
638 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 36, NO. 1, JANUARY 2025

A Novel Sequence-to-Sequence-Based Deep
Learning Model for Multistep

Load Forecasting
Renzhi Lu , Member, IEEE, Ruichang Bai, Ruidong Li , Senior Member, IEEE, Lijun Zhu ,

Mingyang Sun , Senior Member, IEEE, Feng Xiao , Senior Member, IEEE,
Dong Wang , Senior Member, IEEE, Huaming Wu , Senior Member, IEEE,

and Yuemin Ding , Senior Member, IEEE

Abstract— Load forecasting is critical to the task of energy
management in power systems, for example, balancing supply
and demand and minimizing energy transaction costs. There

Manuscript received 25 June 2022; revised 23 May 2023 and
11 September 2023; accepted 29 October 2023. Date of publication 19 January
2024; date of current version 8 January 2025. This work was supported
in part by the National Natural Science Foundation of China under
Grant 62003143, Grant 62373158, and Grant 62173155; in part by the
Natural Science Foundation of Hubei Province under Grant 2022CFB041;
in part by the Wuhan Science and Technology Innovation Special Project
under Grant 2022010801020099; in part by the Fundamental Research Funds
for the Central Universities under Grant HUST 2020kfyXJJS084 and Grant
2022SMECP03; in part by the Key Laboratory of System Control and Infor-
mation Processing under Grant Scip202211; in part by the Key Laboratory of
Industrial Internet of Things and Networked Control under Grant 2020FF02; in
part by the Open Fund of Hubei Key Laboratory of Mechanical Transmission
and Manufacturing Engineering at the Wuhan University of Science and
Technology under Grant MTMEOF2021B04; in part by the Hubei Key
Laboratory of Advanced Control and Intelligent Automation for Complex
Systems under Grant ACIA2022001; and in part by the 111 Project under
Grant B17040. (Corresponding authors: Huaming Wu; Yuemin Ding.)

Renzhi Lu is with the Key Laboratory of Image Processing and Intelli-
gent Control, School of Artificial Intelligence and Automation, Huazhong
University of Science and Technology, Wuhan 430074, China, also with the
Key Laboratory of System Control and Information Processing, Ministry of
Education, Shanghai 200240, China, also with the Key Laboratory of Smart
Manufacturing in Energy Chemical Process, Ministry of Education, East China
University of Science and Technology, Shanghai 200237, China, and also with
the Hubei Key Laboratory of Mechanical Transmission and Manufacturing
Engineering, Wuhan University of Science and Technology, Wuhan 430081,
China (e-mail: rzlu@hust.edu.cn).

Ruichang Bai is with Shanghai Electric Group Company, Ltd., Central
Academe, Shanghai 200070, China (e-mail: bairch@shanghai-electric.com).

Ruidong Li is with the Institute of Science and Engineering, Kanazawa
University, Kakuma, Kanazawa 920-1192, Japan (e-mail: liruidong@ieee.org).

Lijun Zhu is with the School of Artificial Intelligence and Automation,
State Key Laboratory of Intelligent Manufacturing Equipment and Technol-
ogy, Huazhong University of Science and Technology, Wuhan 430074, China
(e-mail: ljzhu@hust.edu.cn).

Mingyang Sun is with the State Key Laboratory of Industrial Control Tech-
nology, Department of Control Science and Engineering, Zhejiang University,
Hangzhou 310027, China (e-mail: mingyangsun@zju.edu.cn).

Feng Xiao is with the State Key Laboratory of Alternate Electrical Power
System with Renewable Energy Sources and the School of Control and Com-
puter Engineering, North China Electric Power University, Beijing 102206,
China (e-mail: fengxiao@ncepu.edu.cn).

Dong Wang is with the Key Laboratory of Intelligent Control and
Optimization for Industrial Equipment of Ministry of Education and the
School of Control Science and Engineering, Dalian University of Technology,
Dalian 116024, China (e-mail: dwang@dlut.edu.cn).

Huaming Wu is with the Center for Applied Mathematics, Tianjin
University, Tianjin 300072, China (e-mail: whming@tju.edu.cn).

Yuemin Ding is with the Tecnun School of Engineering, University of
Navarra, 20018 San Sebastián, Spain (e-mail: yueminding@tecnun.es).

Digital Object Identifier 10.1109/TNNLS.2023.3329466

are many approaches used for load forecasting such as the
support vector regression (SVR), the autoregressive integrated
moving average (ARIMA), and neural networks, but most of these
methods focus on single-step load forecasting, whereas multistep
load forecasting can provide better insights for optimizing the
energy resource allocation and assisting the decision-making
process. In this work, a novel sequence-to-sequence (Seq2Seq)-
based deep learning model based on a time series decomposition
strategy for multistep load forecasting is proposed. The model
consists of a series of basic blocks, each of which includes one
encoder and two decoders; and all basic blocks are connected
by residuals. In the inner of each basic block, the encoder is
realized by temporal convolution network (TCN) for its benefit
of parallel computing, and the decoder is implemented by long
short-term memory (LSTM) neural network to predict and
estimate time series. During the forecasting process, each basic
block is forecasted individually. The final forecasted result is
the aggregation of the predicted results in all basic blocks.
Several cases within multiple real-world datasets are conducted
to evaluate the performance of the proposed model. The results
demonstrate that the proposed model achieves the best accuracy
compared with several benchmark models.

Index Terms— Decomposition strategy, long short-term mem-
ory (LSTM) neural network, multistep load forecasting,
sequence-to-sequence (Seq2Seq) model, temporal convolution
network (TCN).

I. INTRODUCTION

WITH the rapid development of modernization and
urbanization, the role of a stable and efficient power

system in society has become increasingly significant [1].
In power systems, load forecasting is performed to determine
the supply of electricity, which is essential to establish an
efficient and accurate operating plan to reduce system losses
and improve the reliability, efficiency, and security of the
electricity supply for customers [2]. Specifically, for energy
suppliers, forecasting electricity loads in advance is critical
to balancing production and demand, reducing production
costs, and implementing various demand response pricing
schemes [3]. Recently, an interesting and fantastic IEEE data-
port day-ahead electricity demand forecasting competition was
held [4], which was based on the post-COVID paradigm load
data. The competition aimed to encourage the development
and promotion of state-of-the-art load forecasting methods
that can alleviate the negative impact of pandemic-related
demand uncertainties on the electricity market. However, due
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to various uncertainties and the complexity of climate change,
industrial structures, and other social environments, load data
exhibit complex patterns and fluctuations, making accurate
load forecasting a challenging task [5].

Generally, according to forecasting horizon, the load fore-
casting can be classified into two categories: single-step ahead
and multistep ahead [6]. The single-step ahead load forecasting
uses historical load data and related variables to predict the
next one-step load data, and the multistep ahead forecasting
is used to predict future multistep load data. Compared to
single-step ahead load forecasting, the multistep ahead load
forecasting task presents various additional challenges, such
as increased prediction errors and reduced accuracy, making
the task of multistep ahead forecasting more difficult [7]. Load
data are essentially time series. Many time series forecasting
approaches have been reported in the literature. Broadly, these
techniques can be grouped into three major groups: statistical
methods, traditional machine learning-based methods, and
deep learning-based methods [8].

Statistical models are based on fitting a regression model to
the previous data and then validating the model by finding the
difference between the actual and predicted values [9]. In par-
ticular, the autoregressive integrated moving average (ARIMA)
model is one of the most famous statistical models used to per-
form load forecasting [10], and the ARIMA model overcomes
the drawback that the autoregressive moving average (ARMA)
model is only applicable to stationary time series [11]. Besides,
in order to incorporate exogenous variables into the forecasting
model, the autoregressive integrated moving average exoge-
nous model (ARIMAX) has been proposed. The ARIMA and
its variant models are simple and interpretable, making them
easier to implement and understand and could also achieve a
good forecasting performance on the linear data, to a certain
extent. However, a drawback is thereupon occurred for their
assumption of a linear correlation structure in the underlying
time series data. This proves unreasonable in many real-world
load forecasting problems, since real-world data are often
composed by both linear and nonlinear patterns [12].

Traditional machine learning-based models learn patterns
from input load data. Different from statistical models, the
input–output mapping in machine learning models does not
need to be defined in advance. Instead, it is learned during the
training process [13]. The support vector regression (SVR),
which maps historical load data to a higher dimensional
space through a nonlinear mapping and then performs linear
regression on the mapped elements, is one of the most com-
monly used machine learning models for load forecasting [14].
Another commonly adopted model is the regression trees
(RTs) [15], which has a tree-like structure and regresses deci-
sions in the form of a tree, starting from the root node down
to the leaf nodes, where the leaf nodes contain the responses.
Although the parameters of the SVR and RT are learned
during the training process, feature extraction is still needed
to perform to determine the inputs to the model. Moreover,
adjusting the hyperparameters of machine learning-based mod-
els would have a significant impact on its learning speed and
performance, depending on the characteristics of the training
data [16]. However, there is currently no standard method

for selecting the best values for these hyperparameters [17].
Typically, practitioners tune a subset of these parameters
through trials to maximize accuracy on a validation dataset.
In the specific study of this work, the hyperparameters of
the proposed model are given in Section V-D, which are
established according to some empirical guidelines in the
literature and a number of preliminary accuracy tests via trial
and error. In addition, finding a well-fit training dataset is
important for building a successful machine learning model.
Including too much or too little information in the training
data can have a crucial impact on the prediction accuracy [18].
If too few features are considered, the model will be simple,
leading to high bias and low variance; this is known as
underfitting. Underfitting is not fitting accurately in the dataset
via simple curve, and linear hypothesis thus should always
be low biased to avoid the problem of underfitting. On the
contrary, if too many features are included, the real valuable
features may be overshadowed by disturbances, resulting in a
complex model, leading to high variance and low bias; this
is known as overfitting. Overfitting is fitting the training set
accurately via complex curve and high-order hypothesis but is
not the solution as the error with unseen data is high [19]. Both
underfitting and overfitting can decrease prediction accuracy,
since the quantity and quality of input features play a crucial
role in forecasting accuracy. Various approaches, such as
correlation analysis and principal components analysis, have
been used to extract and select input features [20].

Deep learning-based models are promising approaches for
accurate load forecasting due to their excellent nonlinear
approximation capabilities enabling them to extract features
well and automatically build complex mapping relationships
between multiple inputs and outputs [2]. The convolutional
neural network (CNN) and long short-term memory (LSTM)
have been widely used in load prediction and have achieved
some success in the field of single-step load forecasting.
In addition, some hybrid methods combining CNN and LSTM
for load forecasting have been proposed to take full advantage
of the respective strengths of the CNN and LSTM [21]. In gen-
eral, when proposing a deep learning-based forecasting model,
it often requires a large amount of data to train. Fortunately,
the widespread deployment of smart meters in power grids has
resulted in the availability of large amounts of data. Therefore,
neural network models are currently recognized as one of the
most promising approaches for power load forecasting.

The aforementioned traditional machine learning and deep
learning-based models have achieved undeniable results in
load forecasting, but they all focus on single-step ahead load
forecasting. In most real-world applications, multistep ahead
forecasting is more valued than single-step ahead forecasting,
since it can provide key insights for optimizing the energy
resource allocation and assisting the decision-making
process [22].

Currently, there are several strategies for generating multi-
step ahead forecasts: the direct strategy, recursive strategy, and
DirRec strategy [23]. However, these strategies are limited by
their inherent flaws, and none of them can achieve good per-
formance. Fortunately, the multi-input multi-output (MIMO)
strategy implemented by sequence-to-sequence (Seq2Seq)
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TABLE I
COMPARISON BETWEEN THE PROPOSED APPROACH WITH OTHER EXISTING MODELS

model is regarded as a promising approach for multistep
ahead forecasting [24]. The heart of this model lies in two
different sequential-based neural networks, namely, encoder
and decoder, which can enhance the prediction of continuous
sequences while also allowing the input and output to have
different time dimensions. The encoder is responsible for
converting the input sequence into a fixed-size vector repre-
sentation, called the context vector. The decoder is responsible
for converting the context vector into the output sequence.
However, for longer input sequences, the encoder may suffer
from incomplete compression, and it is difficult for the decoder
to extract all the valuable information from the context vector.

To overcome these drawbacks of multistep ahead forecast-
ing models, a novel Seq2Seq-based deep learning model is
proposed in this work. The model consists of a series of basic
blocks, each of which is responsible for predicting a portion of
patterns in the time series; and the basic blocks are connected
by residuals. The residual removes the patterns that can be
fit well in the previous basic block, allowing the downstream
basic block can concentrate on predicting patterns that are
not learned by the previous basic block. The final predic-
tion result is the aggregation of all basic blocks. To verify
the effectiveness and evaluate the accuracy of the proposed
model, multiple cases are conducted on real-word datasets.
The results demonstrated that the proposed model outperforms
all benchmark models in terms of accuracy. To better clearly
clarify the advantages and drawbacks of the proposed model
with other existing model, a comparative analysis is carried
out with respect to some aspects as given in Table I, including
application scene and performance comparison. In summary,
this work has the following contributions.

1) A novel Seq2Seq-based deep learning model is proposed
for multistep ahead load forecasting, in which each basic
block of the model is connected by residuals, and the
final residual output is used as part of the loss function.

2) A decomposition strategy is deeply integrated into the
Seq2Seq framework to improve the trainability of the
deep architecture and the convergence of the model.

3) The proposed model dynamically decomposes the
original time series into individual components for
prediction, reducing the overall prediction burden and
improving the forecasting accuracy.

4) In each basic block, temporal convolutional network
(TCN) is used as the encoder, and LSTM is used as
the decoder. The advantages of the TCN and LSTM are
combined, and a considerable improvement in the results
is achieved.

The rest of this article is organized as follows. Section II
presents the problem formulation for the load forecasting task,
which consists of problem description and existing available
approaches. Section III presents the technical preliminaries,
which are the basis of the proposed model. Section IV
describes the proposed methodology in detail. Section V
explains the experiments and analyzes the corresponding
results; and finally, Section VI concludes this article.

II. PROBLEM FORMULATION

In this section, we present the load forecasting task in
detail in Section II-A and analyze the existing multistep ahead
forecasting approaches in Section II-B.

A. Problem Description

Assume that the time-series load data are X , which can be
described as follows:

X = {x1, x2, . . . , xT } (1)

where xi represents the actual load value at the i th timestamp,
and T denotes the length of the historical load sequence. Load
forecasting is to predict load value for the next H time steps
given historical load data of length T , and the parameter H
is called the forecasting horizon. When H = 1, it is called
single-step ahead forecasting; and when H > 1, it is called
multistep ahead forecasting. More specifically, for single-step
ahead forecasting, the formula can be expressed as follows:

xT+1 = Fsingle(x1, x2, . . . , xT ) (2)
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where Fsingle denotes the single-step ahead forecasting model
and xT+1 is the predicted load value given the historical load
sequence. Different from the single-step ahead forecasting,
the multistep ahead forecasting is to predict various-step load
values, such as k-step ahead forecasting as follows:

xT+1, xT+2, . . . , xT+k = Fmulti(x1, x2, . . . , xT ) (3)

where Fmulti denotes the multistep ahead forecasting model.
xT+1:T+k denotes the predicted sequence, including k predicted
load values.

B. Existing Available Approaches

Currently, to the best of our knowledge, there are four main
strategies that can perform multistep ahead forecasting, i.e., the
recursive strategy, the direct strategy, the DirRec strategy, and
the MIMO strategy [23]. Among the four strategies, the first
three are called single-output models because they all estab-
lish a multiple-input single-output mapping. The last MIMO
strategy is usually implemented by the Seq2Seq architecture.
These four strategies are described and discussed as follows.

The recursive strategy is the most intuitive and traditional
forecasting strategy. It uses a single-step ahead forecasting
model (such as SVR, ARIMA, or deep neural network) that
recursively takes previous predictions as its input to predict
subsequent predictions until H predictions are output [25].
The formula of the recursive strategy for multistep ahead
forecasting is defined as follows:

yt+1 = FRec(xt , xt−1, . . . , xt−N+1)

yt+2 = FRec(yt+1, xt , xt−1, . . . , xt−N+2)

...

yt+H = FRec(yt+H−1, yt+H−2, . . . , yt+H−N )

(4)

where FRec denotes a single-step ahead forecasting model in
the recursive strategy. yt+1:H denotes the forecasted value,
and xt :t−N+1 denotes the given historical time series data of
length N . Although the recursive strategy is easy to imple-
ment, iteration-based forecasting methods will produce large
cumulative errors when the forecasting horizon H is large [26].

Different from the recursive strategy, the direct strategy
builds H different single-step ahead forecasting models for
each forecasting horizon, and the direct strategy is defined by
the following equation:

yt+h = FDir-h(xt , xt−1, . . . , xt−N+1) (5)

where h ∈ {1, 2, 3, . . . , H}, and FDir-h denotes the hth
forecasting model. Obviously, the direct strategy does not
accumulate errors. However, since H models are learned
independently, which prevents this approach from considering
the complex dependences between the predicted values, and
this further affects the forecasting accuracy [26].

The DirRec strategy combines the two previous strategies,
which use different single-step ahead forecasting models for
each horizon to calculate the forecasts (similar in this respect
to the Direct strategy), then, at each time step, expand the
input set by adding variables corresponding to the forecasts

of the previous step (similar in this respect to the recursive
strategy). The formula of this strategy is as follows:

yt+1 = FDirRec-1(xt , xt−1, . . . , xt−N+1)

yt+2 = FDirRec-2(yt+1, xt , xt−1, . . . , xt−N+1)

...

yt+H = FDirRec-H(yt+H−1, . . . , yt+1, xt , . . . , xt−N+1)

(6)

where FDirRec-h denotes the hth forecasting model and yt+h

denotes the forecasted value at moment t + h.
Although the DirRec strategy avoids the disadvantage of the

direct strategy, it still has the disadvantage of the recursive
strategy, i.e., error accumulation [25].

The MIMO strategy can address the inherent drawbacks
of single-output strategies since the MIMO strategy models
multiple-output dependences rather than modeling single out-
put mapping [27]. Consequently, the MIMO strategy can
avoid error accumulation and overcome the problem caused
by using independently single-step predictor at different steps
in the direct strategy. However, The MIMO strategy imposes
a constraint that all horizons being predicted must use the
same model structure and the same set of input training
data. This limitation reduces the flexibility of the forecasting
approach and may bias the resulting model [28]. Fortunately,
the Seq2Seq framework is employed to implement the MIMO
strategy, and the advantages of neural networks can signifi-
cantly alleviate the drawbacks of the MIMO approach. The
Seq2Seq framework is comprised of two sequential-based
neural networks, an encoder and a decoder. However, for
longer input sequences in Seq2Seq model, the encoder may
suffer from incomplete compression, and it is difficult for the
decoder to extract all the valuable information from this single
vector, which therefore affects the prediction accuracy.

To overcome the drawbacks of current multistep ahead fore-
casting methodologies, a novel Seq2Seq-based deep learning
model is proposed in this work, and the details are presented
in Section IV.

III. TECHNICAL PRELIMINARIES

This section will briefly review the related basic deep learn-
ing techniques for time series forecasting, including LSTM,
TCN, and Seq2Seq. All of these techniques are preliminary
knowledge for the proposed model.

A. LSTM

Benefiting from the self-feedback mechanism, the recurrent
neural network (RNN) model has advantages in exploring the
temporal relationships in time series. However, it is more prone
to gradient disappearance in practical applications. LSTM is
designed to solve this problem on the basis of RNN [29] and
thus with the ability to build long-term dependences.

Fig. 1 shows the structure of an LSTM unit. In order
to establish long-term dependence, LSTM maintains a new
internal state s throughout its life cycle. In addition, three
gate structures are introduced: input gate, forget gate, and
output gate. The internal state st−1 interacts with the external
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Fig. 1. Structure of LSTM unit.

state ht−1 and the input xt . With the help of the gate mech-
anism, the output of the previous time step and the input of
the current time step are used to determine the internal state
vector of the elements that should be maintained, updated,
or deleted [30]. The update formula of the state in LSTM at
t th timestamp is as follows:

f t = σ
(
W f x xt +W f h ht−1 + b f

)
i t = σ(W i x xt +W ih ht−1 + bi )

gt = φ
(
W gx xt +W gh ht−1 + bg

)
ot = σ(W ox xt +W oh ht−1 + bo)

st = gt ⊙ i t + st−1 ⊙ f t

ht = φ(st )⊙ ot (7)

where W f x , W f h , W i x , W ih , W gx , W gh , W ox , and W oh

are the weight matrices; and b f , bi , bg , and bo are the
biases of the activation function. σ(·) is the sigmoid activation
function, φ(·) represents the hyperbolic tangent function, and
⊙ represents the element-by-element multiplication. i t , f t ,
and ot denote the states of input gate, forget gate, and output
gate, respectively; and gt is the candidate state [31].

B. TCN

The TCN is a general convolution model for sequence mod-
eling tasks with powerful feature extraction and efficient paral-
lel computing capabilities [32]. It consists of three parts: causal
convolution, dilated convolution, and residual connection.

The causal convolutions ensure causal constraint, which
means that there is no leakage of information from the
future to past. Furthermore, to expand the receptive field of
causal convolution more efficiently, the dilated convolution,
which can realize an exponentially enlarged receptive field,
is employed in the TCN [32]. Fig. 2(a) shows a dilated and
causal convolution with a convolution kernel size of 2 and an
exponential increase in expansion factor d(d = O(2i )) in the
i th layer of the network.

In addition, in the design of the general TCN model,
a residual block is adopted to replace the convolutional layer.
Fig. 2 shows the residual block of the general TCN. To ensure
that the addition of residual blocks can accept tensors of the
same shape, a 1 × 1 convolution kernel is adopted at the
residual connection to perform dimensional transformation.
Within the residual block, the TCN has two dilation causal
convolution layers (Dilated Causal Conv), activation functions
[rectified linear unit (ReLU)], and weight normalization. Fur-
thermore, in order to avoid overfitting, the spatial dropout
after each causal dilation convolution layer is employed for
regularization [32].

Fig. 2. (a) Dilated causal convolution. (b) TCN residual block.

Fig. 3. Seq2Seq model-based LSTM encoder and decoder.

C. Seq2Seq Model

The Seq2Seq structure was originally designed to solve
the problem that the RNN cannot generate arbitrary length
output sequences in neural machine translation. The core idea
of the Seq2Seq model is using two networks to form an
encoder–decoder architecture. The encoder is responsible for
converting the input sequence into a fixed-size vector, called
the context vector. The decoder is responsible for converting
the context vector into the output sequence [33].

Codecs are typically multilayer LSTM structures due to the
natural convenience of LSTM to process sequence data. Fig. 3
shows the common Seq2Seq forecasting model. The codecs
are all composed of a chain of LSTM units. In the encoder,
the input is historical sequence data X = {x1, x2, x3, . . . , xN },
and the context vector is the output state of the last LSTM unit.
For the decoder, the input of the first LSTM unit is xN , which
is the last time step input of the encoder; and each unit input
thereafter is the predicted output value of the previous unit.
The length of the input sequence of the encoder and the length
of the output sequence of the decoder can be different, and
the model will automatically learn the mapping relationship
between the input sequence and the forecasting sequence.

However, in the original Seq2Seq structure, for longer input
sequences, the encoder may not be able to encode all valuable
timing features into this vector, and it is difficult for the
decoder to extract all valuable timing features. To overcome
this shortcoming, a novel Seq2Seq model, which is based on
a time series additive decomposition strategy, is proposed in
this work.

IV. PROPOSED MODEL

In this section, we describe the proposed model, which
is based on the time series additive decomposition strategy
and original Seq2Seq structure. First, the overall architecture
is described, and then the internal details of this model are
presented.
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Fig. 4. Architecture of proposed model, consisting a series of basic blocks.

A. Overall Architecture

In the task of time series forecasting, an effective approach
is to decompose the time series into multiple components
and then model each component individually [34]. Additive
decomposition is a classical time series decomposition method,
which assumes that time series data can be decomposed into
seasonal, trend-cycle, and remainder components [35]. When
applying the additive decomposition method to decompose
the time series and subsequently model each component
separately, it reduces the sensitivity of the prediction model to
the noise in the time series and enhances the robustness of the
prediction model [36]. Additionally, there are more robust and
efficient decomposition approaches, such as Robuststl [37] and
Fast Robuststl [38]. However, these explicit decompositions
divide the time series into fixed components in advance
and separate them from the modeling task, which fails to
adequately address the temporal characteristics present in real-
world data. Different from the native decomposition strategy,
the model proposed in this work dynamically decomposes
the time series into any number of components during the
forecasting process.

Fig. 4 illustrates the overall proposed framework, consisting
of a series of basic blocks (exemplified here by three basic
blocks for brevity), and each of which can be viewed as a
component of a decomposition. Each basic block includes
three parts and appears as a fork-like structure. The first
part is the encoder, which is responsible for compressing all
the useful information of the input sequence data u into the
context vector c. The second part is the forecasting decoder
(F-Decoder), which decodes the context vector c to produce
the forecasting output z. And the third part is the estimate
decoder (E-Decoder), which is responsible for generating the
best estimate e of the input sequence u based on the context
vector c, where the length of the estimate sequence e is the
same as the length of the input sequence u.

To have a clear understanding of the proposed model,
Fig. 5 presents an example using actual time series data,
demonstrating the functioning of each basic block during fore-
casting (exemplified here by three basic blocks for brevity).
Specifically, for the i th basic block, it receives a sequence
data ui

∈ RN∗d and outputs two sequence data, forecasting
sequence zi

∈ RH∗1 and estimate sequence ei
∈ RN∗1. For

the first basic block of the model, its input u1 is the original
data X = {x1, x2, x3, . . . , xN }, which has N timestamps and
each timestamp contains d features. For the other basic blocks,
the inputs are the residuals of the previous basic block, which
is obtained by subtracting its estimate ei−1 from the input
sequence ui−1; therefore, each timestamp contains one feature,
i.e., d = 1. The one of the outputs, zi , is the forecast sequence
data of length H generated by the F-Decoder. And the another

output, ei , is the estimated sequence of input data produced
by the E-Decoder. Formally, the following equations are the
computation process for the i th (i ≥ 2) block:

ui
= ui−1

− ei−1

ci
= f

(
ui , θ i

f

)
zi
= g f

(
ci , θ i

g f

)
ei
= ge

(
ci , θ i

ge

)
(8)

where ui is the input of the i th block; and zi and ei , which
are the forecast and estimate sequence data, respectively, are
both the outputs of the i th block. f (·), g f (·), and ge(·)

represent the encoder, F-Decoder, and E-Decoder, respectively,
and θ i

f , θ i
g f , and θ i

ge are the corresponding parameters.
Generally, the residual in a neural network refers to the

difference or error between input and output of some layers
or blocks in the model. The utilization of residual blocks
can address the problem of gradient vanishing while propa-
gating information from shallow to deep layers and prevent
performance degradation with deeper network structures [39].
Additionally, residual connections can enhance the accuracy
and stability of the model [40]. In this work, however, in each
basic block, the residual refers to the difference between
the input and the estimated output. Then, the residual is
regarded as the input of the next basic block, so that each
subsequent basic block is only a prediction and analysis of
the residuals of the previous basic block. The residual input
removes the patterns from the sequence data that can be fit well
in the previous block, allowing the downstream basic block to
concentrate more on predicting patterns that are not learned.
Thus, the problems that the context vector in the original
Seq2Seq model cannot fully express all the patterns of the
input sequence and the difficulty for the decoder to extract
all the useful information from the context vector are avoided.
In addition, the basic blocks are connected by residuals, which
has a significant advantage in improving the trainability of the
deep architecture.

Correspondingly, the final output includes two items: one
is Ŷ , a prediction sequence of length H , which is the aggre-
gation of all basic block forecast outputs; and the other is E,
a residual of length N , which will be used as part of the model
loss value to ensure model convergence. The computational
operations are as follows:

Ŷ =
D∑
i

zi

E = X −
D∑
i

ei (9)

where zi and ei are the forecast and estimate outputs of the i th
block, respectively, and D is the total number of basic blocks.

B. Basic Block

As mentioned in Section IV-A, each basic block consists of
three parts, i.e., one encoder and two decoders. TCN is adopted
as the encoder due to its powerful feature extraction and
efficient computation capabilities, which have been introduced
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Fig. 5. Dynamic decomposition process of the proposed model.

Fig. 6. Internal details of the i th basic block.

in Section III. And the two decoders are a series of LSTM units
with shared parameters, respectively. Fig. 6 shows the internal
details of the basic block. In the encoder, the number of TCN
residual blocks is a hyperparameter, which is determined by
both the convolution field and the length of the input sequence.
In addition, in the two decoders, the number of LSTM units
is determined by the length of the forecasting sequence and
estimate sequence, respectively.

For the i th basic block, suppose the input sequence is ui ,
and the context vector ci

∈ Rh is generated through the TCN
encoder. Note that the context vector is only the output of the
last time step of the last TCN residual block. Furthermore,
the F-Encoder and E-Decoder share the context vector ci

to generate the predicted series data zi and estimated series
data ei , respectively. Specifically, for the F-Decoder, the input
of the first LSTM unit is the last time step of the current basic
block input sequence, and the input of the subsequent units is
the forecast output of the previous unit. For the E-Decoder,
since it is the estimate of the input sequence, the input of the
first LSTM unit is the data of the first time step of the input
to the current basic block.

C. Model Training

The model parameters are learned by back-propagation
mechanism, and the mean-squared error (mse) is selected as

the loss function. In addition, the residual output of the model
is added to the loss function, so that the model can learn
the pattern contained in the input sequence as completely as
possible. The loss function is defined as follows:

L(θ) =
1
m

m∑
i

[(
Yi − Ŷ i

)2
+ Ei

2
]

(10)

where m is the number of samples; and Yi , Ŷ i , and Ei are
the true vector, prediction vector, and residual vector of the
i th sample, respectively. The training process is provided in
Algorithm 1.

Algorithm 1 Training Process of the Proposed Model
1: Prepare and process the dataset.
2: Initialize the hyperparameters, i.e., the total epochs M ,

number of basic block D, learning rate r , and the param-
eters θ in the model 8(·)

3: for epoch = 1 to M do
4: Sample input X ∈ RN∗d and target Y ∈ RH∗1 from

datasets randomly
5: for i = 1 to D do
6: ci

= f (ui , θ) # Encoding
7: zi

= g f (ci , θ) # Forecast Decoding
8: ei

= ge(ci , θ) # Estimate Decoding
9: ui+1

= ui
− ei # Calculating residuals

10: end for
11: Aggregate forecast sequence Ŷ =

D∑
i

zi

12: Compute loss with Eq. (10)
13: Back propagation of loss
14: θ ← Adam(θ , r)

15: end for
16: return Trained model 8(·)

V. EXPERIMENTS AND DISCUSSION

In this section, the effectiveness of the proposed model on
real-world datasets with three cases is verified. Case 1 presents
the superiority of the proposed model. Case 2 demonstrates the
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Fig. 7. Load data of three real-world datasets (CH, DE, and AT).

effect of the decomposition strategy. Case 3 explores the effect
of model hyperparameter changes on forecast performance.
Case 4 conducts accuracy comparison of the proposed model
using the competition post-COVID-19 load demand data.
Case 5 examines the model’s convergence speed, comparing
it with other neural network models. Case 6 shows that
the impact of sliding window size on prediction accuracy is
thoroughly investigated. Case 7 delves into the diverse choices
available for the encoder and decoder of the proposed model.

A. Dataset Description

The datasets used in the experiments are obtained from
the Open Power System Data Platform (https://data.open-
power-system-data.org/), including historical load data and
weather data with a sampling rate of 1 h in several different
countries. Specifically, we select the load data of Switzerland
(CH) from 2011 to 2014, the load data of Germany (DE)
from 2014 to 2017, and the load data of Australia (AT)
from 2013 to 2016. Besides, we selected the temperature and
wind speed as relevant variable to assist load forecasting. The
selection of input variables is based on correlation analysis and
some empirical guidelines described in [41] and [42]. Thus,
the datasets contain four parts, namely, timestamps, historical
load data, temperatures, and wind speeds. The timestamp
records the sampling times, the load data are the variables
to be predicted, and the temperature and wind speed are
the relevant variables to assist load forecasting. The datasets
for the experiments and source code are stored on GitHub
(https://github.com/BaiRuic/Novel-Seq2Seq-Module).

When conducting the experiments, the ratio of training
datasets, validating datasets, and testing datasets is roughly
divided into 0.8:0.1:0.1. Fig. 7 illustrates the corresponding
data patterns of the three countries used in this work.

Fig. 8. Input and target pairs.

Fig. 9. Sliding window approach is used to generate sample.

B. Data Preprocessing

In order to keep all the data in the same range,
maximum–minimum normalization is applied to all the vari-
ables in the datasets and is formulated as follows:

x ′(t) =
x(t)− xmin

xmax − xmin
(11)

where x(t) and x ′(t) represent the raw value and the normal-
ized value at timestamp t , respectively. xmin and xmax represent
the minimum and maximum values in all time steps of the
feature, respectively.

As defined in Section II, time series forecasting is the
modeling of the relationship between a set of input variables
and one or more output variables on a set of observed data.
However, the original load data are a sequence of historical
measurements at equal time intervals, which cannot be used
to train the model directly; therefore, in this work, a sliding
window approach is used to transform the dataset into input
and target pairs for training the model.

Fig. 8 illustrates the input and target pairs in a sample of
the multistep ahead load forecasting task. The input sample
can be represented as a matrix X ∈ RN×d , where N denotes
the number of input time steps and d denotes the number of
features at each time step. In this work, the input data have
three features, i.e., the load data (LOAD), temperature data
(TEMP), and wind speed (WP). The target sample is a vector
Y ∈ RH×1, where H denotes the forecast horizon. Fig. 9
shows the process of sample generation. When generating
samples, a window of length N + H slides over the time
series, and each sliding of the window indicates that a sample
is generated. In each generated sample, the vector of the first
N time steps is the input, and the vector of the last H time
steps is the target.

C. Benchmarks

In order to better demonstrate the performance of the
proposed model, some forecasting models are selected as
benchmark models: the naive forecast (Naive), which is a sam-
ple baseline used to measure the difficulty of forecasting task,
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TABLE II
HYPERPARAMETERS VALUES OF DIFFERENT MODELS

statistical model, traditional machine learning model, and deep
learning model.

Specifically, the ARIMA model, which was employed
in [10] to predict loads, is selected as the statistical benchmark
model. The ARIMA model contains three main components,
autoregressive (AR), integrated (I), and moving average (MA).
In the ARIMA model, the future variable is a linear function of
past observations and some random errors, with the following
equation:

yt = δ +

p∑
i=1

φi yt−i + at −

q∑
j=1

θ j at− j (12)

where yt and at are the true value and random error at
timestamp t , respectively; φ and θ are the parameters of the
model; and p and q are the orders of the model [10]. For this
benchmark, the recursive strategy is used to perform multistep
ahead forecasting.

The SVR is selected as the traditional machine learning
benchmark model. By introducing kernel functions, the SVR
can map the original feature space to a higher dimensional fea-
ture space, which converts the nonlinear problem in the orig-
inal feature space to a linear problem in a high-dimensional
feature space [43]. The SVR is formulated as follows:

f (x) = wT φ(x)+ b (13)

where f (·) is the SVR model, φ(·) is the kernel function,
and w and b are the vector perpendicular to the separating
hyperplane and the displacement of the separating hyperplane,
respectively.

Besides, the MD-XGBoost, which is recently proposed by
Wang et al. [44], is also selected as a benchmark model.
An adaptive decomposition method based on variational mode
decomposition (VMD) and SampEn (SVMD) is adopted to

first decompose the raw load data into a set of fluctua-
tion subseries. Then, the prediction model is correspondingly
established for each fluctuation subseries [44]. Similar to the
ARIMA model, the recursive strategy is used in SVR model
and MD-XGBoost to perform multistep prediction.

Finally, the original Seq2Seq model (LSTM-LSTM), which
is introduced in Section III, is selected as the deep learning
benchmark model. The selection of hyperparameter of the
model is presented in Section V-D.

D. Implementation Details

For the proposed model and the benchmark models, some
hyperparameters need to be predetermined before training.
In this work, the grid search strategy is used to fine-tune the
optimal values of the hyperparameters. Specifically, for each
model, we first specify the hyperparameters to be set and the
corresponding values to be tried. Then, the grid search strategy
will test all possible combinations of hyperparameter values
to build each model and determine the optimal combination
of hyperparameters that yields the best performance. Table II
lists the hyperparameters optimized for each model and the
corresponding values.

To quantitatively assess the performance of the proposed
model and benchmark methods, two common metrics, the mse
and the mean absolute percentage error (MAPE), are chosen
to evaluate forecasting performance

mse =
1
n

n∑
i=1

(
yi − ŷi

)2

MAPE =
100%

n

n∑
i=1

|
yi − ŷi

yi
| (14)

where y represents the true value, ŷ represents the forecast
value, and n represents the number of samples.
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TABLE III
PERFORMANCE COMPARISON WITH BENCHMARK MODELS

All forecasting models are built on a desktop PC with a
3.4-GHz Intel i5-7500 processor and 8 GB of memory using
the PyTorch library [45].

E. Case 1: Comparison With Benchmark Models

In this section, comparative experiments are conducted to
verify the superiority of the proposed model. The proposed
model and benchmark models are verified with four different
forecasting horizons of H = 3, 6, 12 and 24 on three
real-world datasets.

Table III shows the corresponding results, and it can be
concluded that, first, for different forecasting horizons, the
proposed model achieves the best performance in two eval-
uation metrics compared to benchmark models. For example,
as shown in the second column of the CH dataset, the MAPE
of the proposed model is 2.958%, while the benchmark mod-
els are 11.31%, 3.439%, 5.401%, 4.532%, and4.061% when
H = 3. Second, regarding the results on three different
datasets, although the proposed model achieves the best per-
formance, it is obvious that their metrics are much different.
Specifically, on the CH dataset, the average MAPE of the
proposed model is 4.38%; while on the DE dataset, the
average MAPE is 7.23%; and on the AT dataset, the aver-
age MAPE is 5.47%. This phenomenon suggests that the
prediction accuracy is related to the characteristics of the
dataset itself. Furthermore, according to the result shown in
Table III, it can be observed that the MAPE of Naive model
on the DE dataset is significantly bigger, for example, when
H = 3, the MAPE values of Naive model in three datasets are
11.31%, 16.654%, and9.891%. This phenomenon shows that
accurate prediction on the DE dataset is more difficult than
those on the AT and CH datasets. Besides, compared to the
CH dataset, the DE dataset has relatively large nonstationary
(see Fig. 7) and therefore has the worst average prediction
results.

Moreover, as the forecasting horizon increases, the accuracy
of all multistep ahead forecasting models generally decreases.
Fig. 10 shows how the mean MAPE of benchmark models

Fig. 10. Comparison of the mean of MAPE of all models with the MAPE
of the proposed model in the four scenarios.

TABLE IV
EFFECTIVENESS VALIDATION OF DECOMPOSITION STRATEGY

excluding the naive benchmark change as the forecasting
horizon increases, compared with the proposed model. The
reason that accounts for this phenomenon mainly include two
point, one is that as the forecasting horizon increases, the
uncertainty of the load data increases, and the forecasting task
becomes relatively more difficult. The second is due to the
shortcomings of the forecasting model. Specifically, the SVR
model and the ARIMA model adopt the recursive strategy to
perform multistep ahead forecasting tasks, which has inherent
error accumulation problems. Therefore, when the forecast
horizon increases, the accuracy will drop sharply. Although the
Seq2Seq model does not have the error accumulation problem,
as the forecasting horizon increases, increasingly more patterns
need to be learned from the time series, and the problem that
it is difficult for the context vector to express all the patterns
and the decoder to fully extract the learned patterns becomes
serious. The proposed model connects basic blocks through
residuals, so that the patterns that have not been learned by
the previous blocks are then passed to the downstream basic
blocks to learn. Therefore, the advantage of the proposed
model is more obvious when the forecasting horizon increases.
As illustrated in Fig. 10, the MAPE of the proposed model
is smaller than those of all benchmark models in different
horizon scenarios, and the gap increases as the forecasting
horizon increases.

F. Case 2: Effect of the Decomposition Strategy

This case aims to demonstrate the effectiveness of the
decomposition strategy utilized in the proposed model.
We compare the proposed model with the TCN encoder-
based Seq2Seq model (S2S-TCN), noting that S2S-TCN can
be seen as the case where the proposed model has only one
basic block. Table IV shows the comparison results of these
two models on three datasets under four different forecasting
horizons.

Clearly, the proposed model performs better than the
S2S-TCN model. In particular, the advantage of the
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TABLE V
INVESTIGATION OF THE RELATIONSHIP BETWEEN MODEL PREDICTION

ACCURACY AND THE NUMBER OF BASIC BLOCKS

decomposition strategy is more noticeable when the forecast-
ing horizon increases. For example, in the DE dataset, when
the forecasting horizon is 3, the MAPE of the proposed model
is 0.907% lower than that of the S2S-TCN, but when the
forecasting horizon is increased to 24, the difference between
the two MAPEs is 4.27%.

This is because with the decomposition strategy, the pro-
posed model consists of a series of basic blocks, and the
blocks are linked to each other by residuals, thus dynamically
decomposing the time series into multiple components. In this
way, the previous basic blocks remove patterns that can be fit
well, allowing the downstream basic blocks to focus more on
learning new patterns.

G. Case 3: Effect of the Number of Basic Blocks

In the proposed model, the number of basic blocks is deter-
mined experimentally by the grid search strategy. However,
how the number of basic blocks affects the performance of
the model remains to be answered. In order to explore the
relationship between the model forecast accuracy and the
number of basic blocks, comparisons of the proposed model
with different numbers of basic blocks on a specific multistep
ahead forecasting task are conducted.

In detail, we build several models with different numbers
of basic blocks, i.e., 1, 3, 5, 6, 8, and 10, and perform inde-
pendent forecasting on a 12-step ahead forecasting task. These
models are denoted as S2S-x , where x represents the number
of basic blocks.

According to the obtained results in Table V, as the number
of basic blocks increases, the prediction accuracy increases
and then levels off. We define the number of basic blocks
corresponding to when the accuracy no longer increases signif-
icantly as the saturation value. For example, in the CH dataset,
when the number of basic blocks is less than 5, the prediction
accuracy increases as the number of basic blocks increases.
This is because as the number of basic blocks increases,
the advantage of the decomposition strategy becomes more
obvious, since it can decompose the complex patterns in the
time series to be learned separately. After the number of
basic blocks exceeds 5, the accuracy remains stable and even
starts to decrease slightly because as the number of basic
blocks increases, the hypothesis space of the model gradually
increases and the model begins to overfit. In this case, the
saturation value of the number of basic blocks is 5.

In addition, it can be found that the saturation value of
this hyperparameter varies on different datasets. For example,

TABLE VI
EXPERIMENTAL COMPARISON OF THE PROPOSED

MODEL ON VARIOUS DATASETS

on the CH dataset, the saturation value is 5, while on the DE
dataset, the saturation value is 6. This is due to the fact that
different time series contain different patterns. The DE dataset
contains more complex patterns and therefore requires more
basic blocks to fit, which further demonstrates that the DE
dataset has relatively large nonsmoothness.

It should be noted that the saturation value varies for
different time series, so it is recommended that the grid search
strategy should be used to determine the saturation value.

H. Case 4: Comparative Study on the Competition
Post-COVID-19 Load Demand Data

To further validate the forecasting accuracy and replicability
performance of the proposed model, more comparative stud-
ies are conducted on the different and specific competition
post-COVID-19 load demand datasets (pC19), which consists
of historical electricity load data and weather data such as
atmospheric pressure, wind speed, temperature, and humidity.
Similar to the previous datasets, the post-COVID-19 load
demand datasets are preprocessed and split it into training,
validation, and test sets. In addition, the mean absolute error
(MAE) evaluation metric is used to compare with other
participants in the competition in [4], which is calculated as
follows:

MAE =
1
n

n∑
i=1

|yi − ŷi | (15)

where y and ŷ represent the true value and the forecasted
value, and n represents the number of samples.

Table VI presents the corresponding experimental results.
From the results, it can be observed that the accuracy of all
models decreases as the forecasting horizon increases, which
is similar to the previous experimental findings. And the pro-
posed model achieves better performance on different datasets
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Fig. 11. Training time and model loss comparison between proposed model
and multiple neural network models.

compared to the Naive, MD-XGBoost, and LSTM-LSTM
models, with higher accuracy and the increasing advantage
as the forecasting horizon expands. When testing on the post-
COVID-19 load demand datasets, the accuracy of the proposed
model is relatively lower than the top team in [4], since the
most teams in [4] combined forecasting from multiple models
and utilized a lot of data preparation techniques. Although the
ensemble approach of multiple models can achieve a better
performance on a specific dataset (i.e., the post-COVID-19
load demand data in [4]), the ensemble approaches need
large computational resources and also some other tools for
automatic model selection and tuning, which may lead an
extra burden to the system operator. Meanwhile, as stated
in [4], large ensembles of multiple models can incur significant
costs for production and maintenance, as each member of
the ensemble requires staff attention and computational effort
for relatively minor improvements in forecasting accuracy.
Consequently, there are questions regarding whether such
models can be justified by system operators due to the
additional overhead they create. Additionally, the generality
and robustness of the winning models in [4] require further
investigation, given that the ensemble methods used a
substantial amount of post-COVID-19 data to train their
models, and it is unclear whether their performance may be
adversely affected by different load profile changes brought
on by other global or local events.

I. Case 5: Convergence Analysis of Different Forecasting
Models

To investigate the training time and convergence rate of
different forecasting models, comparative experiments are per-
formed on the same prediction horizon with the same datasets.
Specifically, three neural network-based models including the
proposed model, S2S-TCN, and LSTM-LSTM are taken to
compare their convergence speeds, in which the AT dataset
is chosen as the training and testing samples, and the pre-
diction horizon is set to 12. Fig. 11 shows the corresponding
experimental results, wherein the x-axis represents the model
training time and the y-axis indicates the loss value during the

TABLE VII
TRAINING TIME AND EXECUTION TIME COMPARISON BETWEEN

PROPOSED MODEL AND MULTIPLE NEURAL
NETWORK MODELS

training process, and the training time and execution time are
given in Table VII. All models are trained and evaluated on
the same hardware equipment.

It can be seen that the proposed model has slower conver-
gence speed compared to other forecasting models, whereas
it achieves lower loss value and higher accuracy upon conver-
gence. This is because the proposed model utilizes the time
series addition decomposition strategy, which is able to effec-
tively capture the long-term dependences and seasonal patterns
in the time series data. Moreover, the utilization of multiple
basic blocks allows the model to extract more diverse and
comprehensive features from the input data, further improving
the predictive capability. However, to a certain extent, this
results in more complex network structures and higher training
time in turn, but there is no significant difference on the
execution time between the different forecasting models.

J. Case 6: Impact of Sliding Window Size on Model
Prediction Accuracy

Generally, an appropriate sliding window size has a sig-
nificant impact on both the model’s prediction accuracy and
computational efficiency [46]. To the best of our knowledge,
most of the existing studies used fixed or static window size in
the sliding window algorithm, and as indicated in [47], there
is currently no standard method for determining the value of
sliding window size. In this work, a fixed window size is
selected based on some empirical guidelines in the literature
and a number of preliminary accuracy tests via trial and error.
Specifically, on the AT dataset using the MAPE evaluation
metric, multiple comparative experiments are conducted to
explore the impact of different sliding window sizes of inputs
on the prediction results with different forecasting horizon.
Table VIII shows the corresponding experimental results.
It can be seen that a larger window size could result in a higher
prediction accuracy under a specific forecasting horizon, i.e.,
when the forecasting horizon H is set to 3, the prediction
accuracy is 7.823% when the sliding window size N is chosen
to 2, and the prediction accuracy is increased to 2.843% when
the sliding window size N is chosen to 72. However, a larger
sliding window size usually requires a longer training time.

K. Case 7: Determination Experiments of Encoders and
Decoders in the Proposed Model

In this work, a novel multistep power load forecasting model
is designed by incorporating time series additive decomposi-
tion strategy into Seq2Seq architecture. This model consists of
a series of basic blocks connected through residual, wherein
each basic block comprises an encoder and two decoders.
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TABLE VIII
RELATIONSHIP BETWEEN SLIDING WINDOW SIZE AND

PREDICTION ACCURACY (MAPE) EXPERIMENT

TABLE IX
COMPARISON EXPERIMENT OF USING DIFFERENT STRUCTURES

AS ENCODER AND DECODER

For the decoder implementation, the CNN is not considered as
an option due to its unsuitability for generating variable-length
time series [48]; and the RNN structures such as gate recurrent
unit (GRU) and LSTM are already tried and verified in the pre-
vious case studies. For the encoder implementation, the CNN,
LSTM, GRU, and TCN are successively tried in the proposed
architecture. Table IX shows the corresponding comparative
results on the AT dataset with a 12-step prediction. It can
be seen that the best prediction performance is achieved by
the TCN-LSTM architecture; thus, the TCN and LSTM are
ultimately selected as the encoder and decoder in each basic
block of the proposed model.

VI. CONCLUSION AND FUTURE WORK

In this article, a novel Seq2Seq-based deep learning model,
which is based on a decomposition strategy combining the
Seq2Seq structure, is proposed for multistep load forecasting.
To evaluate the performance of the proposed model, three
cases are conducted on three real-world datasets. Case 1 veri-
fies the superiority of the proposed model in terms of accuracy.
Specifically, various benchmark models are selected to com-
pare with the proposed model in four scenarios with different
forecasting horizons. The results indicate that the proposed
model outperforms all benchmark models in terms of accu-
racy. Furthermore, the performance advantage of the model
becomes more obvious as the forecasting horizon increases.
Case 2 demonstrates the effectiveness of the decomposition
strategy. Case 3 studies the effect of the number of basic blocks
on the forecast performance. Case 4 involved an accuracy
comparison experiment of the proposed model using the com-
petition post-COVID-19 load demand dataset. Case 5 analyzed
the convergence speed of the model during training. In Case 6,
a comparison was conducted on the effect of different sliding

window sizes on prediction accuracy. Case 7 determined the
selection of encoder and decoder for the proposed model
through multiple experiments. All experiments prove the per-
formance of the proposed model, so that the model can provide
more accurate prediction information for power systems.

For future work, a methodology for adaptively adjusting the
number of basic blocks based on the datasets can be developed
to further enhance the robustness of the forecasting model
and improve the prediction accuracy. Additionally, as the
proposed method adopts the MIMO strategy, this may restrict
model flexibility and result in biases in the output of the
model. Hence, more advanced techniques will be developed
to enhance the flexibility of the MIMO strategy.
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