A − tM−1

to ≥ T toA
i,j ≥ 0,

then Tfi will be set to 1; otherwise, it is set to 0. This condition
ensures that until vehicle i completes M − 1 tasks, it remains
within the communication range of the AV or SCBS, and the
remaining stay time is sufficient for the completion of the task.
If either of the two inequality conditions is satisfied, the task is
considered completed.

Subsequently, the task completion rate of vehicle i is calcu-
lated as follows:

ri =
Tf

N
, (37)

which represents the percentage of successful tasks to the total
number of tasks.

F. Problem Formulation

The total delay of the system is calculated as follows:

Tto =

N∑
i=1

M∑
j=1

(
Yi,j,1T

l
i,j + Yi,j,2T

TA
i,j + Yi,j,3T

TS
i,j

)
. (38)

The total energy consumption of the system is calculated as
follows:

Eto =
N∑
i=1

M∑
j=1

(
Yi,j,1E

l
i,j + Yi,j,2E

TA
i,j + Yi,j,3E

TS
i,j

)
. (39)

We aim to minimize the total delay and energy consumption
while maximizing task completion. This can be regarded as
a multi-objective joint optimization problem, and we convert
it into a single-objective optimization problem via weighted
summation. The objective function of the problem is defined as
the total cost to be optimized, represented as P2, which consists
of the weighted sum of total delay, total energy consumption,
and the reciprocal of task completion rate. This way, when
optimizing the total cost, it can comprehensively reduce the
total delay and total energy consumption, and improve the task
completion rate, achieving multi-objective joint optimization.
This can be formulated as follows:

(P2) min : Λ1 × Tto + Λ2 × Eto + Λ3 × 1/ri

s.t. : 0 ≤ fi ≤ fmax
i , i ∈ N (40a)

0 ≤ fA ≤ fmax
A (40b)

0 ≤ fs ≤ fmax
s (40c)

3∑
k=1

Yi,j,k = 1, i ∈ N, j ∈M (40d)

Yi,j,k ∈ {0, 1} (40e)

max{T l
i , T

V 2V
i , TS

i } ≤ tmax
i (40f)

max{El
i, E

V 2V
i , ES

i } ≤ Emax
i (40g)

0 ≤ Pi ≤ Pmax
i , i ∈ N, (40h)

where Λ1, Λ2, and Λ3 represent the weighting factors of delay,
energy consumption, and task completion, respectively. These
values can be determined based on user preferences. We employ
the Analytic Hierarchy Process [53] to qualitatively and quan-
titatively analyze the determination of weighting factors. The
three factors mentioned in the text are used as row and column
labels to construct a 3 × 3 symmetric judgment matrix. Then,
users assign scores based on the importance level, utilizing a
predefined scale table. Finally, column normalization, row sum-
mation, and consistency checks are performed. The final output
that passes the consistency check is used as the weighting factor.
If the objective is to enhance a specific indicator individually, one
can adjust the weight factor of the remaining indicators within
the overall cost framework to zero. In P2, Constraints (a-c) rep-
resent the maximum computing resource limit for vehicles and
SCBS. Constraints (d-e) pertain to vehicular decision constraints
for the jth subtask of the ith vehicle, ensuring that a subtask can
only be executed on a single processor. Constraint (f-g) limits
the maximum tolerable delay and energy consumption for each
mode. Constraint (h) denotes the maximum transmitting power.
P2 is a challenging Mixed-Integer Nonlinear Programming

(MINLP) problem, generally NP-hard. It is challenging to obtain
the solutions effectively because of their non-convexity. To
address this, we decompose the original problem into two parts
and design algorithms to solve each corresponding part.

IV. AVA ALGORITHM

A. Federated Learning on Server

To effectively motivate the chosen AV to allocate its com-
puting resources, we introduce the incentive mechanism of
federated learning. This mechanism operates as a reward or
punishment system within the federated learning framework.

In the incentive mechanism of federated learning, reputation
value is used to measure the level of contribution and trustworthi-
ness of participants. It is typically derived from the participant’s
contribution level and is essential in the incentive mechanism.
Reputation is employed to penalize malicious participants and
reward cooperative ones. In our context, we will employ this
incentive mechanism to motivate the AVs to actively contribute
their computing resources, thereby alleviating the strain on the
SCBS terminal or local computing. We define the reputation in
federated learning as:

Reputation =

(
GT −

∑T−1
i=1 Gi

T − 1

)
×R, (41)
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Fig. 2. The architecture of federated reinforcement learning-empowered task offloading in VEC.

Algorithm 1: FedRep.

1: Initialize φ0, h0
1, . . . , h

0
n.

2: for t = 1, 2, . . . , T do
3: Server receives clients’ parameters
4: Server sends current representation φ0 to client
5: for k = 1, 2, . . . ,K do
6: Receive ht,k

i from client
7: Implementing incentive mechanism
8: Aggregate ht,k

i ←
∑N

j=1 h
t,k
i,j

9: Send ht,k
i to client

10: end for
11: end for

where T is the epoch, and Gi represents the total system cost
for the ith round. R represents the allocation ratio of resources
the current assisting vehicle utilizes to aid other vehicles in task
offloading. The greater the proportion of resources contributed
by the AV to assist other vehicles in task computation, the more
significant its contribution to other vehicles. Meanwhile, we
must consider the AV’s contribution to optimizing the objec-
tive function G. To achieve a more balanced performance, we
incorporate the difference between the total cost of the current
round and the average cost of the previous T − 1 rounds into
the contribution metric. A larger difference implies a greater
contribution in the current round.

Regarding the setting of rewards, we introduce the priority
of vehicles and set it as prei, indicating the priority of task
execution for the i− th vehicle. When the vehicles offload their
tasks to the server for execution, they are sorted according to
priority, and the tasks of vehicles with the higher priority are
executed first. We update the priority as follows:

prei =

⎧⎪⎨
⎪⎩

prei, prei < prei − PID

prei − PID, i = nA

prei + 1, i = prei > prei − PID

(42)

where PID (0 ≤ PID ≤ pred(A)) represents the degree to
which the priority is increased, and PID is a natural number.
The priority among vehicles is initially randomized. Rewards

are then adjusted according to variations in the reputation value
of the AV, particularly focusing on increments in priority.

Fig. 2 shows the overall architecture of federated reinforce-
ment learning-empowered task offloading in VEC. The detailed
steps are as follows:
� Step 1: Each agent selects an action from the environment’s

experience pool based on selecting strategies.
� Step 2: The agents in the client train local models through

multi-agent reinforcement learning.
� Step 3: The parameters of the local model are passed to the

global model.
� Step 4: Aggregate parameters of the local model and in-

centivize the increase or decrease of R.
� Step 5: The global model transmits the parameters back to

the local model.
� Step 6: The data is stored in the experience pool.
The specific joint optimization algorithm is outlined in Al-

gorithm 1. Initially, we initialize the parameters of the server
model. Subsequently, clients receive data to train the network
parameters of DRL. Following this, all clients upload their pa-
rameters to the server for aggregation. The server then employs
incentive mechanisms to dynamically adjust resource allocation
for AV, aiming to minimize the total cost.

For federated learning, a critical challenge is to involve AVs
in the learning process effectively. The introduction of incentive
mechanisms facilitates the sharing of benefits between federated
and assisted vehicles during the reinforcement learning process,
involving the participation of assisted vehicles. However, to
ensure the long-term stability of federated learning and enhance
the availability of computing resources of AVs to perform of-
floading tasks from other vehicles, this paper adopts priority
as an incentive for AVs. Moreover, it dynamically allocates
AVs’ computing resources to other vehicles by continuously
maximizing reputation values to incentivize participation.

B. Federated Learning on Client

We employ the Multi-Agent Deep Deterministic Policy Gra-
dient (MADDPG) on the client to tackle the task offloading
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Algorithm 2: MADDPG-Based Client Training.
Input: vehicle positions, computing resources of vehicles
and SCBS.
1: Initialize the weights of target, eval networksθ and θ′

with random number, and the replay buffer D.
2: for episode = 1, . . . ,M do
3: Receive initial state S;
4: Initialize a random action;
5: for vehicle i = 1, . . . , N do
6: Execute actions ai and obtain new state s′i;
7: Obtain the reward R of vehicle i based on (45);
8: Obtain the action A, new state S ′;
9: Store (S, A, S ′, R) in replay buffer D;

10: end for
11: for vehicle i = 1, . . . , N do
12: Sample a random mini-batch of samplesfrom D;
13: Update the eval network by minimizing the loss

function;
14: end for
15: Update the target network parameters of each vehicle

i: θ′i ← δθi + (1− δ)θ′i at every C steps.
16: end for

problem. We formulate this problem as a Markov Decision
Process (MDP).

1) State Space: We define the system’s state space as s(t),
which encompasses the computing capacity of vehicles and
SCBS, as well as the positions of vehicles.

s(t) = {x1(t), · · ·xi(t), C1(t), C2(t) · · ·Ci(t), Cb(t)} , (43)

where xi(t) represents the position of vehicle i at time t, while
Ci(t) and Cb(t) denote the computing capacity of vehicle i
and SCBS, respectively. This enables rational decision-making
based on real-time vehicle position and current resources of
vehicles and SCBS.

2) Action Space: The action space a(t) indicates whether to
retain the task or offload it to the other two servers, expressed
as:

a(t) = {a1(t), a2(t), · · · ai(t), . . . , aN (t)} , (44)

where ai(t) represents the decision of the ith task. In particular,
ai(t) = 1, 2 or 3 represents local processing, SCBS processing,
and AV processing, respectively. Since the action vector is
discrete, DQN can be utilized for action selection.

3) Reward Function: We aim to minimize the system cost
(G) while considering real-world constraints, with the reward
set as the negative value of G.

r(t) = −G. (45)

This approach is adopted because the objective is to minimize
the total cost, whereas the goal of reinforcement learning is to
maximize long-term expected rewards.

The algorithmic process for the MADDPG-based client train-
ing is as described in Algorithm 2.

TABLE III
SIMULATION PARAMETERS

C. Computing Complexity

In Alg. 1, there is a nested loop. The complexity can be
expressed as O(TK). The complexity of Alg. 2 is determined
by another nested loop, and it amounts to O(MN). This loop
corresponds to the number of episodes in the interaction between
the agent and the environment, and the number of times the
vehicles are traversed, respectively.

V. PERFORMANCE EVALUATION

A. Parameter Settings

In the considered VEC network scenario, we assume a total of
N vehicles, along with one SCBS. Each vehicle is assigned a task
that can be further segmented into M subtasks, and the interde-
pendence of these subtasks is illustrated in Fig. 2. The weight val-
uesα and β are both set to 0.5. The channel model adheres to the
Rayleigh fading model with a path loss exponent σ = 2. White
noise N0 is specified as 3× 10−13, and the bandwidth for V2V
(BV 2V ) and V2I (BV 2I ) communication is set to 1MHz. Key pa-
rameter values includeClimit = 150 m [54], fvi = [106, 2× 108]
cycles/s, Pi = Pt = 1.3 W [55], and PSCBS = 40 W. The ca-
pacitance coefficients μ = 10−28 [56], ν = νvi = νAV = 12 V,
νSCBS = 220 V, and maximum time delay and energy consump-
tion are specified as fmax

s = 8× 108 c/s [57] and Emax
i = 3 J.

For the values of other parameters, please refer to Table III.

B. Baselines

The following schemes are employed as baseline algorithms
in the experiments to compare with the algorithm proposed in
this paper.
� Full local executing (FL): All the tasks are executed locally
� Full SCBS executing (FS): All the tasks are executed on

SCBS
� Energy and delay greedy (EDS): Offloading decisions are

made using a greedy algorithm, considering energy and
delay factors [58].

� Energy and delay multi-agent reinforcement (EDM):
Multi-agent reinforcement learning is employed to
determine the offloading strategy, taking into account en-
ergy and delay considerations [28].
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Fig. 3. Average rewards under different learning rates.

Fig. 4. Comparison of different schemes under different transmitting power
scenarios.

C. Experiment Results

We evaluated the algorithm’s performance by measuring the
total cost across diverse simulation configurations. This com-
prehensive metric incorporates factors such as delay, energy
consumption, and success rate.

1) Impact of Learning Rate: Fig. 3 illustrates the growth of
average rewards at various learning rates ranging from 0.001
to 0.2. As shown in the figure, higher learning rates result in
faster convergence of the average reward. However, after 600
epochs of training, the learning rate of 0.1 reaches the optimal
value first. It is also noteworthy that the increasing learning rate
can lead to finding a local optimal solution instead of the global
optimal.

2) Impact of Transmitting Power: In Fig. 4, the relationship
between the total cost and transmitting power is depicted for
different task offloading methods. Unlike the FL scheme, the
results obtained from the other four methods consistently reveal
a reduction in the total cost as transmitting power increases. This
is because the increase in transmitting power will reduce delay
and improve task completion rate. The FL scheme executes tasks

Fig. 5. Comparison of different schemes across different numbers of tasks.

locally, so transmitting power does not affect it. Nevertheless,
excessively high transmitting rates can result in elevated energy
consumption, subsequently leading to an increase in the total
cost. Remarkably, the AVA method consistently maintains the
lowest cost across all transmitting power levels employed in
the experiment simulation. This means that compared to other
offloading schemes that do not include idle vehicle resources,
the proposed scheme effectively utilizes idle vehicle resources to
alleviate the pressure on the vehicle and edge computing power.

3) Impact of Number of Tasks: Fig. 5 demonstrates that the
task offloading cost is directly proportional to the number of
tasks in all schemes. As the number of tasks increases, the total
cost correspondingly rises. This is because as the number of tasks
increases, both delay and energy consumption will significantly
increase, and the success rate will also decrease. The proposed
scheme surpasses the other four schemes due to its generation
based on the minimum offloading cost, indicating that the use of
idle vehicle resources significantly improves the optimization
of task offloading costs. As to FL, due to the local execution
of all tasks, with the increase of task quantity and limited local
resources, the latency and energy consumption will be much
higher than other baseline schemes, and the completion rate will
also decrease. Therefore, the overall cost is the highest. This
illustrates the importance of task offloading.

4) Impact of Computing Capacity of SCBS: In Fig. 6, it is
evident that as the computing capacity of the SCBS increases,
the total cost decreases for all baseline schemes except the FL
scheme. This is attributed to the fact that full local computation
is independent of the SCBS computing capacity and solely relies
on the local vehicle’s computing capability. Therefore, the trend
of FL remains unchanged. Moreover, the trend indicates that
as the SCBS computing capacity reaches a high level, the task
waiting time becomes negligible, resulting in the lowest total
cost for offloading tasks to SCBS. Furthermore, the curves for
EDS, EDM, and AVA gradually approach the curve of FS and
eventually converge to the FS curve. Notably, the total cost of
AVA remains the lowest throughout, demonstrating the superi-
ority of the proposed approach. This is because the proposed
solution reduces the waiting time for tasks on the edge server

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 16,2025 at 03:28:01 UTC from IEEE Xplore.  Restrictions apply. 



WU et al.: FEDERATED REINFORCEMENT LEARNING-EMPOWERED TASK OFFLOADING FOR LARGE MODELS IN VEC 1989

Fig. 6. Comparison of different schemes across different computing capacities
of SCBS.

Fig. 7. Comparison of different schemes across different numbers of vehicles.

and the time for vehicles to transmit tasks by transferring them
to nearby vehicles.

5) Impact of Number of Vehicles: In Fig. 7, the comparison
results for total cost among the five task offloading schemes are
presented across different numbers of vehicles. The total cost
consistently rises with the increase in the number of vehicles.
This is because an increase in the number of vehicles also leads to
a rise in the number of tasks, as mentioned in 3) above. Compared
with other schemes, the proposed scheme still maintains the low-
est cost, which proves that the proposed scheme has effectively
improved overall performance.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we propose the AVA algorithm to tackle the
joint optimization problem in IoV. By leveraging reinforce-
ment learning, agents can dynamically adjust to changes in the
real-time environment. The integration of federated learning
further enhances and facilitates flexible resource allocation of
AV. Simulation experiments conclusively demonstrate that our

proposed method effectively allocates unused vehicle resources
and reduces overall system costs. Moreover, it adeptly handles
complex task offloading problems, even in scenarios involving
a large number of states.

In the future, we aim to enhance the model’s performance
in complex real-world scenarios. This includes utilizing digital
twin simulations to model vehicle trajectories and real-time
traffic conditions and incorporating these factors into our model.
We also plan to explore increasing the number of auxiliary ve-
hicles to boost available resources and alleviate communication
congestion.
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