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Abstract—In the beyond 5G (B5G)/6G era, to achieve ultra-dense
and ultra-large-capacity intelligent connection of all things, an
intelligent wideband spectrum sensing technology is particularly
important. However, in an extremely wide frequency range, it is
still a challenge to achieve high-precision and high-reconstruction-
capability wideband spectrum sensing (WSS) under a very low
SNR. We propose a Time-Frequency-Fused adjustable Deep Con-
volutional Neural Network (TFF_aDCNN). Meanwhile, a novel
TFF_aDCNN-based sensing framework is also proposed. In this
framework, we can obtain a pre-trained base model with a single
distribution by training TFF_aDCNN. Then, for the sensing task in
the actual environment, we use the base model for transfer learning,
so that a newly trained sensing model can be obtained very quickly
(i.e. fine-tuned model). In the TFF_aDCNN, we design a main
network and an adjustable auxiliary network, where the former
learns complex and abstract signal features, while the latter assists
the main network in learning different data distribution patterns
during the training process and regulates the focus direction of the
main network during the perception process. Simulation results
show that TFF_aDCNN can significantly reduce hardware cost and
improve reconstruction accuracy and reconstruction capability,
when compared with SOMP and SwSOMP-based WSS algorithms,
single-dimensional deep learning spectrum sensing method, and
deep learning-based WSS (DLWSS), especially at very low SNRs.

Index Terms—Deep Convolutional Neural Network, Modulated
Wideband Converter, Spectrum Sensing, Time-Frequency
correlation, PCA.

I. INTRODUCTION

S PECTRUM is an important and scarce strategic resource.
With the rapid development of next-generation wireless

communication technologies and the Internet of Things (IoT),
the types and numbers of devices accessing wireless networks
are exploding [1]. Therefore, to meet the spectrum requirements
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of various wideband devices, the future 6G communication
technology will inevitably move into the ultra-wide spectrum
range of millimeter wave and terahertz [2], [3]. However, the
current static spectrum allocation strategy has made the con-
tradiction increasingly acute between the low utilization of
spectrum resources and the shortage of spectrum resources [4].
In the complex electromagnetic environment, the traditional
Wideband Spectrum Sensing(WSS) method based on cognitive
radio (CR) [5] is difficult to meet future performance require-
ments. Wideband spectrum sensing faces several challenges
that narrowband spectrum sensing doesn’t have. First of all,
a wide range of spectrum requires super high-speed ADC to
sample. Secondly, wideband spectrum sensing needs a large
storage room for data. Although some methods can be used to
achieve sub-Nyquist sampling, the signal will be contaminated
with critical aliasing. Using sub-Nyquist sampling can reduce
the requirement of a high-speed ADC, but the sampled signal
is difficult to process. However, with the rapid development of
artificial intelligence (AI) technology, it is a feasible solution
to realize smart spectrum sensing in a very wide spectral range
with the help of AI [6].

Spectrum sensing allows secondary users (SUs) to sense the
spectrum occupancy state of authorized primary users (PUs) in
the surrounding complex radio environment. SUs use spectrum
sensing technology to discover spectrum holes [7], and then
access them to realize spectrum sharing, which can greatly im-
prove spectrum utilization and alleviate the scarcity problem of
high-quality spectrum resources. Most of the existing traditional
spectrum sensing methods based on sub-Nyquist sampling do
not determine whether there is a PU in the spectrum, and directly
reconstruct the support set, resulting in a higher false alarm rate
and computational cost.

With the computational power substantially increased, deep
learning has exerted a powerful capability. Deep learning
methods are able to find out the mapping model of signal
to support set in a complex radio environment and do not
need to extract features manually. Convolutional neural net-
works (CNN) have become the fundamental feature extraction
network in image processing due to their excellent feature
extraction ability. There are a number of studies that have
attempted to take advantage of deep learning for spectrum
sensing.

Unfortunately, previous studies (regardless of using tradi-
tional or deep learning-based spectrum sensing approaches) still
suffer from the following three problems:
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� The relationship between the PUs’ activity habits and the
time period is often ignored. So that an effective and rea-
sonable way is needed to fuse the time and the frequency,
which can achieve the purpose of improving perception
accuracy.

� Under a low signal-to-noise ratio (SNR) environment,
the existing modulated wideband converter (MWC)-based
wideband spectrum sensing (WSS) algorithms need more
parallel channels to ensure the support set reconstruction
probability. Thus, a WSS method that can reduce hardware
costs and improve reconstruction capability while keeping
the same accuracy is needed.

� The reconstruction ability of existing schemes under a
low SNR environment is also greatly limited. Therefore,
an effective method is needed to denoise the sampling
results and reduce the influence of noise on the model
reconstruction ability.

To solve the above-mentioned challenges, a complete smart
WSS framework is proposed in this paper. The framework con-
sists of one preparation stage and three implementation stages.
In the preparation stage, a time-frequency relationship model is
constructed using PUs’ spectrum usage habits in different time
periods. Then, a sparse wideband signal is obtained based on
this model and the signal generation model. The implementa-
tion stages include: (i) MWC wideband compressed sampling
stage; (ii) Data pre-processing stage; (iii) End-to-end smart WSS
stage based on time-frequency fusion. In the second stage, the
estimated original signal is denoised by PCA after compressed
sampling, and one-hot encoding is used to construct time di-
mension information. In the third stage, the denoised signal
and time dimension information are used as training samples
to train a new smart WSS model. Our specific contributions are
as follows:
� A time-frequency-fused adjustable deep convolutional

neural network (TFF_aDCNN) is innovatively proposed.
TFF_aDCNN consists of a main network and an adjust-
ment network. The former is mainly used for learning com-
plex and abstract signal features, and the latter is mainly
used to assist the main network in learning the current data
distribution patterns.

� A pre-trained base model is obtained by training
TFF_aDCNN. Then, we can perform transfer learning
based on the base model to obtain a new wideband spectrum
sensing model in different electromagnetic environments
(also called a fine-tuned model).

� We reasonably assume that the usage habits of the autho-
rized PUs obey a regular pattern according to the time
period. By mathematically modeling these assumptions,
a time-frequency correlation model is constructed to facil-
itate the simulation experiments.

� A novel noise reduction operation is carried out in pre-
processing. That is, we first obtain the estimated original
signal sampled at two consecutive times. Then, the two
estimated signals are expanded into two one-dimensional
column vectors and stacked along the column direction to
form a two-dimensional matrix. Finally, the formed matrix
signal is denoised by principal component analysis (PCA).

The rest of the paper is organized as follows: Section II inves-
tigates the related work from the aspects of traditional spectrum
sensing approaches and deep learning-based spectrum sensing
approaches. Section III models the smart WSS system, where the
characteristics of the spectrum being occupied are related to the
time, and also introduces the MWC model, the PCA denoising
model, and the data pre-processing model. Section IV carries
out the problem formulation and further describes TFF_aDCNN
network in detail. Section V evaluates the performance of
the whole framework through simulation results. Finally, Sec-
tion VI concludes the whole paper and further points out future
directions.

II. RELATED WORK

A. Traditional Spectrum Sensing Approaches

In traditional approaches, WSS methods can sense spectrum
occupancy state over an extremely wide frequency range at
a time, giving SUs more access opportunities compared to
narrowband spectrum sensing methods [8], [9], [10], [11], [12].
The spectrum occupancy is usually sparse in time, frequency and
space due to the underutilization of the allocated spectrum [13].
Therefore, multiband sparse signals are usually a common form
of signal in practical communications. For such signals, a low-
speed analog-to-digital converter can be used for high-speed
sampling [14], [15], [16], and the signals can be recovered from
a small number of linear random measurements. Modulated
wideband converter (MWC) [14] is a typical method to achieve
sub-Nyquist sampling using multiple parallel channels and is
frequently used in conventional wideband compressed spectrum
sensing algorithms.

Hu et al. [17] proposed a SwSOMP algorithm based on MWC,
which uses a stage-wise weak selection strategy in simultaneous
orthogonal matching pursuit (SOMP) [18]. The algorithm can
effectively improve the reconstruction accuracy of the wideband
spectrum support set and reduce the computational cost under
the Gaussian noise interference. The noise intensity and signal
sparsity can be estimated using singular value decomposition.
Based on that, an adaptive and blind reduced Multiple Mea-
surement Vectors (MMV) boost (ABRMB) framework [19] was
proposed. The framework can adaptively process multiband sig-
nals using the estimated noise intensity and signal sparsity, and
can improve the support set reconstruction probability. Using
the approximate linear characteristics of the sparse multi-band
signal tail singular value and the progressive support selection
strategy, an progressive support selection-based self-adaptive
distributed MWC sensing scheme (PSS-SaDMWC) [20] was
proposed. When there are fewer cooperative SUs, the reconstruc-
tion probability of the support set can be significantly improved.
The machine learning-based WSS scheme [21] used MWC to
obtain sampling results and then used sparse Bayesian learning
to extract information directly from the sampling results to
estimate the support set. The scheme reduces computational
complexity by removing the continuous-to-finite (CTF) block
and the pseudo-inversion operation. A reconstruction algorithm
called nearest orthogonal matching pursuit (N-OMP) based on
MWC was proposed [22]. After the occupied sub-bands are
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detected, the correlation coefficients between the residual vec-
tors and the corresponding column vectors of the two adjacent
sub-bands are calculated. The occupancy state of the adjacent
sub-bands can be directly determined according to correlation
coefficients.

In order to reduce the higher false alarm rate and
computational cost in existing spectrum sensing methods,
a pairwise channel energy ratio (PCER) detector algorithm
was proposed [23]. Before the signal support set reconstruction
is performed, the MWC sampling result is used to determine
whether PUs exist in the wideband spectrum. The signal support
set reconstruction algorithm is performed only after the PUs
exist in the wideband spectrum. The algorithm is robust to
different SNRs and does not require prior knowledge of PU
signals. However, to achieve the support set reconstruction
probability greater than 90% in the traditional single-node
compressed sensing method, it needs to be in a high SNR
environment or increase hardware overhead. This requirement
is difficult to meet in actual deployment applications.

B. Deep Learning-Based Narrowband Spectrum Sensing
Methods

Narrowband spectrum sensing can also take advantage of deep
learning for classification accuracy improvement. Firstly, the
convolutional, long short-term memory, fully connected deep
neural networks (CLDNN) in deep learning [24] were applied to
solve the narrowband spectrum sensing problem [25], which can
classify the state of narrowband signals effectively. Secondly,
Gao et al. [26] used an improved CLDNN, which fuses the
input with the first three convolution layers’ output as the input of
long short-term memory (LSTM) for spectrum sensing. Because
some information is lost after multi-layer convolution operation,
the structure [26] ensures that the data input to the LSTM
network retains all features of the original data. The activity
pattern aware spectrum sensing (APASS) algorithm [27] was
proposed considering the PUs’ activity patterns. The algorithm
simultaneously takes in the present sensing data and historical
sensing data, with which the inherent PU activity pattern can
be learned to benefit the detection of PU activity. However, the
algorithm needs to retain and feed a large amount of historical
information into the trained network each time, which increases
the computational complexity. All of the above methods are
based on a combination of narrowband spectrum sensing and
deep learning.

C. Deep Learning-Based Wideband Spectrum Sensing
Methods

Wideband spectrum sensing faces several challenges that
narrowband spectrum sensing doesn’t have. First of all, a wide
range of spectrum requires super high-speed ADC to sample.
Secondly, wideband spectrum sensing needs a large storage
room for data. Although some methods can be used to achieve
sub-Nyquist sampling, the signal will be contaminated with
critical aliasing. Using sub-Nyquist sampling can reduce the
requirement of a high-speed ADC, but the sampled signal is
difficult to process. Research combining wideband compressed

sensing and deep learning has also been carried out. Firstly,
sampling results are obtained by sub-Nyquist sample methods,
and the obtained estimated original signal is input to a deep
compressed spectrum sensing generative adversarial network
(DCSS-GAN) [28] to reconstruct the original signal spectrum.
Then, DCSS-GAN uses a reconstructed spectrum to classify
the PUs’ band occupancy state as a multi-label classification
problem. In addition, chandhok et al. [29] proposed a deep
learning-based wideband spectrum sensing (DLWSS) method
by utilizing MWC for WSS. The estimated original signal is
fed into a three-layer CNN, and the band occupancy state is
determined by outputting the predicted value on each band
through the fully connected layer. Subsequently, considering
the relationship between spectrum and space, a CNN-based
cooperative spectrum sensing model [30] was proposed. The
sensing results are arranged into a two-dimensional matrix in
spatial order in the fusion center. The sensing results are obtained
by each SU through energy detection and the CNN improves
reconstruction probability by learning the correlation between
space and frequency band.

D. Related Work on Spectrum Distribution in Time Domain

In the research of spectrum sensing, studies considering
both spatial-temporal correlations [31], [32], [33] and space-
frequency correlation [34] have been reported, and these works
have obtained an improvement in sensing performance. How-
ever, it is still an innovative work to use the information of
time-frequency correlation modeling as the prior input for deep
learning-based wideband spectrum sensing models. In fact, for
a specific important application scenario in the same region, the
occupancy of the spectrum by the primary user has a regular
distribution in the time domain [35], [36], [37]. The related
research on spectrum utilization shows that although the average
utilization rate of high-quality frequency bands is higher than
that of the non-high-quality spectrum, the absolute utilization
rate is still very low. Therefore, we have sufficient reasons to
assume that the idleness of the spectrum has a certain distribution
relationship with time [38], [39], [40]. The research and analysis
results of relevant literature can also prove that our hypothesis
is reasonable and reliable.

III. SYSTEM MODELING AND COMPRESSED SAMPLING

A. System Modeling

As shown in Fig. 1, we consider a wideband spectrum over
1 GHz and a WSS part in a region where there are several PUs and
a SU. According to reality, PUs use different devices at different
time periods, then the spectrum occupancy under different time
periods in the region has regularity.

Assuming that a very wide band of width Bw is divided into
L consecutive non-overlapping narrow bands of width B with
band indexes 1, 2, . . . , L. The PUs in the system are allowed to
use at most a total of N (N < L) consecutive non-overlapping
narrow bands of width B at the same time. We divide the day
into z time periods, and the state of the k-th band in time period
Tj ∈ {T1, T2, . . . , Tz} is denoted asSk ∈ {0, 1}. Sk = 1 means
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Fig. 1. Spectrum sensing system with the usage habits of the authorized PUs
in different time periods obeys a regular pattern.

that the k-th band is being used, and Sk = 0 means that the k-th
band is idle. PUs do not occupy all available bands, at which
point the SU is able to sense the stateBstate = {S1, S2, . . . , SL}
of each band in the range Bw. We define the set consisting of
the occupied bands’ indexes M belonging to the time period Tj
as the signal support set, defined as:

Λ = {M1,M2, . . . ,MN} . (1)

Sparse multi-band signal is a type of signal often encountered
in cognitive radio communication. We assume that the received
signalx(t) is a sparse band-pass analog signal with the frequency
spectrum distributed in Bw = [−fnyq/2 , fnyq/2 ], and fnyq is
the Nyquist sampling rate of the signal. The received signal is
as follows:

x(t) = p(t) + w(t). (2)

where w(t) is the additive white noise that obeys the Gaussian
distribution, p(t) is the superposition of the signals from the
active PUs at time t in the area, the maximum bandwidth of
the signal from PUs is Bmax, and the signal energy is E =
[E1, . . . , EN ].

Considering the fact that the activeness of PUs in an area
is closely related to the time period, the occupied frequency
band has different distributions in different time periods. For
example, at around 8: 00 in the morning, the frequency band
used by navigation begins to be active, and at around 9: 00,
the frequency band used by operators is very active. After 24
o’clock in the evening, there is no particularly active frequency
band, but there are still PUs occupying the spectrum randomly.
In each time period, except for some specific active frequency
bands, other frequency bands will also be randomly occupied

by PUs, which is very similar to the characteristics of normal
distribution.

Therefore, we assume that the carrier frequency fc(Tj) in day-
time signal p(t) obeys the normal distribution with mean value
μ(Tj) = {μ(T1), . . . , μ(Tz)} and standard deviation σ(Tj) =
{σ(T1), . . . , σ(Tz)} as follows:

fc (Tj) ∼ N
(
μ (Tj) , σ

2 (Tj)
)
. (3)

After 24 o’clock at night, the spectrum occupation is random,
and the carrier frequency of p(t) obeys uniform distribution:

fc (Tj) ∼ U (−fnyq/2, fnyq/2) . (4)

B. Compressed Sampling Process Using MWC

The MWC algorithm is a method of sub-Nyquist sampling.
Assuming that the number of parallel sampling channels is m,
and on a certain channel g, the signalx(t) is multiplied by a set of
±1 randomly alternating waveforms Cg(t), g ∈ {1, 2, . . . ,m}
with a period of Tp = 1/fp to realize the shift of the signal
spectrum X(f). Then pass a low-pass filter with a frequency
of 1/2Ts to obtain a baseband signal with a frequency range of
Fs = [−fs/2, fs/2]. Let fp = fs, so that the signal obtained by
the sampling after the low-pass filter contains all the characteris-
tics of the received signal x(t). According to Fourier Transform
(FT) and related knowledge of signal, the spectrum of the signal
obtained on channel g can be easily obtained:

X̂g(f) =

∞∑
l=−∞

cglX (f − lfp) s.t. f ∈ Fs, (5)

where cgl is the coefficient of the Fourier series expansion of
the signal Cg(t), which is also the spectrum of Cg(t). l is the
coefficient of the original spectrum X(f) shift. The spectrum
of a wideband sparse signal is finite, so the number of shifts l
is not infinite. Assuming fp = fs, the number of shifts L0 can
therefore be determined:

L0 =

⌈
(fs + fnyq)

2fp

⌉
− 1. (6)

The relationship between the number of frequency band slices
L and L0 in the system model is L = 2L0 + 1, which can be
rewritten as:

X̂g(f) =

L0∑
l=−L0

cglX (f − lfp), f ∈ Fs. (7)

The frequency spectrum of the compressed sampling result
Y(n) is expressed as Y(f), which can be written in the form of
a matrix:

Y(f) = ΦZ(f). (8)

⎛
⎜⎜⎝
y1(f)
y2(f)

...
ym(f)

⎞
⎟⎟⎠ =

⎡
⎢⎢⎣
c1,−L0 · · · c1,L0

c2,−L0 · · · c2,L0

...
cm,−L0 · · · cm,L0

⎤
⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎝

X (f + L0fp)
...
X(f)
...

X (f − L0fp)

⎞
⎟⎟⎟⎟⎟⎠
(9)
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where the observation matrix Φ is composed of a row vector c
of weighting coefficients of m sampling channels, and the size
is (m,L). Z(f) is a matrix composed of signals on L frequency
bands, the size is (L, d), where d is the number of samples per
channel.

C. Data Preprocessing

It can be seen from (8) that the estimated spectrum of
the original signal Z̃(n) can be obtained from the compressed
sampling result Y (n) as:

Z̃(n) = Φ†Y(n), (10)

whereΦ† is the pseudo inverse of the observation matrix, from
which the estimated original signal with noise and aliasing signal
superimposed can be obtained. PCA algorithm is a common
method of data dimensionality reduction. It finds the direction
with a large variance according to the data, projects the high-
dimensional features to the direction with a large variance, and
retains most of the information to complete the dimensionality
reduction. When only the features of the main components are
retained, the noise with a smaller variance will be filtered.

In other words, in noise reduction processing, the PCA al-
gorithm is usually used to find the major component of the
two-dimensional matrix, i.e., the part dominated by the signal
energy, while discarding the minor component, i.e., the part
dominated by the noise energy, which can then achieve the goal
of denoising.

Perform MWC twice in succession, and the estimated signal
obtained according to (10) is transformed into the size of
(L× d, 1) and expanded into a matrix D of (L× d, 2) according
to the column direction:

D =
[
Z̃1(n), Z̃2(n)

]
. (11)

Find the covariance matrix C of D:

C =
1

2− 1
DDT. (12)

Then the eigenvalues and eigenvectors of the covariance
matrix C are obtained. Arrange the eigenvalues from large to
small, and take the dimension that represents the feature of the
data best, that is, the direction of the eigenvectors corresponding
to the maximum eigenvalues. The original signal is projected to
the new dimension to obtain the data. The horizontal axis of
D represents features, and the vertical axis represents samples.
The results of the two samplings are regarded as two dimensions
of one signal. Both dimensions represent the same estimated
signals, and both dimensions are affected by Gaussian white
noise. Using PCA to reduce the two dimensions to one dimension
can get the most representative feature of the original signal.
Since the direction of the new coordinate axis found by PCA
has the largest variance and is most representative of the original
signal, the other dimension is discarded containing most of the
white Gaussian noise, PCA removes part of the white Gaussian
noise by reducing it to one dimension.

Data Z̃[n] after PCA denoising needs to use Discrete-time
Fourier Transform (DTFT) to obtain spectrum estimation signal

Z̃(f):

Z̃(f) = DTFT
(
Z̃ [n]

)
. (13)

And then, we transform the DTFT result into the original size
of (L× d, 1). After separating the real and imaginary parts of
Z̃(f), we stack them as two signal features in the third dimension
to become an input signal I of size (L, d, 2).

D. Network Design

The proposed model consists of a main network and an
adjustable network to achieve spectrum sensing. For the main
network, we just hope to extract features of the input signal
and the output of the adjustable network, so we stack several
CNNs to achieve extracting features. However, for the adjustable
network, inspired by Conditional Generative Adversarial Net-
work (CGAN), which uses extra conditional input to adjust the
network to generate specific output, we want the adjustable
network to be a “dictionary like” module to generate the “mod-
ification signal” according to the extra conditional input. Then
the features from the input signal and the features from the
“modification signal” are concatenated together. After extracting
features from concatenated information, a fully connected layer
is used to classify the output value.

IV. PROPOSED FRAMEWORK

A. Problem Formulation

Traditional compressed sensing methods use the results of
MWC to select the most relevant element for the signal or resid-
ual by a greedy algorithm in each iteration. Then run multiple
iterations to restore the support set:

jk = argmax
j

|〈rk−1, vj〉| ,Λk = Λk−1 ∪ {jk} , (14)

where jk is the column index most associated with the residual
vector rk−1 in the dictionary matrix V, and Λk is the support
set, which is updated through iteration.

The deep learning method also uses the MWC results to
reconstruct the support set. Considering that in our proposed
model, the frequency bands occupied by PUs are related to
the time period, we add information about the time dimension.
Therefore, we propose a system framework as shown in Fig. 2
to map the signal to the spectrum state. The one-hot encoding
uses c state representation bits to represent z time periods, and
each bit represents a time period. The bit value is 0 or 1, where
1 represents that the current state is valid. The pre-processed
data I and the one-hot encoding H ∈ �z of the time dimension
obtained by artificially dividing the time period are sent to the
TFF_aDCNN network, and the estimated signal is mapped to
the frequency band state Bstate using the TFF_aDCNN model
ψ, which can be formulated as:

Bstate = ψ (I|H,θ) , (15)

where θ represents the parameters of the network. Meanwhile,
deep learning transforms the original support set reconstruction
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Fig. 2. System network framework.

problem into a multi-label classification problem. Only by judg-
ing the state of all frequency bands, the final frequency band
state can be obtained. The multi-label classification problem
continues to be transformed into multiple single-label binary
classification problems. Finally, the Sigmoid activation function
is used to solve the binary classification problem of judging L
spectrum states.

B. Proposed TFF_aDCNN Model

A dual-input convolutional neural network is proposed. The
two inputs of the network represent the signal dimension and
the time dimension respectively. For the time dimension input,
when a certain H is selected, the specific status bit is one, and the
other status bits are zeros. The output of the fully connected layer
in the adjustment network will only be affected by the current
status bit being one, and the status bit of zero cannot affect the
output of the fully connected network. During detection, the
main network is regulated for spectrum sensing of specific data
distribution by inputting specific one-hot encoding. Then the
training set of the network can be defined as:

χ =
{[(

I(1),H(1)
)
,y(1)

]
, . . . ,

[(
I(w),H(w)

)
,y(w)

]}
,

(16)
wherew represents the number of samples in the training set. The
input of each sample is composed of input signal I ∈ �L×d×2,
one-hot encoding H ∈ �1×z and labels y ∈ �L.

Assume that the network parameters are θ, and the
TFF_aDCNN model isψ. We use supervised training, the output
is activated by the Sigmoid function, and the value range is
limited to (0,1). The cross-entropy loss function � is:

� =
1
w

n=w∑
n=1

n=L∑
i=1

�ni

=
1
w

n=w∑
n=1

i=L∑
i=1

[
y
(n)
i · log

(
ψi

(
I(n) | H(n),θ

))

+
(

1−y(n)i

)
· log

(
1−ψi

(
I(n) | H(n),θ

))]
, (17)

where y(n)i is the value of the i-th spectrum slice in the n-th
training label, with band occupied as 1 and band idle as 0.
ψi(I

(n)|H(n),θ) represents the output of the network to the i-th
spectrum slice state of the n-th training sample, and predicts the
probability of band occupied in the form of 0 to 1. The training
of the TFF_aDCNN network is mainly driven by data. During
training, the TFF_aDCNN network is optimized by the Adaptive
Moment Estimation (Adam) optimizer.

When the one-hot encoding representing a certain time period
is input to the adjustment network, the data with the distribution
characteristics of the current time period are input to the main
network at the same time. After training, the loss of the network
under the current input combination (the one-hot encoding of
the current time period and the data that obeys the current time
period distribution characteristics) is reduced. Under the current
one-hot encoding input, the main network passively learns the
distribution characteristics of the input data. When a conditional
input H is selected for training, the adjustment network is able
to update the parameters connected to the status bit 1 of one-hot
encoding by backpropagation. A large amount of training makes
the main network more sensitive to the data distribution in the
current time period when the one-hot encoding of the current
time period is input into the adjustment network.

After training, by inputting the one-hot encoding representing
different time periods into the adjustment network, the focus of
the TFF_aDCNN main network detection is actively adjusted.
Therefore, under a low SNR, the network can still perform
spectrum sensing that focuses on the current data distribution
by inputting the one-hot encoding to achieve performance im-
provement. The training of the network can be regarded as an
optimization problem:

θ = argmin
θ

� (χ,θ) . (18)

The algorithm flow is shown in Algorithm 1.

C. Structure of TFF_aDCNN

As shown in Fig. 2, the proposed network model consists of
two parts: the main network and the adjustment network. The
main network is composed of a convolution part and a fully
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Algorithm 1: Training and Application of TFF_aDCNN.
Input: Training dataset
χ = {[(I(1),H(1)),y(1)], · · · , [(I(w1),H(w1)),y(w1)]}; Test
dataset
χ̃ = {(̃I(1), H̃(1)), (̃I(2), H̃(2)), . . . , (̃I(w2), H̃(w2))};
Number of epochs Eep; Batch Size EB ; Learning rates αl.

Output: Sensing result Bstate

1: Initialization:
2: Randomly initialize parameter θ : θ ← random.
3: Training:
4: for i = 1, 2, . . . , Eep do
5: for j = 1, 2, . . . , 
W/EB� do
6: Choose EB data from training dataset χ without

replacement
7: Calculate gradient:grad← ∇θ�(χ,θ)
8: Update the θ by Adam with learning rate αl:

θ ← Adam(αl, grad,θ)
9: Application:

10: begin
11: Get TFF_aDCNN’s parameters θ
12: Input test dataset χ̃ into TFF_aDCNN
13: Get sensing result Bstate = ψ(χ̃,θ)
14: return result

connected part. The convolution part includes four convolution
units. Each convolution unit is composed of a convolutional layer
with strides 1, a batch normalization layer and a ReLU layer. The
fully connected part is composed of a fully connected neural
network of L neurons, and uses the Sigmoid activation function
to limit the output range to (0,1) to represent the frequency band
state.

Connect the input data I of the main network with the convolu-
tion part. After the data passes through the first convolution unit
with a (1, 21) filter K1, 16 channels, the effective information is
extracted and the first feature map is obtained:

R1 =
[
R1

1, . . . ,R
1
i , . . . ,R

1
16

]
,R1

i ∈ �a×b. (19)

Since the filter is set to 16 channels, the output has 16 matrices
from R1

1 to R1
16, and each matrix is as follows:

R1
i =

⎛
⎜⎝
Ri

1,1 · · · Ri
1,d−20

... Ri
a,b

...
Ri

L,1 · · · Ri
L,d−20

⎞
⎟⎠ . (20)

The value in the matrix is obtained by the convolution of the
input matrix and the convolution filter:

Ra,b = ξ(I ∗K1 +W)a,b

= ξ

⎛
⎜⎝ 1∑

i=1

21∑
j=1

2∑
l=1

Ia+i−1,b+j−1,lKi,j,l︸ ︷︷ ︸
I∗K1

+ wa,b,l︸ ︷︷ ︸
W

⎞
⎟⎠ , (21)

where ξ() represents the ReLU activation function. With the
subscripts a and b, it represents the value of a row and b column
in a certain channel of the feature map, W is bias matrix. Because
the size of the input data I is (L, d, 2) and L is the number of

spectrum slices, the first dimension of the input data has the
structure and position information of the spectrum slices. In
order to ensure that the information of the data is not lost, the
first dimension of the filter is 1. In the output feature map of
each subsequent convolution unit, the first dimension remainsL
unchanged.

The adjustment network consists of a fully-connected part and
a convolution part. Considering that 16-channel feature maps
with the same dimension and shape are required for feature con-
catenation, the fully connected part consists of a fully connected
layer with L× (d− 20) neurons. The parameters are not only
set to satisfy the subsequent feature concatenation, but also map
the low-dimensional temporal information to higher dimensions,
increase the learnable parameters of the network, and improve
the learning ability of the network.

The convolution part consists of two convolution units, each
consisting of a convolutional layer with a (1, 21, 16) filter, the
same padding, a batch normalization layer and an activation
layer using the ReLU activation function. The one-hot encoding
representing the time dimension information is connected to the
fully connected part of the adjustment network. The data after
the added dimension cannot be directly input to the convolution
part, so the fully connected output data is reshaped into a two-
dimensional matrix, and then connected to the convolutional
layers. The convolutional layers finally output a feature map
with temporal information R2, which will be concatenated with
the feature map R1 containing the input data information on the
channel dimension to form a new feature map with a channel
number of 32:

Rconcatenate = concatenate

⎡
⎣ R1︸︷︷︸
signal−part

, R2︸︷︷︸
time−part

⎤
⎦ , (22)

where concatenate[] denotes concatenation on channel dimen-
sion. The concatenated feature map Rconcatenate is input to
the rest of the main network. The feature map output by the
convolution part is connected to the fully connected part through
a flatten layer. The fully connected part obtains the scores of
L spectrum slices through the Sigmoid activation function. In
order not to lose information, no pooling layer is used in the
convolution unit, and in order to reduce the parameters, the
convolution filter and the number of channels are designed
according to input data. The final layer of convolution outputs a
feature map of size (L, 1, 32).

D. Transfer Learning Description of the Base Model

According to the literature on spectrum measurement [35],
[36], [37], [38], [39], we know that the spectrum usage patterns
of different cities are different, and even the same frequency band
has different activity patterns in different regions. Therefore, it
is difficult to have a general model that can learn the regularity
of spectrum usage everywhere.

The model obtained by training TFF_aDCNN is to explore the
effectiveness of the proposed spectrum sensing framework and
use it as a pre-trained base model. Obviously, this base model
cannot be used as a general and specific deep learning model,
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TABLE I
SETTINGS OF SIMULATION PARAMETERS

and it cannot cope with wideband spectrum sensing tasks in all
electromagnetic environments.

In practical applications, for a specific task, spectrum mea-
surement is first performed on the spot for at least one day,
and the distribution law of the authorized spectrum is found
according to the results of the spectrum measurement. Then, the
distribution is modeled to produce a sizable amount of training
set data through simulation. Next, the training set is used for
transfer learning based on the pre-trained base model. In the
process of transfer learning, we freeze the main network in
the pre-trained base model, and only activate the adjustable
auxiliary sub-network, so that we can quickly train to obtain
a new and practical model suitable for new scenarios, that is, we
can quickly adapt to local spectrum usage patterns.

V. PERFORMANCE EVALUATION

In this section, we consider a single SU to realize spectrum
sensing as mentioned in System Modeling. Because of the hard-
ware limitation, our simulations are conducted on a computer
including signal simulation, MWC downsampling, data prepro-
cessing and model evaluation. To evaluate the performance of
our proposed model, a Gaussian channel is used. Additive White
Gaussian Noise (AWGN) is added to PUs signal to simulate the
contaminated signal received by the receiver.

A. Parameter Settings

1) MWC Parameter Settings and Dataset: Table I lists the
values of the parameters used in the MWC experiments and
their meanings. According to the origin MWC paper [14], they
generate PUs’ signals by formula:

p(t)=

N∑
i=1

√
EiBmax sinc (Bmax (t−τi)) cos (2πfci (t−τi)),

(23)
where sinc(x) = sin(πx)/πx, and other variables can be found
in Table I. We also use this formula to simulate the PUs’ signals

and AWGN is added. To simplify the experiment, the day is
divided into z = 5 time periods and we randomly generate the
PUs’ signal frequency fci obeying z = 5 specific Gaussian dis-
tribution with mean μ(considering the max frequency is 1) and
variance σi. When we get the frequency fci, the occupied bands’
index is represented as one-hot training label. After that, using
MWC to implement compressed sampling with parameters in
Table I.

2) Data Preprocessing: Z̃(n) = Φ†Y(n) is used to get the
estimated data. After two successive estimated data are obtained,
PCA is used to reduce dimension to get one estimated data like in
Section III Data Preprocessing. The scikit-learn package is used
for implementing PCA, and we reserve one main component to
realize dimension reduction, which means setting the parameter
n_components equal to 1 in function PCA(). Since spectrum in-
formation is more intuitive, we use FFT to get signals’ spectrum
as a training dataset.

The software environment for the simulation experiments is
as follows: 64-bit Win10 operating system, MATLAB 2018a,
TensorFlow 1.15.5, Cuda11.4. The hardware environment is as
follows: 6-core Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20 GHz,
RAM 15 GB, NVIDIA GeForce GTX 1080 Ti.

B. Support Set Reconstruction Performance Under Different
SNRs

The comparison of model performance with different SNRs is
performed. The data are denoised by PCA first. The SNR of the
received signal x(t) is SNR = {−10,−8,−6,−4,−2, 0}dB,
and other conditions are the same as the simulation settings.
Under each SNR condition, the training set has 8,500 pieces
of data, and the test set has 1,500 pieces of data. Each set is
divided into 5 groups, and each group of data obeys a specific
distribution. Experiments are conducted using the proposed
TFF_aDCNN network, the TFF_aDCNN network without an
adjustment network, the SwSOMP [17], the SOMP [18], and
DWLSS [29].
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Fig. 3. Comparison of recovery probabilities of support set under different
channel conditions.

The ablation experimental results are as shown in Fig. 3.
Whenm = 25,N = 6, SNR = {−10,−8,−6,−4,−2, 0}dB,
the average reconstruction probability of the proposed model is
3.5% higher than that of the TFF_aDCNN model without the
adjustment network. The DLWSS [29] performance is similar
to that of TFF_aDCNN without adjustment network. Compared
with traditional methods such as SOMP and SwSOMP, the
proposed model has an average improvement of 65% and 69%,
respectively. The results also prove that the TFF_aDCNN can
learn the data characteristics of each time period, so that under
low SNR, the model can also use the input one-hot encod-
ing to obtain a higher support set reconstruction probability.
Meanwhile, we set the standard deviation condition of the data
distribution toσ2 = [0.04, 0.04, 0.04, 0.04] and conduct the sup-
port set reconstruction probability experiment withm = 20 and
N = 6. From Fig. 3, when the data standard deviation is set to
σ2, the network performance is better, which indicates that the
more obvious the usage pattern of the main user in the current
time period, the more the network can find the pattern and learn
the data distribution characteristics.

PCA denoising makes the TFF_aDCNN network have a great
performance improvement. As shown in Fig. 4, we compared the
networks’ support set reconstruction probability performance
with and without PCA processing data in m = 20, N = 6,
σ1. When the SNR is very low, PCA cannot effectively re-
move noise. However, as the SNR increases, TFF_aDCNN
network performs better with the data after PCA denoising.
Compared with using data that have not been processed by
PCA, denoising can improve the performance of the net-
work’s support set reconstruction, especially when SNR =
−2dB, the support set reconstruction rate is increased by
24.66%.

Then, the estimated signals without PCA denoising are fed
into the TFF_aDCNN network and the DLWSS [29] network for
support set reconstruction performance comparison. The data
without PCA denoising contains more Gaussian white noise,
which is more able to show the performance of the model itself

Fig. 4. Comparison of recovery probabilities of support set between the data
with and without PCA denoising (m = 20).

Fig. 5. Comparison of recovery probabilities of support set between DL-
WSS [29] and TFF_aDCNN by using data without PCA processing (m = 20
and N = 6).

for low SNR conditions. Since DLWSS [29] is also designed
for specific MWC parameters, we adapt the convolution filter
size in the DLWSS [29] network to our dataset and reproduce
the network in line with the idea in the original paper [29]. At
N = 6,m = 20,σ1 andSNR = {−10,−8,−6,−4,−2, 0}dB,
the experimental results are shown in the Fig. 5. The
experiment proves, without PCA denoising, our proposed
TFF_aDCNN network support set reconstruction probability
is on average 9.73% higher than the DLWSS [29] at SNR =
{−10,−8,−6,−4,−2, 0}dB, just in terms of the performance
of the network itself in a low SNR environment. The data after
PCA denoising improves the SNR, while the data without PCA
processing can better reflect the performance of the network it-
self, which strongly demonstrates that the TFF_aDCNN network
successfully fuses the time of the inputs. It can also show that the
TFF_aDCNN is able to learn the data distribution characteristics
at each H input and use the learned data distribution to assist the
network for spectrum sensing under a low SNR.
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Fig. 6. Support set reconstruction probability of TFF_aDCNN with different
numbers of channels.

C. Performance Under Different Numbers of Parallel
Channels

The more channels the MWC has, the better the model
performs. We investigate the performance of the TFF_aDCNN
network when the number of channels is taken in steps of 2
between the interval [15,35] forN = 6, σ1, SNR = −6dB and
SNR = −8dB, using the data after PCA denoising and the data
without PCA.

After comparison, it is found that the TFF_aDCNN network is
able to obtain a high support set reconstruction probability under
the conditions of low channel number and low SNR. While, the
conventional method SwSOMP reconstruction accuracy is less
than 20%. From Fig. 6, the TFF_aDCNN reconstruction prob-
ability reaches more than 90% under the SNR = −6dB, N =
35, which is a high probability reconstruction performance. This
reduces the hardware requirements(MWC parallel channels) for
WSS, making the network more suitable for deployment, less
hardware consumption, and greener.

Importantly, as shown in Fig. 6, the TFF_aDCNN network
and the DLWSS network [29] are also compared with respect to
the reconstruction accuracy of the support set. When the number
of parallel channels is close to the theoretical lower limit (i.e.,
m = 15 and the theoretical limit is 2N + 1 = 13 [14], [41]),
the performance improvement of TFF_aDCNN compared to
DLWSS is not very obvious. However, as the number of channels
m is raised (i.e.,m > 15), the performance of TFF_aDCNN has
a very large improvement. When m > 27 and SNR = −6dB,
the performance improvement of TFF_aDCNN tends to level off
compared to DLWSS, and its average performance improvement
can reach 22.1%.

Also, using the data without PCA denoising, the performance
is decreased for both TFF_aDCNN and DLWSS. However, no
matter what data we use(with or without PCA), our proposed
network outperform DLWSS under each channel.

Fig. 7. Performance of the network under different SNRs and different signal
frequency bands.

Therefore, the TFF_aDCNN model has better reconfiguration
performance than the same type of models and conventional
optimization models at low SNR and low hardware complexity.

D. Performance Under Different Signal Frequency Bands

The influence of differentN on the support set reconstruction
ability of TFF_aDCNN network support set is investigated.
Considering the symmetrical frequency bands, the value of the
number of frequency bands must be an even number, so we create
a new dataset with N=2, 4, and 6, the dataset size is the same
as that in Subsection V-B. We use PCA to denoise the signal.
The value of SNR is {−10,−8,−6,−4,−2, 0}dB, the number
of parallel MWC channels is m = 20, and other parameters are
the same as in the simulation settings. As shown in Fig. 7, as the
number of signal frequency bands increases, the performance of
the network under low SNR is severely degraded.

When N = 2 and the number of channels m = 20, the sup-
port set reconstruction rate is still close to 90% when SNR =
−10dB. When N = 4 and the number of channels m = 20, the
performance drops more severely than when N = 2, but the
support set reconstruction rate can still reach 90% whenSNR =
0dB. When N = 6 and the number of channels m = 20, the
performance is further degraded, and it is impossible to obtain
a high reconstruction probability lower than SNR = 0dB. The
number of signal frequency bands greatly affects the perfor-
mance of TFF_aDCNN.

E. TFF_aDCNN Structure Discussion

In order to discuss the rationality of the network structure,
we compare the structure of two different adjustment networks
and compare the performance of the two structures in terms of
reconstruction ability, we use the data after PCA denoising with
the number of parallel channels m = 25, σ1 and N = 6.

The experimental results are shown in Table II, from which
we can find that when using two layers CNN in our proposed
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TABLE II
PERFORMANCE OF THE TWO ADJUSTMENT NETWORK STRUCTURES (σ1, m = 25 AND N = 6)

Fig. 8. Recall and precision performance of TFF_aDCNN model for the cases of m = 20 and m = 25. (a) Recall curve. (b) Precision curve.

TFF_aDCNN structure as the adjustment network, it has ad-
vantages compared with the adjustment network using only
one layer CNN. Considering the number of parameters and the
support set reconstruction probability of the frequency band, our
proposed TFF_aDCNN network has an appropriate number of
parameters and an advantageous performance.

F. TFF_aDCNN Classification Capability

For the classification ability of TFF_aDCNN, we use Re-
ceiver Operating Characteristic (ROC) curve and confusion
matrix to evaluate it. The confusion matrix is a matrix that
reflects the classification ability of the model, and since we
use a binary classification approach to determine the spectrum
state, we get a matrix of size (2,2), as shown in Fig. 12. The
vertical 0 and 1 denote the true label, and the horizontal 0
and 1 denote the predicted label by the model, then the sig-
nificance of the four regions is defined as: True Positive (TP),
True Negative (TN), False Positive (FP) and False Negative
(FN).

Since the frequency spectrum is sparse, the positive and
negative samples are out of proportion. Recall and precision
are needed to describe the model’s ability to judge positive
examples.

Recall = TP/(TP + FN), (24)

Precision = TP/(TP + FP ), (25)

where Recall in (24) reflects the sensitivity of the model to
positive cases, while Precision in (25) reflects the accuracy of
the model in judging positive cases. However, the precision rate
is not as important as the recall rate in spectrum sensing. When
the false alarm rate of the network is high, the reconstructed
support set is likely to contain the true support set, which also

does not affect the use of the network by the PUs. Conversely,
when the recall rate is low, the reconstructed support set lacks
the truly occupied frequency bands, which will greatly affect the
normal communication of the PUs.

The dataset in Subsection V-B is used to perform the recall
and precision calculations with N = 6 and σ1. Looking at the
recall images in Fig. 8, we can find that the recall rates of the two
models are similar when theSNR < −4dB, while our proposed
TFF_aDCNN network can show better performance at lower
SNRs. It indicates that the TFF_aDCNN network can be more
sensitive to band occupancy at low SNRs and can capture the
band being occupied with a higher probability at low SNRs.

The TFF_aDCNN can judge PUs’ state more accurately for
the number of channels m = 25 according to the precision
rate figure. With m = 20, the precision rate performs worse
compared to the TFF_aDCNN without the adjustment network,
however, TFF_aDCNN is able to obtain a higher support set
reconstruction probability at a worse precision rate, indicating
that after reducing the channel number, TFF_aDCNN is still
able to use the learned relationship between the band occu-
pancy characteristic and the input H to assist the main network
in determining the spectrum state correctly. The experiments
demonstrate that the existence of the adjustment network is
necessary.

Since the author of DCSS-GAN did not release their code, we
reproduce the model and conduct the experiment with our model.
A new dataset is generated because of the model difference. The
dataset consists of 0 dB and 20 dB data with σ1, m = 20 and
N = 6, processed by PCA. The results in Table IV shows that
our model performs better in recovering probability, precision
and recall.

The ROC can reflect the classification ability of the model.
We treat the spectrum sensing problem as a binary classification
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TABLE III
PERFORMANCE OF THREE KINDS OF MODELS (σ1, m = 20 AND N = 6)

TABLE IV
SPECTRUM RECOVERY PERFORMANCE OF TFF_ADCNN AND DCSS-GAN

USING NEW MADE DATASET

problem for each frequency band, so using the ROC curve shown
in Fig. 9 can reflect the classification ability of the model. We
use the data under SNR = −10dB, m = 20 and N = 6 for the
classification test and the first four-time periods obey a normal
distribution with standard deviation σ1 = [0.1, 0.1, 0.1, 0.1].
The results show that our network has improved band state
classification ability compared to the TFF_aDCNN without the
adjustment network. We also use reproduced DCSS-GAN model
to present in ROC curve in Figs. 10 and 11. It is found that
20 dB is so high that our model almost can classify each band
state.

Through the experiment of the confusion matrix in Fig. 12,
we can clearly find that the TFF_aDCNN network can predict
more positive classes correctly under low SNR, and the recall
rate and precision rate are higher than the TFF_aDCNN without
the adjustment network. The TFF_aDCNN model correctly

Fig. 9. ROC curve reflecting the classification ability of the model (SNR =
−10dB, σ1, m = 20 and N = 6).

Fig. 10. ROC curve reflecting the classification ability of the model (SNR =
0dB, σ1, m = 20 and N = 6).

predicted 738 more positive cases than the TFF_aDCNN model
without the adjustment network.

G. Model Transferability

To validate the transferability of our proposed pre-trained
base model, we produced a new dataset for a new electro-
magnetic environment. The parameters were set as SNR =
[−10,−8,−6,−4,−2, 0]dB, m = 20 and N = 6.

The pre-trained base model assumes that the sub-bands’ activ-
ity in each time period exhibits normal distributed. By changing
the distribution of the spectrum, we also simulated an unfamiliar
electromagnetic environment, that is, we changed from a single
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Fig. 11. ROC curve reflecting the classification ability of the model (SNR =
20dB, σ1, m = 20 and N = 6).

normal distribution for each time period to two normal distribu-
tions for each time. After loading the pre-trained base model, the
trained main network is frozen and only the model parameters
of the adjustable network are trained. Therefore, we can obtain a
wideband spectrum sensing fine-tuned model that can be adapted
to the new electromagnetic distribution environment by transfer
learning.

Table III shows that the pre-trained base model performs well
in a single-distributed electromagnetic environment. For sensing
tasks in a complex electromagnetic environment, we use the pre-
trained base model for transfer learning, during which only the
adjustable sub-network is retrained. From Table III, we can know
that the fine-tuned model also has good performance. Compared
with the fully trained model from scratch, we can conclude
that the fine-tuned model can adapt to different electromagnetic
environments. Meanwhile, the pre-trained base model has the
ability of transfer learning.

H. Complexity and Time Overhead

Considering that the spectrum sensing task requires real-time
performance, we conduct a complexity analysis of the model.
The model is mainly composed of CNN and a fully connected
layer, where the complexity of CNN is:

O (Mh ·Mw ·Kh ·Kw · Cin · Cout) , (26)

where Mh and Mw represent the height and width of the output
feature map, respectively, Kh and Kw represent the height and
width of the kernel, respectively, and Cin and Cout are the
number of input channels and output channels, respectively.

The complexity of a fully connected layer is:

O (Din ·Dout) (27)

whereDin is the input dimension andDout is the output dimen-
sion.

TABLE V
TIME COST ANALYSIS WITH m = 25 AND 100 ITERATIONS

TABLE VI
TIME COST ANALYSIS FOR 50 EPOCHS TRAINING

In our model, Mh = L, Kh = 1. The complexity of the
adjustable network is expressed as:

O

⎛
⎜⎜⎜⎝

z︸︷︷︸
Din

L (d−Kw + 1)︸ ︷︷ ︸
Dout

+ L︸︷︷︸
Mh

(d−Kw + 1)︸ ︷︷ ︸
Mw

Kw·

2︸︷︷︸
Cin

Cout + L︸︷︷︸
Mh

(d−Kw + 1)︸ ︷︷ ︸
Mw

Kw C2
out︸︷︷︸

Cin,Cout

⎞
⎟⎟⎟⎠ (28)

where z is the number of time periods, and d is the number of
sample points by MWC.

The complexity of the main network is expressed as:

O

⎛
⎜⎜⎝

2L (d−Kw+1)KwCout+L (d− 2Kw+2)KwC
2
out

+L (d− 3Kw − 7) (Kw + 10)C2
out

+L (d− 4Kw − 16) (Kw + 10)C2
out

+2L2 (d− 4Kw − 16)Cout

⎞
⎟⎟⎠

(29)

The overhead of the whole system framework is simply esti-
mated. The whole system can be divided into an MWC sampling
stage, a data preprocessing stage and a TFF_aDCNN network
stage. We use MWC to sample a signal 100 times and calculate
the average time. Then, record the time of data preprocessing.
Finally, the trained model is used for predicting and the time is
recorded. The tensor of the prediction results is obtained.

Through experiment results in Table V, we find that the time
cost of MWC is the highest, followed by TFF_aDCNN network,
and finally, the data preprocessing part. In order to denoise the
signal during data preprocessing, we use two MWC samples,
which consume some time, but the time is traded for a higher
probability of support set reconstruction. It is worth noting that
the IEEE802.22 standard has proposed two sensing methods,
fast sensing and fine sensing for the PUs’ service. The spectrum
uses a band space that varies on a larger time scale, and the
real-time requirements of the sensing cycle are not as stringent.

It can be seen from Table VI that the transfer learning way
based on the pre-trained base model can obtain a faster training
speed, which also verifies the correctness of the theoretical
analysis of the TFF_aDCNN model. Therefore, in practical ap-
plication deployment, the grounded wideband spectrum sensing
model can be obtained at a fast speed.
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Fig. 12. Confusion matrix of the TFF_aDCNN (SNR = −10dB, m = 20 and σ1). (a) TFF aDCNN without the adjustment network. (b) TFF aDCNN.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel intelligent WSS framework
based on TFF_aDCNN model. TFF_aDCNN can learn the data
distribution features in different time periods during training
and use these features as auxiliary information to assist in de-
termining the current spectrum state. By training TFF_aDCNN
in this framework we can obtain a pre-trained base model un-
der a simple distribution pattern. Then, in the actual specific
application scenario, transfer learning was performed on the
basis of the base model to obtain an intelligent wideband spec-
trum sensing model, that is, a fine-tuned model. The fine-tuned
model obtained after transfer learning has adapted to the actual
electromagnetic environment. Experimental results showed the
proposed sensing framework can achieve better sensing per-
formance than other models under very low SNR and a few
sampling channels.

In the future, we can use cooperative spectrum sensing based
on TFF_aDCNN to obtain better performance. If we consider
the space and time relationship and combine the frequency
relationship, we can further improve the performance of the
single-node WSS network. At present, Transformer performs
very well in the field of natural language processing. Many works
use the multi-head attention mechanism, position vector embed-
ding mechanism and multilayer perceptron of the Transformer
model to replace the LSTM structure and the CNN structure.
The transformer model has a powerful ability to extract the
potential relationship among all inputs, which may improve
the support set reconstruction probability of WSS based on the
time-frequency-related model proposed in this paper.
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