
75

esDNN: Deep Neural Network Based Multivariate Workload

Prediction in Cloud Computing Environments

MINXIAN XU and CHENGHAO SONG, Shenzhen Institute of Advanced Technology, CAS, China

HUAMING WU, Tianjin University, China

SUKHPAL SINGH GILL, Queen Mary University of London, UK

KEJIANG YE, Shenzhen Institute of Advanced Technology, CAS, China

CHENGZHONG XU, State Key Lab of IOTSC, University of Macau, China

Cloud computing has been regarded as a successful paradigm for IT industry by providing benefits for both
service providers and customers. In spite of the advantages, cloud computing also suffers from distinct chal-
lenges, and one of them is the inefficient resource provisioning for dynamic workloads. Accurate workload
predictions for cloud computing can support efficient resource provisioning and avoid resource wastage. How-
ever, due to the high-dimensional and high-variable features of cloud workloads, it is difficult to predict the
workloads effectively and accurately. The current dominant work for cloud workload prediction is based on
regression approaches or recurrent neural networks, which fail to capture the long-term variance of work-
loads. To address the challenges and overcome the limitations of existing works, we proposed an efficient
supervised learning-based Deep Neural Network (esDNN) approach for cloud workload prediction. First,
we utilize a sliding window to convert the multivariate data into a supervised learning time series that allows
deep learning for processing. Then, we apply a revised Gated Recurrent Unit (GRU) to achieve accurate pre-
diction. To show the effectiveness of esDNN, we also conduct comprehensive experiments based on realistic
traces derived from Alibaba and Google cloud data centers. The experimental results demonstrate that esDNN
can accurately and efficiently predict cloud workloads. Compared with the state-of-the-art baselines, esDNN
can reduce the mean square errors significantly, e.g., 15%. rather than the approach using GRU only. We also
apply esDNN for machines auto-scaling, which illustrates that esDNN can reduce the number of active hosts
efficiently, thus the costs of service providers can be optimized.

CCS Concepts: • Theory of computation→Distributed computing models; Parallel computing mod-

els; • Software and its engineering→ Software system structures; • Computer systems organization

→ Cloud computing;

Additional Key Words and Phrases: Cloud computing, workloads prediction, supervised learning, gate recur-
rent unit, auto-scaling

This work is supported by National Key R&D Program of China (No. 2021YFB3300200), National Natural Science Founda-
tion of China (No. 62102408 and 62071327), Shenzhen Basic Research Program (No. JCYJ20200109115418592), and Youth
Innovation Promotion Association CAS (2019349).
Authors’ addresses: M. Xu, C. Song, and K. Ye (corresponding author), Shenzhen Institute of Advanced Technology, CAS,
Shenzhen, Guangdong, China, 518000; emails: {mx.xu, ch.song, kj.ye}@siat.ac.cn; H. Wu, Tianjin University, Tianjin, China;
email: whming@tju.edu.cn; S. S. Gill, Queen Mary University of London, London, UK; email: s.s.gill@qmul.ac.uk; C. Xu,
State Key Lab of IOTSC, University of Macau, Macau, China; email: czxu@um.edu.mo.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
1533-5399/2022/08-ART75 $15.00
https://doi.org/10.1145/3524114

ACM Transactions on Internet Technology, Vol. 22, No. 3, Article 75. Publication date: August 2022.

https://orcid.org/0000-0002-0046-5153
https://orcid.org/0000-0002-4761-9973
https://orcid.org/0000-0002-3913-0369
mailto:permissions@acm.org
https://doi.org/10.1145/3524114

75:2 M. Xu et al.

ACM Reference format:

Minxian Xu, Chenghao Song, Huaming Wu, Sukhpal Singh Gill, Kejiang Ye, and Chengzhong Xu. 2022. es-
DNN: Deep Neural Network Based Multivariate Workload Prediction in Cloud Computing Environments.
ACM Trans. Internet Technol. 22, 3, Article 75 (August 2022), 24 pages.
https://doi.org/10.1145/3524114

1 INTRODUCTION

Today’s organizations and enterprises are becoming more dependent upon information technolo-
gies with cloud services that are deployed in cloud data centers [1, 2]. Cloud services offer signifi-
cant benefits for both customers and service providers [3]. The customers can access the services
with high availability, and the service providers can take advantage of elasticity and low man-
agement costs of infrastructure. The pay-as-you-go pricing model is also a dominant benefit that
promotes the fast development of cloud computing [4]. Due to these benefits, large cloud service
providers, e.g., Amazon, Google, and Microsoft, have established large-scale data centers to pro-
vide resources for their services and a great number of companies have started to migrate their
local services to the cloud [5].

Although cloud computing is featured with these attractive benefits, some unpredictable situ-
ations, e.g., workload bursts can lead to resources being insufficient. The unmatched resources
for workloads can also waste resources or degrade performance, for instance, more resources are
provisioned than required when workloads are at a low level and only limited resources are of-
fered when workloads are increasing dramatically [6]. Therefore, to improve the resource usage,
predicting workloads in an accurate manner is required. With the effective prediction of future
workloads, the service provider can plan resources in a more efficient and rational way by al-
locating or de-allocating resources in advance [7]. However, it is not an easy job to predict cloud
workloads efficiently and accurately due to their native characteristics. Cloud workloads have high
variance and high dimensionality, which make them difficult to forecast. High variance represents
that the number of workloads and their demanded resources can change dramatically. According
to the analysis of Alibaba cloud data centers, the average resource utilization can range from 5%
to 80% [8]. And in Google cloud data centers, workloads can change randomly during a specific
observation period. As for high dimensionality, it represents that cloud workload traces record a
great amount of information and different specification of machines, which needs to extract the
necessary and valuable information for the training model.

To address the high variance challenge of cloud workloads, the pattern of workloads, as well
as the relationship with time series, should be learned and exploited to design efficient and accu-
rate prediction algorithms to fit with the variances of workloads. As for the high dimensionality
challenge, the dataset can be further analyzed to extract the necessary data while assuring the
prediction accuracy.

A significant amount of research has been devoted to cloud workload prediction. Traditional ap-
proaches are mostly based on the regression methods, heuristic algorithms and traditional neural
network approaches. Traditional neural networks generally refer to shallow networks that contain
only several layers, such as Multi-layer Perceptron (MLP) and Radial Basis Function (RBF).
However, these approaches can only work effectively for the workloads with obvious patterns,
e.g., for small-scale data centers for ordinary companies or organizations. For the large-scale pub-
lic cloud data centers, these approaches can not obtain high prediction accuracy. The main reason
is that the regression methods and simple neural networks cannot capture the complicated corre-
lation of workloads. Therefore, to achieve higher accuracy, more complicated neural networks can
be applied to take full advantage of the correlations of neurons.

ACM Transactions on Internet Technology, Vol. 22, No. 3, Article 75. Publication date: August 2022.

https://doi.org/10.1145/3524114

esDNN 75:3

As a representative of neural network-based approaches, the Recurrent Neural Network

(RNN) [9] has been applied to predict cloud workloads as it has the feature to model the changes
with time series. RNN can use its memory to process a set of inputs in sequence. However, it is in-
efficient for RNN to learn long-term memory dependencies because of the gradient vanishing. To
overcome this limitation, some revised RNN, including Long Short-Term Memory (LSTM) [10]
and Gated Recurrent Unit (GRU) [11] have been proposed, which have demonstrated a strong
capacity to learn long-term memory dependencies. Compared with LSTM, GRU has demonstrated
better prediction accuracy and learning efficiency in practice. Thus, in this work, we apply a GRU-
based approach to capture the variance of cloud workloads.

1.1 Motivation and Our Contributions

To address the high-dimensionality challenge, extraction of features of the original data is required.
Our main motivations are as follows:

• Some approaches including Principal Component Analysis (PCA) [12] and auto-encoder
[13] have been investigated, which can reduce dimension largely, while the accuracy is de-
graded as some features have been ignored.
• Traditional machine learning models can only show the mapping relationship between the

source data and the target data, however, the time relationship cannot be extracted and
exploited.
• When predicting long periods, the dominant time-series data prediction approaches based

on LSTM and RNN have the limitations of gradient disappearance and explosion.

To address the aforementioned challenges for cloud workload prediction, we first extract some
key features from the realistic traces derived from the cloud data center, and then convert the mul-
tivariate time series into supervised learning time series [14] for further training with our designed
training algorithm based on GRU. Our objective is to achieve efficient and accurate predictions for
highly variable and high dimensional cloud workloads to finally optimize the resource usage in
cloud computing environments.

The main contributions of this article are summarized as follows:

• The sliding window for Multivariate Time series Forecasting (S-MTF) is designed to
convert multivariate time series into supervised learning time series for multivariate work-
loads and keep sufficient information. The S-MTF can reorganize the time series to sample
X and label Y and model the correlation between predicted data, which can use algorithms
based on Deep Neural Network (DNN) to achieve predictions.
• An efficient supervised learning-based Deep Neural Network (esDNN) algorithm is pro-

posed for cloud workload prediction to learn and capture the features of historical data and
accurately predict future workloads. The proposed algorithm can adapt to the variances of
workloads by updating the gates of GRU and overcome the limitations of gradient disappear-
ance and explosion.
• Comprehensive experiments are conducted by using realistic data derived from Alibaba and

Google cloud data centers to evaluate the performance of esDNN. The results demonstrate
that the proposed approach can achieve better prediction accuracy than state-of-the-art al-
gorithms. Experiments also show that the proposed approach can be applied for auto-scaling
scenarios to improve resource provisioning.

1.2 Article Organization

The rest of this article is organized as follows: Section 2 discusses the related work for workload
prediction in cloud computing environments. Section 3 depicts the system model of our proposed

ACM Transactions on Internet Technology, Vol. 22, No. 3, Article 75. Publication date: August 2022.

75:4 M. Xu et al.

approach, followed by system problem statement. The proposed algorithm based on DNN is intro-
duced in Section 4. Section 5 introduces the details of our experiments that apply dataset derived
from realistic traces to predict workloads, and demonstrate the feasibility of our approach to im-
prove the resource provisioning of cloud data centers. Finally, conclusions along with the future
directions are given in Section 6.

2 RELATED WORK

Many researchers have conducted research on workload prediction. The main contributions for
cloud workload prediction can be classified as regression-based and learning-based approaches.
The regression-based approaches mainly include linear regression, auto-regression and other tradi-
tional regression-based approaches. While for the learning-based approaches, both the traditional
approaches based on machine learning and some updated methodologies based on deep learning
have been investigated.

2.1 Regression-Based Approaches for Cloud Workload Prediction

Calheiros et al. [15] proposed an approach based on auto-regression to predict future workloads by
using requests of web applications. The proposed approach can achieve high accuracy in resource
utilization and QoS prediction. Yang et al. [16] introduced an approach based on linear regres-
sion for workload prediction to satisfy Service Level Agreement (SLA) and reduce scaling costs.
Based on the prediction data, the auto-scaling mechanism can be further applied to optimize vir-
tualized resource usage. Centinski et al. [17] combined statistical and machine learning methods
together to improve workload prediction for cloud applications. The training method is utilized
to learn the dominant system parameters of the influence application, and the prediction method
is based on the regression approach. Singh et al. [18] presented a combined algorithm based on
linear regression and support vector machine for workload prediction of web applications. A work-
load classifier was also proposed to select the model based on workloads features. Liu et al. [19]
introduced an adaptive workload prediction approach based on workloads classification, in which
different prediction models can be assigned to the different categorized workloads. Bi et al. [20]
proposed a prediction method that integrates Savitzky-Golay filter and wavelet decomposition
with stochastic configuration networks to predict workloads.

These regression-based approaches have proven their effectiveness in workload prediction.
However, most of these approaches are only suitable for workloads with obvious patterns, e.g.,
Wikipedia workloads with fixed daily tendencies. The modern cloud workloads with high variance
make these approaches hard to represent correlations between different parameters. Besides, these
approaches were applied to high-performance computing workloads, small-scale data centers or
synthetic workloads, which have lower variance compared with cloud workloads. Therefore, to ef-
ficiently capture the characteristics of cloud workloads, more advanced learning approaches, e.g.,
machine learning and deep learning-based methodologies have been investigated.

2.2 Learning-Based Approaches for Cloud Workload Prediction

Kumar et al. [21] applied a neural network and self-adaptive differential evolution algorithm to
learn and extract the pattern from workloads. This evolution-based approach can reduce the pre-
diction error by searching a large solution space, thereby minimizing the effects of initial solution
choice. Zheng et al. [22] presented a deep learning model based on canonical polyadic decom-
position to predict the usage of virtual machines for cloud workloads for industry informatics.
Compared with machine learning-based approaches, deep learning-based approaches can achieve
higher accuracy. Kumar et al. [23] proposed a prediction model based on LSTM and showed good
performance in reducing mean square errors. Qiu et al. [24] introduced a deep learning approach

ACM Transactions on Internet Technology, Vol. 22, No. 3, Article 75. Publication date: August 2022.

esDNN 75:5

to predict Virtual Machine (VM) workloads by extracting high-level features of VMs workloads
and then predicting future VM workloads. Zhu et al. [25] presented an approach based on LSTM
encoder-decoders network with an attention mechanism. The features of historical data are ex-
tracted via the encoder network and the attention mechanism is integrated into the decoder net-
work. Amiri et al. [26] introduced an online learning approach to adapt resources according to
workloads variations based on sequential pattern mining, which can learn new behavioral pat-
terns rapidly. Chen et al. [7] proposed a deep learning-based approach, which includes a top-sparse
auto-encoder to extract essential features of workloads and GRU to obtain an accurate and adap-
tive prediction for cloud workloads. Several different types of workloads have been investigated
to validate the effectiveness of the proposed approach. Eli et al. [27] presented a resource central
system to collect Azure VM parameters to learn the VM behavior offline with Microsoft learning
libraries and then make online resource usage prediction, which predicts the oversubscription of
VM types while ensuring VM performance.

Bi et al. [28] applied bi-directional LSTM (Bi-LSTM) to predict large-scale workloads and re-
source consumption in the cloud computing environment. The performance of the approach has
been validated with Google traces and shown better results than baselines. Karim et al. [29] pro-
posed a hybrid approach combing RNN and Bi-LSTM to forecast CPU workload of VMs, which
can improve the performance of using a single technique separately. Chen et al. [30] introduced
the LSTM-based approach to predict the useful life of components to indicate system health. A
support vector regression is also combined to enhance the prediction robustness and marginal
utility. Results based on NASA have validated the effectiveness of the proposed approach. Singh
et al. [31] proposed an evolutionary quantum neural network-based approach for cloud work-
loads prediction, which leverages the computational efficiency of quantum computing to encode
workloads, and utilizes the neural network to estimate resource demands. The experiments with
traces from cloud data centers and traditional data centers have validated the effectiveness of the
proposed approach. Kim et al. [32] introduced a cloud prediction framework named CloudInsight

that combines multiple predictors based on traditional machine learning techniques to enable ac-
curate predictions for real cloud workloads. The ensemble supports dynamic and periodical op-
timization to handle the variations of workloads. The framework can also reduce the periods of
under-provisioning and over-provisioning, thus improving system efficiency.

The deep learning-based approaches have been applied in predictions in many areas, such as
communication, economic market, and pedestrian motion. Sun et al. [33] proposed an LSTM-based
approach to predict the link quality confidence interval for wireless communication under a smart
grid environment. A wavelet denoising algorithm has been applied to decompose the signal-to-
noise ratio time series into the deterministic and stochastic ones to train two LSTM neural net-
works. Li et al. [34] introduced a recurrent attention and interaction model to predict pedestrian
trajectories, which includes several modules to achieve precise prediction collaboratively. The in-
troduced approach can comprehensively mine the spatio-temporal information to model attention
mechanisms, interactions, and multimodality of pedestrian motion. Barra et al. [35] presented an
approach to forecast market behavior by encoding time series to Gramian angular fields images
based on neural networks. Qiao et al. [36] proposed an approach based on a neural network to
model the uncertain nonlinear systems by utilizing a distance concentration algorithm to increase
prediction accuracy and reduce computation time. However, these approaches are not focusing on
cloud workloads prediction.

To summarize, most of the learning-based approaches are based on machine learning algorithms
or traditional RNN, which either cannot exploit the long-term memory dependencies or address
the gradient vanishing challenge. Thus, it is also difficult for them to predict cloud workloads
accurately. Only limited research has paid attention to GRU, which is an improved version of

ACM Transactions on Internet Technology, Vol. 22, No. 3, Article 75. Publication date: August 2022.

75:6 M. Xu et al.

Table 1. Comparison of Related Work

Approach

Technique Data Preprocessing Predicted Resources Workloads Performance Metrics

Regression
Machine

Learning

Episode

Mining

Deep

Learning Auto-encoder
Sliding

window

VM

utilization

Server

Utilization
QoS

Realistic
Synthetic MSE RMSE MAPE CDF

DNN DBN LSTM GRU
Cloud

Data Centers
Traditional

Data Centers
Calheiros et al. [15]

√ √ √ √ √

Amiri et al. [26]
√ √ √ √ √ √

Ceninski et al. [17]
√ √ √ √

Kumar et al. [21]
√ √ √ √ √

Kumar et al. [23]
√ √ √ √

Qiu et al. [24]
√ √ √ √ √ √

Rodrigo et al. [15]
√ √ √ √ √ √

Singh et al. [18]
√ √ √ √ √ √ √ √ √

Yang et al. [16]
√ √ √ √ √ √

Zhang et al. [22]
√ √ √ √ √ √

Zhu et al. [25]
√ √ √ √ √ √ √

Bi et al. [20]
√ √ √ √

Liu et al. [19]
√ √ √ √

Eli et al. [27]
√ √ √ √ √

Sun et al. [33]
√ √ √ √

Li et al. [34]
√

Barra et al. [35]
√

Qiao et al. [36]
√ √

Bi et al. [28]
√ √ √ √ √ √

Singh et al. [31]
√ √ √ √ √

Kim et al. [32]
√ √ √ √ √ √ √ √

Karim et al. [29]
√ √ √ √ √ √ √ √

Chen et al. [30]
√ √ √ √

esDNN (This Work)
√ √ √ √ √ √ √ √

RNN and can address the gradient vanishing challenge to achieve better accuracy. For instance,
Chen et al. [7] applied GRU for cloud workload prediction; however, they also apply the auto-
encoder approach to compress the dimensionality of the original data. Although the auto-encoder
approach can address the high dimensionality, the accuracy is also undermined since the full data
is not utilized to capture the whole features of workloads.

2.3 Critical Analysis

This article contributes to the growing body of work in the cloud workload prediction area. The
comparison of our proposed approach and the related work is summarized in Table 1. To solve
the aforementioned challenges, e.g., high-dimensional problems and multivariate problems, we
apply GRU to capture the long-term memory dependencies to address the high variance of cloud
workloads, thereby achieving high accuracy prediction of cloud workloads. We also apply a sliding
window for multivariate time series prediction to convert the original time series into supervised
learning time series to address the high dimensionality and further achieve higher accuracy. From
the technique perspective, our GRU-based approach is advanced in prediction compared with tra-
ditional regression and machine learning based approaches, and aims to overcome the limitation
of gradient disappearance and explosion that exist in approaches like LSTM. From the data pre-
processing perspective, our approach focusing on a sliding window to take advantage of full data
information and the correlation between the predicted data rather than only extracting part of data
like in auto-encoded based approach. We also validated our approach based on realistic traces of
Google and Alibaba and multiple metrics have been evaluated comprehensively.

3 SYSTEM MODEL

In this section, we introduce our system model and optimization objective. In our system model,
we aim to offer an efficient and accurate prediction model that the service providers can apply
to predict future workloads. Thus, the resource usage can be optimized to reduce their costs, e.g.,
integrating the model with auto-scaling to reduce the number of active hosts.

It is not easy to predict cloud workloads as they can change dramatically within a short time and
the pattern is also difficult to capture precisely. For example, workloads in every 5 minutes from
the dataset of Alibaba can vary significantly [8]. The cloud workloads are tightly coupled with
time series, and it is inefficient to get accurate prediction results from a simple regression model
or univariate time predictions. Multivariate time series can contain more dynamic information
than univariate time series. For instance, the data in multivariate time series forecasting can have

ACM Transactions on Internet Technology, Vol. 22, No. 3, Article 75. Publication date: August 2022.

esDNN 75:7

Fig. 1. Multivariate time series prediction model for cloud workloads.

certain correlations, such as CPU usage and memory usage in workload forecasting. Therefore,
we built a multivariate time series forecasting model to predict highly random workloads and use
the real-world dataset to verify the accuracy of the model. In our prediction model, we use CPU
usage as our standard for measuring the prediction results. Figure 1 shows the main components
and flow of the system model.

Step 1: Data Preprocessing. This step is equipped with a workloads preprocessing component
and a data cleaning component, which processes the raw data derived from the realistic cloud
traces. With the raw data of cloud workloads, we first remove the columns that contain empty
data. Because whether it is to use the zero-filling scheme or simply ignore these data, they will
have a negative impact on our forecast data. Afterwards, we classify the dataset by time, then
calculate the average value of each parameter with the same timestamp. Next, we normalized
the Alibaba dataset and Google dataset. Normalization is a dimensionless processing method that
makes the absolute value of the physical system value into a certain relative value relationship.
From the perspective of model optimization, normalization can not only improve the convergence
speed of the model but also improve the accuracy of prediction. The normalization method has
two forms, one is to change the number to a decimal between (0, 1), and the other is to change the
dimensional expression to a non-dimensional expression and become a scalar. In this article, the
former is chosen as the normalization method, and we use MinMaxScaler to achieve this function.

ACM Transactions on Internet Technology, Vol. 22, No. 3, Article 75. Publication date: August 2022.

75:8 M. Xu et al.

The MinMaxScaler operation is based on the min-max scaling method as follows:

Xstd =
X − Xmin

Xmax − Xmin
− Xmin, (1)

Xscaled = Xstd ∗ (max −min) +min. (2)

We apply the MinMaxScaler to transform features with default configurations and scale each fea-
ture to be a value betweenmin andmax . The X represents the set of the data to be processed, and
the Xmin and Xmax are the minimum and maximum data in the dataset, and the final processed
data is represented by Xscaled. To be noted, in this work, the predicted value is resource utilization,
which ranges from 0.0 to 1.0, and the MinMaxScaler can handle these data well. As for the missing
data, they will be filled with the data in the previous time slot.

Step 2: Supervised Learning Conversion. The difference between supervised learning and
unsupervised learning lies in whether there are labels of samples for training. In supervised learn-
ing, it has labeled training samples. It trains through the existing training samples to obtain an
optimized model and then uses this model to map all inputs to the corresponding outputs, thereby
realizing data prediction and classification. For unsupervised learning, there are no pre-labeled
training samples. In our system model, we use the supervised learning transfer function to con-
vert the multivariate time series prediction problem into a supervised learning problem based on
[14]. More details about the transfer function will be introduced in Section 4. The key motivation
is to use the normalized dataset as the input of the transfer function, and reframe the time series
datasets as supervised learning datasets. To achieve this, we split the dataset into a training set
and a validation set. After that, the dataset is divided into sample X and its corresponding label
Y. With these conversion operations, we can transform the time series forecasting problem into a
supervised learning-based time series problem.

Step 3: Model Construction. In this step, our system model focuses on the construction of deep
learning networks and establishes an optimization model for cloud workload prediction based on
the preprocessed data. The preprocessed data are considered as input, and the output is the opti-
mized parameters of the model as well as the evaluation metrics, e.g., mean square errors. In this
step, the hyperparameters of the deep learning network should also be defined, e.g., the number
of layers, number of neurons, and types of network. Our proposed network model is derived from
GRU and more design details will be given in the following sections. By predicting the cloud work-
loads, we aim to obtain future resource usage and thus the optimization of the number of active
machines can be optimized by auto-scaling approaches, which will be coordinately achieved with
the next step.

Step 4 and Step 5: Model Deployment and System Adaption. These two steps focus on utilizing
the models for workload prediction or other system optimization purposes. In the actual workload
prediction, there is a time interval between two consecutive predictions, which means that the se-
quence prediction is based on a discrete time series dataset. For the Alibaba dataset, the prediction
interval is usually 10 seconds, while the time prediction interval of Google is 5 minutes. We apply
this time interval as the prediction unit. Based on the trained model in Step 3, in this step, the
system model can obtain the predicted future workloads and adjust the number of machines by
applying auto-scaling. With the predicted data, the realistic system can dynamically adapt the re-
source provisioning for the system, e.g., adding or removing machines physically, which requires
the use of Application Programming Interfaces (APIs) provided by hardware.

4 ESDNN: EFFICIENT SUPERVISE LEARNING-BASED DEEP NEURAL NETWORK

This section presents our proposed approach, which is a deep learning-based approach for cloud
workload prediction. To achieve efficient and accurate prediction results, a sliding window-based

ACM Transactions on Internet Technology, Vol. 22, No. 3, Article 75. Publication date: August 2022.

esDNN 75:9

Table 2. One-Step Univariate Forecasting:

Raw Dataset

Time CPU utilization percentage

0 16.127
10 21.5878
20 17.3193
30 16.8287
40 18.6518

Table 3. One-Step Univariate Forecasting:

Supervised Learning Sequence

X Y

None 16.127
16.127 21.5878
21.5878 17.3193
17.3193 16.8287
16.8287 18.6518
18.6518 None

approach for multivariate time series prediction is applied to convert the original dataset into
supervised learning-based time series data. Thereafter, a GRU-based deep learning network, named
esDNN, is proposed for future workload prediction.

4.1 Sliding Window for Multivariate Time Series Forecasting

Time series forecasting requires the dataset to contain a set of time-dependent data, regardless of
whether the time units of the dataset are seconds, minutes, or hours. This data needs to have a
minimum time unit, but it does not need to have the same time interval between two adjacent
timestamps. Having clarified this concept, we can say that a time series is a sequence of numbers
sorted by time index. However, only have one time series is not sufficient. In Section 3, we have
introduced the definition of supervised learning. Complete supervised learning requires a sample
group (X) and a label group (Y). There are two major differences compared with the work-based
sliding window [37] including: (1) we consider the multivariate workloads to construct time series
data rather than single variate; and (2) we utilize the relationship between the predicted data by
merging the predicted data and source data into supervised time series data together. To illustrate
the conversion process more vividly, we use a small piece of sample data in the Alibaba cloud
workloads dataset to show the conversion process and results. To simplify the example, we use
one-step univariate forecasting.

Table 2 shows the first five rows of data from the Alibaba dataset, after we convert these time
series data into supervised learning data, it will be presented in the form of Table 3, where each
row data is moved up with data in the group (Y) and the time label has been removed.

For the multivariate time series datasets, we can also convert them into supervised learning
datasets with sliding window approach. Similarly, we also take a small fragment from the Alibaba
dataset. The difference is that in addition to Time and CPU utilization percent, we also take memory
utilization percentage to reflect that this is a multivariate dataset. Here, we choose the memory
utilization percentage as Y, which is considered as the label. In our model, we choose to use the

ACM Transactions on Internet Technology, Vol. 22, No. 3, Article 75. Publication date: August 2022.

75:10 M. Xu et al.

Table 4. One-Step Multivariate Forecasting: Raw Dataset

Time CPU util. percentage Memory util. percentage

0 16.127 87.139
10 21.5878 87.0543
20 17.3193 86.9491
30 16.8287 86.9454
40 18.6518 86.9495
50 20.0232 86.9985
60 17.8671 86.9249

Table 5. One-Step Multivariate Forecasting:

Supervised Learning Sequence

X1 X2 X3 Y
None None 16.127 87.139
16.127 87.139 21.5878 87.0543
21.5878 87.0543 17.3193 86.9491
17.3193 86.9491 16.8287 86.9454
16.8287 86.9454 18.6518 86.9454
18.6518 86.9495 20.0232 86.9985
20.0232 86.9985 17.8671 86.9249
17.8671 86.9249 None None

one-step multivariate forecasting. Tables 4 and 5 show the original data and the converted data,
respectively.

By this step, we have completed the application expression of multivariate time series forecast-
ing, and what we have to do now is to abstract it into an algorithm. First, we define this algorithm as
Sliding window for Multivariate Time series Forecasting (S-MTF) algorithm, which trans-
forms a multivariate time series forecast into a supervised learning time series. The S-MTF algo-
rithm can be applied to any time-related dataset, and it is still linearly related to time because it
contains all the data of the previous moment at any time. At this point, the S-MTF is somewhat
similar to LSTM, but the difference is that the forget gate of LSTM will weaken the influence from
the previous moment, while S-MTF retains all the values of the previous moment, and it can be
determined if you need to keep it or not. Besides, S-MTF contains the future label while using
the multi-step forecasting. Furthermore, S-MTF satisfies the definition of supervised learning as it
transforms time-related datasets into the sample and labeled datasets. With a more general form,
Figure 2 depicts the transformation of the S-MTF algorithm for time series and presents the super-
vised learning sequences obtained from the transformation in a tabular form. Algorithm 1 shows
the pseudocode of the S-MTF algorithm. Before the original data are processed as the input of the
algorithm, we have deleted NONE values in the dataset for the convenience of data processing, as
they can influence the accuracy of the proposed algorithm.

Figure 3 shows the typical conversion process by operating the original data. Assuming that we
have the time sequence as R (t − 1),R (t), and R (t + 1), where R (t − 1) is the last one, R (t) is the
current one, and R (t +1) is the next one. We set elements E (i −1),E (i) and P (i +1) as the elements
to be combined as the supervised time sequence S (n). The E (i − 1) is from the data of R (t − 1), E (i)
is assigned by R (t), and P (i + 1) is assigned by R (t + 1). The E (i − 1) and E (i) will be the sample

ACM Transactions on Internet Technology, Vol. 22, No. 3, Article 75. Publication date: August 2022.

esDNN 75:11

Fig. 2. The key procedures of the S-MTF algorithm.

Fig. 3. Data conversion in S-MTF algorithm.

data and P (i + 1) will be the label. The other supervised time sequence, e.g., S (n − 1) and S (n + 1),
can be obtained in the same way.

Algorithm Complexity Analysis: Given that there is a set of time series data with size N , the
algorithm processes the data from 1 to N −1 to construct the matrix Sn . To obtain all the data in Sn

with 3 sub-data in each time interval, the complexity will be O (3 × (N − 1)), which equals O (N).

ACM Transactions on Internet Technology, Vol. 22, No. 3, Article 75. Publication date: August 2022.

75:12 M. Xu et al.

ALGORITHM 1: Sliding window for Multivariate Time series Forecasting (S-MTF)
Input : Multivariate time series dataset Rn , Rn contains a time series R (1), R (2), . . . , R (t), R (t + 1), k

time-related variables, and a dataset Pn to be predicted
Output : Supervised learning dataset Sn , each row of it has 2k + 3 data

1 Initialize an empty matrix Sn to record supervised time series data for t from 1 to n − 1 do

2 E (t) ← R (t)

3 if t = 1 then

4 Record NONE

5 else

6 E (t − 1) ← R (t − 1)

7 end

8 if t = n − 1 then

9 Record NONE

10 else

11 P (t + 1) ← R (t + 1)

12 end

13 Put E (t − 1), E (t) and P (t + 1) together into a tuple

14 Set E (t − 1), E (t) as data in supervised time series

15 Set P (t + 1) as label in supervised time series

16 S (t) ← {E (t − 1), E (t), P (t + 1)}

17 if S (t) contains NONE then

18 Delete S (t)

19 Add S (t) into Sn

20 end

4.2 esDNN Algorithm

In our deep learning networks, the input data in the training phase include the resource utilization
and the corresponding time series data, e.g., at time 08:00:00 am, the CPU utilization is 20%. In the
prediction phase, the input data are the resource utilization in the recent time intervals, e.g., the
previous 5 minutes (can be configured via parameters in network model). To construct our network
model, we include one layer of Convolutional Neural Network (CNN). The CNN model is usually
built on the feedforward neural network model. It generally consists of Input Layer, Convolutional
Layer, Pooling Layer, Non-linearity Layer and Fully Connected Layer [38]. Two-dimensional con-
volutional neural networks (2D CNN) are widely used in image recognition, and one-dimensional
convolutional neural networks (1D CNN) are generally used in Natural Language Processing

(NLP). Additionally, the one-dimensional convolutional neural networks also have the capability
in processing continuous sequences. For example, when obtaining a certain feature from a shorter
segment in the whole dataset, while the feature is not highly correlated with the position of the
data segment in the overall dataset, in this situation, the 1D CNN can play an important role. The
1D CNN can extract features from local original time series data, and then model the short-term
correlation between local time series data and subsequent trends [39]. So we will use the 1D CNN
to analyze our data. We built a one-dimensional convolutional layer and added it to our neural
network. We also add padding, which maintains the boundary information of the time series. If
there is no padding, most of the obtained information will only be operated by the convolution
kernel once, but the data in the middle of the sequence are scanned many times, thus the results
obtained will lose the accuracy of the boundary information. To improve accuracy, we apply a
casual strategy for padding, which simply pads the layer’s input with zeros in the front so that we
can also predict the values of early time steps in the frame [40]. Finally, we adopt Rectified Linear

ACM Transactions on Internet Technology, Vol. 22, No. 3, Article 75. Publication date: August 2022.

esDNN 75:13

Fig. 4. GRU structure.

Unit (ReLU) as the activation function of the 1D CNN. After introducing the convolutional layer,
the GRU-based layer can be added.

GRU is a derived version of RNN. RNN uses traditional backpropagation and gradient descent
algorithms to learn the target data. The BackPropagation Through Time (BPTT) algorithm is
a commonly used method of training RNN. The idea of BPTT is the same as the backpropagation
algorithm, which continuously finds better points along the negative gradient direction of the
parameters to be optimized until convergence. However, the application of the BPTT algorithm can
lead to the accumulation of activation function derivatives, which in turn leads to the occurrence
of gradient disappearance and gradient explosion. In order to solve this problem, we can use two
methods to avoid gradient explosion/disappearance. The first method is to replace the activation
function. In our model, we avoid the disappearance of the gradient to a certain extent by setting
ReLU as the activation function. But the derivative of ReLU in the range greater than 0 is always
1, which is easy to cause gradient explosion. Therefore, the second method is applied to change
the circulation structure. GRU that combines the forget gate and input gate into a single “update
gate” is exploited in our model. It also merges cell state and hidden state and makes some other
changes.

We have adopted the GRU-based neural network and made some improvements to optimize
its performance in long sequence prediction. The structure of GRU is demonstrated in Figure 4.
The reset gate rt and update gate zt are the same as LSTM. But there is no output gate in GRU.
Compared with LSTM, there is one less “gating” inside the GRU, which has fewer parameters than
LSTM, but it can also achieve functions equivalent to LSTM [41].

The sparse processing provided by ReLU can reduce the effective capacity of the model, which
means too much feature masking makes the model unable to learn effective features. Since the
gradient of ReLU is 0 when x < 0, this neuron may never be activated by any data, which is called
neuron necrosis. In addition, one of the similarities between ReLU and Sigmoid is that the result
is a positive value without a negative value. To address this issue, we multiply ReLU and Sigmoid,
and we can get the activation function Swish that is represented as below:

f (x) = x · sigmoid(βx), (3)

where β is either a constant or a trainable parameter [42].
In the choice of activation function, instead of choosing the ReLU activation function that is

commonly used by DNNs, we use Swish, which is a smooth and non-monotonic function. Its design
is inspired by the use of sigmoid function for gating in LSTM. We use the same value for gating to
simplify the gating mechanism, which is called self-gating. The advantage of self-gating is that it
only requires a simple scalar input, while traditional gating requires multiple scalar inputs. This

ACM Transactions on Internet Technology, Vol. 22, No. 3, Article 75. Publication date: August 2022.

75:14 M. Xu et al.

ALGORITHM 2: Efficient supervise learning-based Deep Neural Network (esDNN)
Input : Multivariate time series dataset Rn .

1 Hyperparameter:time sequence t , training epochs b

2 After processing by the S-MTF algorithm, multivariate time series dataset Rn is transformed into the supervised
learning dataset Sn

3 Divide Sn into training set T s and validation set V s

4 esDNN: Conv1D(filters=32, kernel_size=5)

5 for i range from 0 to t do

6 GRU:

7 Update the reset gate rt :

8 rt = σ (Wr · [ht−1, xt])

9 Update the update gate zt :

10 zt = σ (Wz · [ht−1, xt])

11 Calculate the candidate hidden layer y′
t
:

12 y′
t
= tanh (W · [rt ∗ ht−1, xt])

13 Compute the output gate yt :

14 yt = (1 − zt) ∗ ht−1 + zt ∗ h̃t

15 end

16 Dense(16, activation=“swish”)

17 Dropout(0.2)

18 Dense(1)

19 for j range from 0 to b do

20 Train T s with esDNN, compare with V s

21 end

feature allows Swish to easily replace activation functions that take a single scalar as input without
changing the hidden capacity or number of parameters. The pseudocode of esDNN is shown in
Algorithm 2.

Algorithm complexity analysis: The time complexity of esDNN depends on the number of
networks (N), number of network weight connections (C), number of input node (n), hidden nodes
(h), where h ≈ n, dropout value (d). Therefore, the total time complexity for a maximum number
of b iterations is represented as b ×O (n2 × N ×C × d), which equals to O (n2bdNC).

5 PERFORMANCE EVALUATION

In this section, we will first introduce the details about the dataset we use and the experimental
configurations for workload prediction. Then we compare the performance of esDNN and other
RNN-based approaches. Finally, we demonstrate that our approach can be applied to auto-scaling
for cloud resource provisioning optimization.

5.1 Datasets and Environment Configuration

We implement the multivariate time series forecasting based on TensorFlow 2.2.0 [43], and the
Python version is 3.7. We used two real-world datasets in the experiments for performance evalu-
ation of our proposed approach.

• Alibaba dataset [8]: It is cluster-trace-v2018 of Alibaba that recording the traces in 2018.
Cluster-trace-v2018 includes about 4,000 machines in a period of 8 days, which we use all
the data to make predictions. The data can be found from Github.1

1https://github.com/alibaba/clusterdata.

ACM Transactions on Internet Technology, Vol. 22, No. 3, Article 75. Publication date: August 2022.

https://github.com/alibaba/clusterdata

esDNN 75:15

Fig. 5. Alibaba (a) per-day workload (b) per-minute workload fluctuations.

• Google dataset [44]: It is derived from Google’s cluster data-2011-2 recorded in 2011. The
cluster data-2011-2 trace includes 29 days of data that contains 37,747 machines, including
three different machine types. The data can also be fetched from Github.2

Both of these datasets can represent random features of cloud workloads. We use CPU usage as a
key performance measurement of the accuracy of our prediction model. To show the effectiveness
of prediction and remove the redundancy information, we configure the prediction time interval
as 5 minutes. For the metadata for prediction, there are some differences between the two datasets
because of the different types of data collected. For the Alibaba dataset, in addition to the time series
and CPU usage data, we also select memory usage, incoming network traffic, outgoing network
traffic, and disk I/O usage as the source data for prediction. As for Google dataset, in addition to the
time series and CPU usage data, we also select canonical memory usage, assigned memory usage,
total page cache memory usage as the source data for prediction. When processing the dataset
from Google, we select 5 minutes as the time interval. Then we group the tasks according to the
Machine ID and finally normalize the dataset.

Figures 5 and 6 demonstrate the CPU usage in the datasets of Alibaba and Google cloud data
centers, respectively. We have divided them into per-day and per-minute workloads fluctuations
of machines so that we can see the fluctuations of CPU usage more clearly over time. We can notice
that both the datasets show high variance and random features. For the Alibaba dataset, we divide
the dataset into the first 40,000 rows of data (59.5%) and the rest, which are used to train and test
the model. Similarly, we have divided the Google dataset in this way. We selected about 72 hours
of data from Google’s dataset, and we used the first 49 hours (68.4%) as the training set and the
rest as the validation set. For these two datasets, the number of training epoch is 200, the batch
size is 72, the loss function is Huber, the optimizer is Adam, and the metric we use is mean square
errors.

5.2 Comparison with Unsupervised Learning-Based Approach

In contrast to the supervised learning approach used by esDNN, the unsupervised learning ap-
proach can also be applied to high-dimensional problems such as multivariate time series fore-
casting, therefore, in this section, we evaluate our approach with unsupervised learning-based
approach.

Among the unsupervised learning approaches, Autoencoder is a representative one for efficient
feature extraction and feature representation of high-dimensional data [45]. Currently, Autoen-
coder as well as Stacked Autoencoder, Sparse Autoencoder [46], and Denoising Autoencoder [47]

2https://github.com/google/cluster-data.

ACM Transactions on Internet Technology, Vol. 22, No. 3, Article 75. Publication date: August 2022.

https://github.com/google/cluster-data

75:16 M. Xu et al.

Fig. 6. Google (a) per-day workload (b) per-minute workload fluctuations.

Fig. 7. Comparison of the prediction results of esDNN and Autoencoder.

are widely used in the research field. Autoencoder maps the input sample x to the hidden layer by
the encoder (д) and then maps it back to the original space by the decoder (f) to obtain the recon-
structed sample. For the neural network-based autoencoder model, the encoder part compresses
the data by reducing the number of neurons layer by layer, while the decoder part improves the
number of neurons layer by layer based on the abstract representation of the data, and finally
realizes the reconstruction of the input samples. The optimization objective is to optimize both
the encoder and decoder by minimizing the Loss function. The optimization equation is shown as
below:

f ,д = min
f ,д

Loss (x , f (д(x))). (4)

The prediction results of esDNN and Autoencoder within 10 minutes are shown in Figure 7,
which demonstrates that Autoencoder has a good prediction result only at the beginning of the
observed period, and it is significantly less accurate than esDNN. The reason can be that Autoen-
coder does not need to use the label of the sample in prediction, and it uses the input of the sample
as both the input and output of the neural network. Although this can greatly improve the gen-
erality of the model, autoencoder is prone to be overfitting when the parameters of the neural
network are complicated. Based on the results compared with unsupervised learning, supervised
learning-based approach has demonstrated better performance. In the following experiments, we
evaluate the performance with other neural network-based approaches.

ACM Transactions on Internet Technology, Vol. 22, No. 3, Article 75. Publication date: August 2022.

esDNN 75:17

Fig. 8. Prediction accuracy (MSE) of four different RNN-based methods based on the Alibaba dataset with

different prediction lengths.

5.3 Comparison with Neural Network-Based Approaches

We first start the evaluation with the Alibaba dataset. To compare with our algorithm, we have
selected several RNN-based deep learning algorithms, which have been applied for time series
prediction, including RNN, Bi-LSTM [28] and GRU. We compare the prediction accuracy of these
four algorithms and measure them by Mean Square Errors (MSE), which is represented as:

MSE =
1

m

m∑

i=1

(yactual − ypr edict)2, (5)

where m represents the timestamp, yactual is the actual value and ypr edict is the predictive value.
The higher the MSE of the algorithm, the greater the gap between the predicted value and the
actual value. In order to capture the changing trend of MSE in each period, we set four different
time scales: second, minute, hour, and day.

Figure 8 shows the MSE fluctuation of these four RNN-based methods based on the Alibaba
dataset with various prediction lengths. In general, all the MSE curves follow the same trend,
which shows that the MSE value first increases until it reaches a peak, after that, the curves will
remain at a relatively stable value. For the second-level prediction, apart from keeping RNN at a
relatively high value, there are just subtle differences between Bi-LSTM, GRU, and esDNN. With
the increase of the prediction length, all these curves are maintained at relatively stable values.
But for the day-level prediction, there is no significant difference in MSE value between Bi-LSTM,
GRU, and esDNN. The main reason is that the RNN and Bi-LSTM models are designed to process
time-series data and can perform well in representing the nonlinear relationship between data and
time. However, the drawback of RNN and Bi-LSTM is that their gradient can disappear or explode,
especially for the long time-series data during the data training process. The GRU can alleviate the
side effects of gradient disappearance that usually happens in Bi-LSTM and RNN. Therefore, the

ACM Transactions on Internet Technology, Vol. 22, No. 3, Article 75. Publication date: August 2022.

75:18 M. Xu et al.

Fig. 9. CDF comparison of MSE curve.

results of GRU-based approach can maintain relatively more stable values compared with RNN
and Bi-LSTM.

In order to brighten the differences between them, we choose to use the Cumulative Distri-

bution Function (CDF) method to measure them, which is the integral of the probability density
function. For discrete variables, it can represent the sum of the probability of occurrence of all
values less than or equal to x , which is formulated as:

FX (x) = P(X ≤ x). (6)

Figure 9 shows the CDF of MSE based on these four RNN-based methods, these almost over-
lapping curves in Figure 8 can be distinguished more apparently by the difference in CDF values.
Since RNN is quite different from the other three methods, and its effect is the worst one, therefore,
we focus on the discussions on the other three algorithms. Except for the RNN method, we can
clearly see that when the value of MSE is between 0.006 and 0.008, the value of CDF rises very
quickly, which shows that the MSE values of these three methods are concentrated. Meanwhile,
esDNN rises significantly faster than Bi-LSTM and GRU, we can see that for any MSE in this time
period, the CDF value of esDNN always remains at the highest value. Although the curves are very
close, the difference in value between them can still be easily identified. It means that the overall
MSE value of esDNN is smaller than the values of Bi-LSTM and GRU.

For Google’s dataset, we also use the RNN-based methods as baselines for esDNN. Compared
with the Alibaba dataset, we utilize less data from Google’s dataset, therefore, we show the pre-
diction length with minute-level and hour-level. Figure 10 shows the MSE fluctuation of the four
methods based on the Google dataset. For the minute-level prediction, all these methods have little
difference between each other except RNN. When we focus on the hour-level prediction, the trend
of these methods is stable after a short growth, which is consistent with the results of the Alibaba
dataset. We can also notice that RNN always maintains at a high level. Compared with GRU and
esDNN, Bi-LSTM has a higher MSE. For esDNN and GRU, the MSE of these two are quite close,
where the esDNN can achieve a more stable trend, while GRU fluctuates more dynamically. To
conclude, we can notice that the prediction result of esDNN is better than GRU, since the MSE
value of esDNN is smaller than GRU.

We notice that esDNN is very close to GRU’s results over a long sequence of time while the
trend of RNN is much worse than the other three approaches. Thus, we choose to compare the
MSE values without RNN. We analyze the MSE values from Alibaba and Google dataset sepa-
rately, as shown in Figure 11, where the GRU is set as the baseline, and the MSE values of esDNN
and Bi-LSTM are divided by the MSE values of GRU. The value less than 1.0 represents better

ACM Transactions on Internet Technology, Vol. 22, No. 3, Article 75. Publication date: August 2022.

esDNN 75:19

Fig. 10. Prediction accuracy (MSE) of four different RNN methods based on the Google dataset.

Fig. 11. The ratio of MSE compared with GRU for Alibaba and Google Traces.

performance than GRU, and vice-versa. Although GRU performs better prediction results than es-
DNN in a short period of time, esDNN can maintain better accuracy and stability in the long run.

Next, we evaluate the difference between the predicted value and the actual value of esDNN.
Figures 12 and 13 show the CPU usage curves, so that we can see the difference between the
predicted value and the actual value. For the analysis of the Alibaba dataset, we can observe that for
the minute level prediction, though there are some large differences between consecutive values,
esDNN can still give relatively accurate prediction results. For the hour-level prediction, on the
whole, the predicted value is very close to the actual value because their curves are almost fit, and
only a small part of the predicted curve is different from the actual value. For hour-level prediction
based on Google cluster data, esDNN can still accurately predict the trend of CPU usage.

In order to identify the difference between them more intuitively, we summarize the perfor-
mance of these algorithms as listed in Tables 6 and 7. Apart from MSE, we also compare Root
Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) that have been widely
used to evaluate prediction performance. The esDNN approach can achieve the lowest MSE values
compared with other baselines when the prediction length is longer, which is more difficult to be
predicted. For the Google dataset, our approach can also achieve the lowest RMSE with a longer
prediction length. The reason is that our proposed prediction approach based on revised GRU and
CNN not only captures the periodical features inherent in the data, but also significantly reduces
the impact of resource variations on prediction results.

To compare the performance of different approaches in terms of training and predicting cost, we
compare the training time and prediction time as shown in Table 8. The training time is the average
time consumed for training one epoch, and the prediction time is the mean value of predicting

ACM Transactions on Internet Technology, Vol. 22, No. 3, Article 75. Publication date: August 2022.

75:20 M. Xu et al.

Fig. 12. Prediction performance of the esDNN compared with actual Alibaba data.

Fig. 13. Prediction performance of the esDNN compared with actual Google data.

Table 6. MSE, RMSE, and MAPE Comparison with Alibaba Dataset

RNN GRU Bi-LSTM esDNNPrediction

length MSE RMSE MAPE MSE RMSE MAPE MSE RMSE MAPE MSE RMSE MAPE

10s 1.25E-04 0.0112 0.2175 4.27E-06 0.0021 0.0401 9.33E-06 0.0031 0.1596 1.59E-07 0.0004 0.0077

30s 7.50E-05 0.0087 0.1396 1.75E-05 0.0042 0.0541 5.77E-05 0.0076 0.1086 3.13E-05 0.0056 0.0681
1 min 9.02E-05 0.0095 0.1568 9.02E-06 0.0030 0.0325 3.80E-05 0.0062 0.0891 1.71E-05 0.0041 0.0480
30 min 2.93E-04 0.0170 0.2024 1.71E-04 0.0125 0.0772 2.00E-04 0.0142 0.0978 1.84E-04 0.0128 0.0766

1h 4.61E-04 0.0215 0.2343 3.13E-04 0.0177 0.0936 3.31E-04 0.0182 0.1053 3.20E-04 0.0179 0.0891

6h 5.07E-04 0.0225 0.2237 3.88E-04 0.0197 0.1050 4.03E-04 0.0200 0.0891 3.96E-04 0.0199 0.0990
1 day 8.91E-04 0.0293 0.2387 7.34E-04 0.0271 0.1260 7.32E-04 0.0271 0.0898 7.25E-04 0.0269 0.1080
2 days 8.68E-04 0.0295 0.2058 6.74E-04 0.0260 0.1050 6.66E-04 0.0258 0.0872 6.62E-04 0.0257 0.0901
3 days 8.83E-04 0.0297 0.1973 6.54E-04 0.0256 0.0978 6.50E-04 0.0255 0.0857 6.43E-04 0.0254 0.0842

Table 7. MSE, RMSE, and MAPE Comparison with Google Dataset

RNN GRU Bi-LSTM esDNNPrediction

length MSE RMSE MAPE MSE RMSE MAPE MSE RMSE MAPE MSE RMSE MAPE

30min 0.00153232 0.0391 0.1651 6.53E-05 0.0081 0.0228 7.22E-05 0.0085 0.0209 0.00031276 0.0177 0.0439
1h 0.0011334 0.0337 0.1201 0.00030235 0.0174 0.0506 0.00032074 0.0179 0.0567 0.0003576 0.0189 0.0507
2h 0.00113796 0.0337 0.1173 0.00056542 0.0238 0.0737 0.00082948 0.0288 0.0847 0.00052629 0.0229 0.0691

4h 0.00113856 0.0337 0.1246 0.00071719 0.0268 0.0942 0.0011012 0.0332 0.1143 0.00079793 0.0282 0.0884

6h 0.00113166 0.0336 0.1087 0.00079771 0.0282 0.0886 0.00094857 0.0308 0.1010 0.0007228 0.0269 0.0787

8h 0.00156561 0.0396 0.1350 0.00074263 0.0273 0.0880 0.00086032 0.0298 0.0960 0.00073787 0.0272 0.0833

12h 0.00164631 0.0406 0.1368 0.00065455 0.0256 0.0819 0.00095340 0.0309 0.0954 0.00070197 0.0265 0.0814

15h 0.00170941 0.0413 0.1368 0.00086864 0.0295 0.0876 0.0010403 0.0325 0.1017 0.00073697 0.0271 0.0822

1,000 lines of data by repeating 10 times. Based on the results, we can observe that the esDNN
consumes the longest training time with about 10% more time than Bi-LSTM and GRU, which is
an acceptable cost considering the performance improvement in prediction accuracy. The longer
training time can result from the more complicated model of esDNN with application of CNN. And

ACM Transactions on Internet Technology, Vol. 22, No. 3, Article 75. Publication date: August 2022.

esDNN 75:21

Table 8. Training Time and Prediction

Time Comparison

RNN Bi-LSTM GRU esDNN

Traing time (s) 5.11 6.47 6.53 7.14
Prediction time (s) 0.048 0.070 0.071 0.065

Fig. 14. Optimization ratio comparison in minutes with different traces.

for the prediction time, esDNN can perform slightly better than Bi-LSTM and GRU, the reason can
be the Swish activation function that we use can slightly improve the prediction time [48].

To summarize, esDNN can achieve good accuracy based on MSE results. Compared with the
MSE results evaluated in the same datasets derived from Google and Alibaba in [7], esDNN has
reduced the MSE with one order of magnitude from around 7 × 10−2 to 7 × 10−3.

5.4 Applying esDNN for Machines Auto-Scaling with Simulations

The auto-scaling technique can dynamically adjust the number of active machines in the system
based on the system status, e.g., removing machines when the system is at a low utilization level or
adding more machines when the system is overutilized. By taking advantage of auto-scaling, the
system performance, e.g., energy consumption, can be optimized. However, without sufficiently
accurate prediction for workloads, the popular threshold-based auto-scaling approaches, like static
threshold, are undesirable for workloads with high variance.

To further demonstrate the capability of the proposed approach, we integrate esDNN into the
auto-scaling scenario for physical machines in Alibaba and Google cloud data centers by simulat-
ing the number of machines and resource usage. The specifications of machines are derived from
the corresponding original datasets, and the scheduling period is configured as 5 minutes.

Our objective is to improve resource utilization and reduce the number of active machines with
sufficient accurate predictions. Therefore, the use of CPU utilization as an input to the auto-scaling
method is highly desired. And the output is the number of active machines. As an auto-scaling
baseline, we use the average number of active machines based on the previous time slots [49],
which can be calculated as:

M (t) =

∑m
i=1 M (t − i)

m
, (7)

where M (t) represents the number of active machines at time interval t , and m is the number of
previous time slots used for the prediction that we set m as 5 for our experiments. The number
of active machines calculated by Equation (7) is normalized as 1.0. We normalize the number of
active machines of the auto-scaling approach based on esDNN and calculate the ratio between the

ACM Transactions on Internet Technology, Vol. 22, No. 3, Article 75. Publication date: August 2022.

75:22 M. Xu et al.

esDNN-based approach and baseline, and we configure the upper CPU utilization threshold as 80%.
If the ratio of machines is less than 1.0, it means that the esDNN-based approach can reduce the
number of active machines. Figure 14(a) shows the prediction of the number of active machines
based on the Alibaba dataset. As expected, the ratio fluctuates in the range of 0.3 to 0.6, indicating
that our prediction algorithm has achieved a good effect that only 40% to 80% of the number of
machines will be active compared with the original number of machines from the dataset, which
can significantly reduce the number of active machines.

As for the Google dataset, we analyze the capacity distribution of about 37,678 machines, where
the machines with 0.5 capacity are about 92.8%, the machines with 0.25 capacity are about 1.4%, and
the machines with capacity 1.0 are about 5.9%. This is different from the distribution of the homo-
geneous machines in the Alibaba dataset. After normalizing the CPU usage in the Google dataset,
we also utilize the algorithm previously applied to the Alibaba dataset, and Figure 14(b) shows the
ratio ranges from 0.25 to 1. For example, at the 400th minute, the baseline needs 18,371 machines,
while our approach only uses 5,161 machines. The results of these experiments are close to those
based on the Alibaba dataset. It can be concluded that the proposed approach can efficiently im-
prove resource usage by reducing the number of active machines, and it is promising to reduce
the energy consumption of cloud data centers by providing an accurate prediction method.

6 CONCLUSIONS AND FUTURE WORK

Our deep learning-based approach for cloud workload prediction brings opportunities to optimize
resource provisioning in the cloud computing environment. In this article, we apply sliding win-
dow for multivariate time series to convert the high-dimension data into supervised learning time
series to address the high-dimensionality challenge. Based on the converted data, we proposed a
revised GRU-based approach to train the prediction model to achieve high prediction accuracy for
high variance cloud workloads. Comprehensive experiments based on the realistic traces derived
from Google and Alibaba have demonstrated that our proposed approach can achieve better per-
formance in terms of accuracy compared with state-of-the-art approaches. To further show the
effectiveness of optimizing resource provisioning, we applied our approach for auto-scaling based
on realistic traces, and results illustrate that our approach can significantly optimize the resource
usage of cloud data centers, thus saving operational costs.

In the future, our approach can be integrated into a container-based prototype system, e.g.,
Kubernetes, to optimize resource provisioning. We would like to investigate the proposed approach
to be extended for Edge Computing to reduce response time using offloading techniques, and
consider the location-aware and mobility-aware scenarios (e.g., predicting the loads allocating to
different devices generated by mobile users). We would also like to make automatic esDNN by
using the Monitor, Analyze, Plan, and Execute (MAPE) model.

REFERENCES

[1] Minxian Xu and Rajkumar Buyya. 2019. Brownout approach for adaptive management of resources and applications
in cloud computing systems: A taxonomy and future directions. Comput. Surveys 52, 1, Article 8 (2019), 27 pages.

[2] Rajkumar Buyya, Chee Shin Yeo, and Srikumar Venugopal. 2008. Market-oriented cloud computing: Vision, hype, and
reality for delivering it services as computing utilities. In Proceedings of the 10th IEEE International Conference on High

Performance Computing and Communications. 5–13.
[3] Mohammad Hossein Ghahramani, MengChu Zhou, and Chi Tin Hon. 2017. Toward cloud computing QoS architecture:

Analysis of cloud systems and cloud services. IEEE/CAA Journal of Automatica Sinica 4, 1 (2017), 6–18.
[4] M. Du, Y. Wang, K. Ye, and C. Xu. 2020. Algorithmics of cost-driven computation offloading in the edge-cloud envi-

ronment. IEEE Trans. Comput. 69, 10 (2020), 1519–1532.
[5] Yujun Chen, Xian Yang, Qingwei Lin, Hongyu Zhang, Feng Gao, Zhangwei Xu, Yingnong Dang, Dongmei Zhang,

Hang Dong, Yong Xu, Hao Li, and Yu Kang. 2019. Outage prediction and diagnosis for cloud service systems.

ACM Transactions on Internet Technology, Vol. 22, No. 3, Article 75. Publication date: August 2022.

esDNN 75:23

In Proceedings of the World Wide Web Conference (WWW’19). ACM, New York, NY, 2659–2665. http://dx.doi.org/10.
1145/3308558.3313501

[6] S. Wang, X. Li, and R. Ruiz. 2020. Performance analysis for heterogeneous cloud servers using queueing theory. IEEE

Trans. Comput. 69, 4 (2020), 563–576.
[7] Z. Chen, J. Hu, G. Min, A. Y. Zomaya, and T. El-Ghazawi. 2020. Towards accurate prediction for high-dimensional and

highly-variable cloud workloads with deep learning. IEEE Transactions on Parallel and Distributed Systems 31, 4 (April
2020), 923–934. http://dx.doi.org/10.1109/TPDS.2019.2953745

[8] W. Chen, K. Ye, Y. Wang, G. Xu, and C. Xu. 2018. How does the workload look like in production cloud? Analysis
and clustering of workloads on Alibaba cluster trace. In Proceedings of the 2018 IEEE 24th International Conference on

Parallel and Distributed Systems (ICPADS). 102–109.
[9] T. Mikolov, S. Kombrink, L. Burget, J. Černocký, and S. Khudanpur. 2011. Extensions of recurrent neural network

language model. In Proceedings of the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP). 5528–5531.
[10] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural Computation 9, 8 (1997), 1735–1780.

http://dx.doi.org/10.1162/neco.1997.9.8.1735
[11] Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. 2014. Empirical evaluation of gated recurrent

neural networks on sequence modeling. In Proceedings of the NIPS 2014 Workshop on Deep Learning.

[12] Hervé Abdi and Lynne J. Williams. 2010. Principal component analysis. WIREs Computational Statistics 2, 4 (2010),
433–459. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/wics.101

[13] Yasi Wang, Hongxun Yao, and Sicheng Zhao. 2016. Auto-encoder based dimensionality reduction. Neurocomputing

184 (2016), 232–242. RoLoD: Robust Local Descriptors for Computer Vision 2014.
[14] Jason Brownlee. 2016. Supervised and unsupervised machine learning algorithms. Machine Learning Mastery 16,

03 (2016).
[15] R. N. Calheiros, E. Masoumi, R. Ranjan, and R. Buyya. 2015. Workload prediction using ARIMA model and its impact

on cloud applications’ QoS. IEEE Transactions on Cloud Computing 3, 4 (Oct 2015), 449–458. http://dx.doi.org/10.1109/
TCC.2014.2350475

[16] Jingqi Yang, Chuanchang Liu, Yanlei Shang, Bo Cheng, Zexiang Mao, Chunhong Liu, Lisha Niu, and Junliang Chen.
2014. A cost-aware auto-scaling approach using the workload prediction in service clouds. Information Systems Fron-

tiers 16, 1 (March 2014), 7–18.
[17] Katja Cetinski and Matjaz B. Juric. 2015. AME-WPC: Advanced model for efficient workload prediction in the cloud.

Journal of Network and Computer Applications 55 (2015), 191–201.
[18] Parminder Singh, Pooja Gupta, and Kiran Jyoti. 2019. TASM: Technocrat ARIMA and SVR model for workload pre-

diction of web applications in cloud. Cluster Computing 22, 2 (June 2019), 619–633.
[19] Chunhong Liu, Chuanchang Liu, Yanlei Shang, Shiping Chen, Bo Cheng, and Junliang Chen. 2017. An adaptive predic-

tion approach based on workload pattern discrimination in the cloud. Journal of Network and Computer Applications

80 (2017), 35–44.
[20] J. Bi, H. Yuan, and M. Zhou. 2019. Temporal prediction of multiapplication consolidated workloads in distributed

clouds. IEEE Transactions on Automation Science and Engineering 16, 4 (2019), 1763–1773.
[21] Jitendra Kumar and Ashutosh Kumar Singh. 2018. Workload prediction in cloud using artificial neural network and

adaptive differential evolution. Future Generation Computer Systems 81 (2018), 41–52. http://dx.doi.org/10.1016/j.future.
2017.10.047

[22] Q. Zhang, L. T. Yang, Z. Yan, Z. Chen, and P. Li. 2018. An efficient deep learning model to predict cloud workload for
industry informatics. IEEE Transactions on Industrial Informatics 14, 7 (2018), 3170–3178.

[23] Jitendra Kumar, Rimsha Goomer, and Ashutosh Kumar Singh. 2018. Long short term memory recurrent neural net-
work (LSTM-RNN) based workload forecasting model for cloud datacenters. Procedia Computer Science 125 (2018),
676–682.

[24] F. Qiu, B. Zhang, and J. Guo. 2016. A deep learning approach for VM workload prediction in the cloud. In 2016 17th

IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed

Computing (SNPD). 319–324. http://dx.doi.org/10.1109/SNPD.2016.7515919
[25] Yonghua Zhu, Weilin Zhang, Yihai Chen, and Honghao Gao. 2019. A novel approach to workload prediction using

attention-based LSTM encoder-decoder network in cloud environment. EURASIP Journal on Wireless Communications

and Networking 2019, 1 (2019), 274.
[26] Maryam Amiri, Leyli Mohammad-Khanli, and Raffaela Mirandola. 2018. An online learning model based on episode

mining for workload prediction in cloud. Future Generation Computer Systems 87 (2018), 83–101.
[27] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fontoura, and Ricardo Bianchini. 2017. Re-

source central: Understanding and predicting workloads for improved resource management in large cloud platforms.
In Proceedings of the 26th Symposium on Operating Systems Principles (SOSP’17). ACM, New York, 153–167.

ACM Transactions on Internet Technology, Vol. 22, No. 3, Article 75. Publication date: August 2022.

http://dx.doi.org/10.1145/3308558.3313501
http://dx.doi.org/10.1109/TPDS.2019.2953745
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/wics.101
http://dx.doi.org/10.1109/TCC.2014.2350475
http://dx.doi.org/10.1016/j.future.2017.10.047
http://dx.doi.org/10.1109/SNPD.2016.7515919

75:24 M. Xu et al.

[28] Jing Bi, Shuang Li, Haitao Yuan, and MengChu Zhou. 2021. Integrated deep learning method for workload and resource
prediction in cloud systems. Neurocomputing 424 (2021), 35–48.

[29] Md Ebtidaul Karim, Mirza Mohd Shahriar Maswood, Sunanda Das, and Abdullah G. Alharbi. 2021. BHyPreC: A novel
Bi-LSTM based hybrid recurrent neural network model to predict the CPU workload of cloud virtual machine. IEEE

Access 9 (2021), 131476–131495.
[30] Chuang Chen, Ningyun Lu, Bin Jiang, and Cunsong Wang. 2021. A risk-averse remaining useful life estimation for

predictive maintenance. IEEE/CAA Journal of Automatica Sinica 8, 2 (2021), 412–422.
[31] Ashutosh Kumar Singh, Deepika Saxena, Jitendra Kumar, and Vrinda Gupta. 2021. A quantum approach towards the

adaptive prediction of cloud workloads. IEEE Transactions on Parallel and Distributed Systems (2021).
[32] In Kee Kim, Wei Wang, Yanjun Qi, and Marty Humphrey. 2020. Forecasting cloud application workloads with cloudin-

sight for predictive resource management. IEEE Transactions on Cloud Computing (2020).
[33] Wei Sun, Pengyu Li, Zhi Liu, Xue Xue, Qiyue Li, Haiyan Zhang, and Junbo Wang. 2021. LSTM based link quality

confidence interval boundary prediction for wireless communication in smart grid. Computing 103 (2021), 251–269.
[34] Xuesong Li, Yating Liu, Kunfeng Wang, and Fei-Yue Wang. 2020. A recurrent attention and interaction model for

pedestrian trajectory prediction. IEEE/CAA Journal of Automatica Sinica 7, 5 (2020), 1361–1370.
[35] Silvio Barra, Salvatore Mario Carta, Andrea Corriga, Alessandro Sebastian Podda, and Diego Reforgiato Recupero.

2020. Deep learning and time series-to-image encoding for financial forecasting. IEEE/CAA Journal of Automatica

Sinica 7, 3 (2020), 683–692.
[36] Junfei Qiao, Fei Li, Cuili Yang, Wenjing Li, and Ke Gu. 2019. A self-organizing RBF neural network based on distance

concentration immune algorithm. IEEE/CAA Journal of Automatica Sinica 7, 1 (2019), 276–291.
[37] Thomas G. Dietterich. 2002. Machine learning for sequential data: A review. In Joint IAPR International Workshops

on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR). Springer,
15–30.

[38] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing systems. 1097–1105.

[39] Dongkuan Xu, Wei Cheng, Bo Zong, Dongjin Song, Jingchao Ni, Wenchao Yu, Yanchi Liu, Haifeng Chen, and Xiang
Zhang. 2020. Tensorized LSTM with adaptive shared memory for learning trends in multivariate time series. In AAAI.
1395–1402.

[40] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller, Olivier Grisel, Vlad Niculae, Peter
Prettenhofer, Alexandre Gramfort, Jaques Grobler, Robert Layton, Jake VanderPlas, Arnaud Joly, Brian Holt, and Gaël
Varoquaux. 2013. API design for machine learning software: Experiences from the scikit-learn project. In ECML PKDD

Workshop: Languages for Data Mining and Machine Learning. 108–122.
[41] Rui Fu, Zuo Zhang, and Li Li. 2016. Using LSTM and GRU neural network methods for traffic flow prediction. In 2016

31st Youth Academic Annual Conference of Chinese Association of Automation (YAC). IEEE, 324–328.
[42] Prajit Ramachandran, Barret Zoph, and Quoc V. Le. 2017. Searching for activation functions. arXiv preprint

arXiv:1710.05941 (2017).
[43] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-

mawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G.
Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2016. TensorFlow: A system for large-scale machine learning. In 12th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 16). Savannah, GA, 265–283.
[44] John Wilkes. 2011. More Google cluster data. Google research blog. (Nov. 2011). Posted at http://googleresearch.

blogspot.com/2011/11/more-google-cluster-data.html.
[45] Hervé Bourlard and Yves Kamp. 1988. Auto-association by multilayer perceptrons and singular value decomposition.

Biological cybernetics 59, 4 (1988), 291–294.
[46] Andrew Ng et al. 2011. Sparse autoencoder. CS294A Lecture notes 72, 2011 (2011), 1–19.
[47] Xugang Lu, Yu Tsao, Shigeki Matsuda, and Chiori Hori. 2013. Speech enhancement based on deep denoising autoen-

coder. In Interspeech, Vol. 2013. 436–440.
[48] Prajit Ramachandran, Barret Zoph, and Quoc V. Le. 2017. Searching for activation functions. CoRR abs/1710.05941

(2017). http://arxiv.org/abs/1710.05941.
[49] Mohammad Sadegh Aslanpour, Mostafa Ghobaei-Arani, and Adel Nadjaran Toosi. 2017. Auto-scaling web applications

in clouds: A cost-aware approach. Journal of Network and Computer Applications 95 (2017), 26–41.

Received April 2021; revised November 2021; accepted March 2022

ACM Transactions on Internet Technology, Vol. 22, No. 3, Article 75. Publication date: August 2022.

http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html
http://arxiv.org/abs/1710.05941

