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Abstract—Due to numerous computation-intensive and delay-
sensitive tasks in the Internet of Vehicles (IoV), Vehicular Edge
Computing (VEC) is increasingly playing a crucial role as a key
solution in the IoV. However, how to concurrently enhance com-
munication quality and reduce the cost of latency and energy
has emerged as a critical challenge in VEC. To tackle the above
problem, we propose a Lyapunov-guided offloading based on the
Soft Actor-Critic (SAC) algorithm, named LySAC, to minimize
the average cost of the Integrated Sensing and Communications
(ISAC) technology-aided IoV, where ISAC technology can effec-
tively improve the communication quality by harnessing high-
frequency waveforms to seamlessly integrate communication and
sensing functionalities. First, we model the offloading process of
ISAC-Aided IoV as an optimization problem of the joint cost of
delay and energy with long-term energy consumption and queue
stability. Then we formulate the optimization problem as a Lya-
punov optimization and utilize the SAC method to find the optimal
offloading decisions. Finally, we conduct extensive experiments and
the results demonstrate the effectiveness and superiority of the
proposed LySAC in minimizing total cost while maintaining queue
stability and meeting long-term energy requirements compared
with other several baseline schemes.

Index Terms—Computation offloading, integrated sensing
and communications, Lyapunov optimization, vehicular edge
computing.

I. INTRODUCTION

INTERNET of Vehicles, a subset of the broader domain of
the Internet of Things (IoT), revolve around the connectivity

and communication among vehicles, enabling seamless data
transmitted between vehicles, infrastructure, and other devices
to improve road safety, traffic efficiency, and overall trans-
portation effectiveness [1]. However, the continuous influx of
data, much of which is time-sensitive, manifests as a flood
of computational tasks that overwhelm the limited processing
capabilities of vehicles, thereby increasing the risks of on-road
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incidents. This means that the numerous time-sensitive tasks
constitute a contradiction with the limitation of computational
resources of the Internet of Vehicles (IoV). A promising solution
to the contradiction is Vehicular Edge Computing (VEC) [2], [3],
which offloads tasks from vehicles to Road-Side Units (RSUs)
positioned along the roads, where the RSUs have advanced
computational capabilities surpassing those of the vehicles [4].

As an extension and application of edge computing, VEC
offers a viable solution to the computational challenges in IoV.
This not only alleviates the computational burden on vehicles but
also significantly reduces the latency in data processing, which
is crucial for time-sensitive applications such as autonomous
driving and real-time traffic management [5]. The integration of
VEC into IoV also enables advanced applications like dynamic
route planning, real-time video analytics, and environmental
sensing [6], all of which require substantial computational re-
sources and quick response times that are not feasible through
conventional cloud computing. Additionally, VEC supports the
aggregation and preprocessing of data at the edge, which leads
to reduced network congestion and improved data privacy [7].
Given these advantages, VEC stands as a cornerstone in the
advancement of intelligent transportation systems, shaping a
more efficient, safe, and smart vehicular environment [8].

Meanwhile, Integrated Sensing and Communication (ISAC)
is an emerging paradigm that integrates wireless communication
and radar sensing functionalities into a unified framework by the
seamless amalgamation of sensor technologies with commu-
nication systems to enhance data acquisition and transmission
capabilities [9]. This approach is particularly pivotal for the
development of the sixth generation (6G) networks [10], which
aim to revolutionize the telecommunication landscape by of-
fering ultra-high-speed, low-latency, and massive connectivity,
which supports a wide range of applications, from autonomous
vehicles to smart cities [11]. By employing techniques such
as using a shared waveform or implementing frequency divi-
sion multiplexing and time division multiplexing, devices can
leverage the capabilities of ISAC [12]. The incorporation of IoV
and ISAC, which is called ISAC-aided IoV, significantly boosts
the efficiency of network communication computation, which
makes vehicular network able to meet requirements for minimal
latency, robust system stability, and heightened security [13].

However, in the context of ISAC-aided MEC networks, where
tasks and communication modes have different performance
requirements compared to ordinary scenarios, the applicability
of the methods of previous studies may be limited. Especially in
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vehicular networks, where demands for minimal latency, robust
system stability, and heightened security prevail, the need for
tailored solutions that can adapt to rapidly changing network
topologies and handle tasks efficiently becomes critical.

To cope with the aforementioned challenges, we explore a
sophisticated computation offloading and resource allocation
strategy within ISAC-enhanced VEC networks, grounded in
Lyapunov optimization and Soft Actor-Critic (SAC) method-
ologies. Lyapunov optimization ensures system stability and
manages long-term constraints, such as energy consumption and
queue stability. It excels in handling optimization problems over
time, maintaining performance under fluctuating conditions.
Conversely, the SAC method uses deep reinforcement learn-
ing to make near-optimal decisions in dynamic and stochastic
VEC environments, balancing exploration and exploitation for
real-time adaptation. Our algorithm integrates Lyapunov op-
timization’s stability and constraint management with SAC’s
adaptive decision-making. This combination ensures long-term
system stability while dynamically adjusting to environmental
changes, significantly improving over algorithms that address
these aspects separately.

Our primary objective is to intricately minimize the weighted
sum of the system’s latency and energy expenditure. The prob-
lem is initially reformulated by the Lyapunov optimization
method to transfer the energy and queue stability constraints.
Subsequently, we employ a SAC-based algorithm to determine
the optimal decisions for offloading and resource allocation. The
main contributions of this paper are outlined as follows.
� In the context of ISAC technology, this study intro-

duces a novel ISAC-aided VEC computing framework
and presents a visualization of the task processing flow
in the central scheduling module of the edge server. Its
primary function is to make strategic offloading decisions
and allocate resources in a manner that optimally enhances
the system’s overall efficiency.

� This study introduces a minimization problem aiming at
jointly optimizing the computation offloading and resource
allocation decisions. It focuses on reducing the combined
weight of system delay and energy consumption, a crit-
ical balance for efficient operation. To achieve this, the
Lyapunov optimization method is employed to further
transform the long-term queue stability and energy con-
straint, ensuring the queue stability and reducing overall
computational complexity.

� This paper proposes a novel Lyapunov-guided offload-
ing strategy based on the SAC algorithm called LySAC,
which can devise efficient task scheduling and resource
allocation strategies dynamically without relying on prior
system state information. The strategy leverages both the
Lyapunov transformation and the SAC-based algorithm to
achieve its objectives.

� Extensive experimental results demonstrate that compared
to several baseline schemes, the proposed LySAC algo-
rithm can dynamically adjust decision variables to mini-
mize the total system cost while maintaining queue stability
and meeting long-term energy requirements.

The remainder of the paper is structured as follows: The
related work is comprehensively investigated in Section II. We
elaborate on the system model in Section III. The problem
formulation is introduced in Section IV. Section V delves into
the details of the Lyapunov optimization and the proposed SAC-
based offloading and resource allocation approach. Simulation
results are presented and discussed in Section VI. Finally, our
conclusions are drawn in Section VII.

II. RELATED WORK

A. ISAC-Aided V2X Network

In the context of ISAC-aided Vehicle-to-Everything (V2X)
networks, which facilitate communication between a vehicle
and any entity that may influence or be influenced by the
vehicle, some scholars have already conducted research on sys-
tem communication management and offloading decisions. For
instance, Mu et al. [14] introduced a DNN approach to predict
beamforming with an ISAC-Enabled network. Liu et al. [15]
proposed a joint computation offloading and resource allocation
strategy to build greener V2X networks with MEC and ISAC
technologies. Li et al. [16] developed a Vehicle-to-Infrastructure
(V2I) system that leverages ISAC signaling to enhance commu-
nication management between vehicles and road infrastructure.
This system enables the tracking and prediction of vehicle
motion. Bai et al. [17] suggested an approach to enhance the
system’s promptness and efficiency by maximizing the Age
of Information (AoI) utility in ISAC-aided vehicular network,
which has the potential to expedite the update process of sensing
information by markedly decreasing AoI. Li et al. [18] presented
an Ambient Backscatter Communication-aided ISAC system
for V2X networks, addressing the challenge of coupling radar
parameter estimation and signal demodulation through the inno-
vative use of Backscatter Devices (BDs) and a 3D-Newtonized
Orthogonal Matching Pursuit estimator. Huang et al. [19] pro-
posed a MEC-assisted ISAC model featuring short-packet trans-
missions, where mutual information is utilized to evaluate radar
sensing performance and assess both reliability and latency in
processing radar data through edge computing. However, the
aforementioned literature does not propose a VEC task com-
puting framework with ISAC assistance and does not present a
visualization of the task processing flow, nor does it adequately
elaborate on this aspect.

B. DRL-Based Approaches

The dynamic nature of vehicular networks, characterized by
their inherent high mobility, presents significant challenges, par-
ticularly in the realm of predicting network conditions and man-
aging rapidly evolving computation and bandwidth demands.
This complexity often leads to what is known as the curse
of dimensionality. Traditional optimization techniques, mainly
devised for static or slowly changing scenarios, fall short in ad-
dressing these complexities, primarily due to their inadequacy in
adapting to the swiftly altering landscape of vehicular networks.
In this context, the integration of Deep Reinforcement Learning
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(DRL) with VEC emerges as a pivotal solution [28]. DRL is
celebrated for its adaptive learning capabilities and proficiency
in making near-optimal decisions based on environmental in-
teractions, thereby excelling in scenarios where conventional
algorithms falter [29].

The convergence of DRL and VEC opens new avenues for
addressing the intricacies of resource allocation, latency mit-
igation, and seamless task offloading within the 6G vehicular
landscape [30]. By utilizing DRL’s capabilities in dynamic
environments, this approach presents potential solutions to the
challenges of high mobility and the evolving demands of vehic-
ular networks. Tang et al. [20] utilized Double Deep Q-Network
(DDQN) to design a Dynamic Framing Offloading algorithm,
minimizing idle time by making offloading decisions as soon
as a vehicle’s subtasks are generated. Huang et al. [21] used
the Multi-Agent Deep Deterministic Policy Gradient (MAD-
DPG) algorithm to design a task offloading strategy aware of
shared task types and vehicle speed for resource allocation.
The algorithm presented in [22] successfully minimizes the
system’s total latency, leveraging the capabilities of the SAC
approach. Qu et al. [23] introduced a Deep Meta Reinforcement
Learning-based Offloading algorithm that integrates multiple
parallel DNNs with Q-learning for precise offloading deci-
sions. This algorithm harnesses the comprehensive perception
of deep learning, the strategic decision-making of reinforcement
learning, and the accelerated environmental adaptation of meta-
learning. However, the majority of current DRL-based strategies
tend to focus on either compute-intensive tasks or those that are
delay-sensitive, with only a handful of studies examining both
dimensions concurrently.

C. Lyapunov Optimization-Based Approaches

The Lyapunov optimization technique is an illustrious math-
ematical construct in control theory [31] due to its ability
to ensure system stability and foster long-term rewards. By
leveraging the properties of the Lyapunov function, Lyapunov
optimization is employed to encapsulate both system stability
and performance metrics [32], [33]. Vehicular networks require
algorithms that are computationally efficient and provide stable
solutions due to their rapidly fast-changing characteristic. To
meet these demands in rapidly changing vehicular networks,
the application of the Lyapunov optimization algorithm has
been explored [34]. Hung et al. [24] proposed a Mobile Edge
Computing (MEC)-assisted task offloading method for vehicle
platoons using Lyapunov optimization. They also developed a
vehicle-centric framework employing these techniques to en-
hance low latency in Vehicle-to-Vehicle (V2V) networks, which
facilitate direct communication between vehicles.

Except for combining with traditional optimization tech-
niques such as the game theory [25], the Lyapunov optimization
technique is often integrated with deep learning tools to facilitate
offloading decisions and resource allocation strategies in recent
works. For instance, Bi et al. [26] combines the advantages of
Lyapunov optimization and DRL technique. The authors applied
Lyapunov optimization to decouple the multi-stage stochastic

mixed integer non-linear programming into deterministic sub-
problems. And then they utilized model-free DRL to solve the
subproblems with very low computational complexity. What’s
more, Kumar et al. [22] proposed a Lyapunov-based multi-agent
DRL method that jointly optimizes computing task distribution
and radio resource allocation to minimize energy consump-
tion and delay requirements. Li et al. [27] introduced a joint
radio and resource allocation algorithm that optimizes the aver-
age transmission power minimization problem in VEC systems,
taking into account the Quality of Service (QoS) requirements of
tasks and the impact of time-varying channels. However, the effi-
cacy of aforementioned strategies using Lyapunov optimization
is compromised due to their difficulty in accurately assessing
queue backlogs and real-time network conditions, a situation
exacerbated by not incorporating the latest deep learning algo-
rithms, thereby limiting their adaptability and optimization in
dynamic network environments.

D. Comparison of Selected Related Studies

Table I provides a detailed comparison of our study with
existing research in the domain of MEC and vehicular networks.
This comparison covers several critical dimensions, including
the scenarios considered (e.g., VEC and V2X), the incorpora-
tion of ISAC-aided techniques, the types of DRL algorithms
employed, the primary objectives of each study, and the proposed
decision-making strategies.

As shown in Table I, we are the first to combine the Lyapunov
optimization theory and SAC algorithm in an ISAC-assisted ve-
hicular network scenario for resource allocation and offloading
decisions. This approach effectively reduces the total system cost
while ensuring queue stability. In contrast, other related works
either do not involve ISAC-assisted vehicular networks or do
not employ Lyapunov optimization methods or reinforcement
learning techniques. Additionally, our optimization objective
simultaneously considers both delay and energy consumption,
a dual objective that is not commonly addressed in the literature
despite being critical for vehicular networks. Previous studies of-
ten focus on only one aspect or optimize for relatively secondary
metrics. Notably, our study introduces a novel ISAC-aided VEC
computing framework and provides a visualization of the task
processing flow within the central scheduling module of the edge
server, a feature that has not been addressed in other works.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. ISAC-Assisted Vehicular Network Scenarios

In this context, we introduce a vehicular network scenario
that integrates communication, sensing, and computation, and
propose a VEC-assisted autonomous driving framework. As
depicted in Fig. 1, we consider a two-way straight city road
segment, where at regular intervals (dependent on the RSU
communication range), there exists an ISAC-aided RSU. These
RSUs, equipped with ISAC capabilities, can emit beams with
both communication and sensing functionalities, and meanwhile
are integrated with the MEC server, offering computational
capacities surpassing those of mobile vehicles. Adjacent RSUs,
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TABLE I
COMPARISON OF SELECTED RELATED STUDIES

Fig. 1. ISAC-assisted vehicular network model.

interconnected through optical fibers, have the capability to
transfer tasks–anticipated to be unfinished by vehicles exiting
their range–to the neighboring RSU that the vehicles are ap-
proaching. The set of vehicles within an RSU’s range is denoted
as V = {1, 2, . . . , N}.

RSUs can sense their surroundings in real time. The sensed
data undergoes preprocessing at the RSU side and is transmitted
to neighboring RSUs via optical fibers, while also receiving
real-time sensing information from these adjacent RSUs. This
data at the RSU undergoes sensor information fusion, allowing
a single RSU to acquire real-time conditions of multiple RSU
ranges. After completing the sensing of the environment, the
RSU manages platoon driving for all vehicles within its range
through its communication functionality. One can envision that
vehicles in platoon mode maintain consistent speeds over spe-
cific time intervals, which contributes to system stability, thereby
enhancing the safety of the scenario.

Table II summarizes the key variables used in the system
model.

B. ISAC-Aided VEC Computing Framework

Compared to the traditional edge computing framework,
which simply integrates sensors, communicators, and compu-
tational layers, a new type of VEC computing framework in-
tegrating communication and sensing technologies (as shown
in Fig. 2) is constructed. This framework enables multiple in-
teractions with data at different levels, thereby enhancing data
utilization efficiency and improving decision-making quality.

TABLE II
NOTATIONS AND THEIR DESCRIPTION

Task data from the application layer can be transmitted to the
central dispatch module of the computation layer in the edge
server via ISAC signals. This central scheduling module uses
different algorithms to process information thoroughly and at
multiple levels, making the best decisions for offloading and
resource allocation to improve the system’s efficiency.

The central scheduling module, as shown in Fig. 2, receives
two types of information:
� The ISAC information resides within its own range, in-

cluding traditional radar echoes from the sensing layer,
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Fig. 2. ISAC-aided VEC computing framework.

communication messages, terminal information, other col-
laborative endpoint information, and task details sent by
mobile applications.

� The information from adjacent RSUs, including traffic
conditions, vehicle movements, and computational tasks
or results submitted by vehicles about to enter this RSU
from an adjacent one.

Initially, information from various sources is transmitted into
the processing unit to undergo necessary preprocessing. More-
over, due to vehicles moving at a constant speed, computa-
tional tasks submitted by vehicles within range are assessed
through simple distance calculations to determine if they can
be completed before the vehicle exits the range. If not, these
tasks will be transferred to an adjacent RSU that the vehicle
is approaching. For ISAC data, after preprocessing, decoders
are used to separate communication signals from radar sens-
ing signals. Essential sensing and communication information
are then fed into the object motion recognition module and
the joint offloading decision and resource allocation module,
respectively. The object motion recognition module identifies
specific objects and their movement information from radar
echoes, then conveys necessary details to the platoon driving
module for vehicular formation driving control and management
within the RSU range.

In offloading decision-making and resource allocation, a joint
scheduling algorithm based on SAC considers the current com-
munication status, vehicular terminal conditions, computational
task information, and real-time computational resources. This
algorithm determines the final offloading decisions and allocates
bandwidth and radar communication power accordingly.

C. Communication and Computing Model

We adopt a time-slot computational model where the total
duration is divided into T equal time slots, and the duration
of each time slot is denoted as σ. This leads to the formula-
tion of a discrete time-slot model, T = {1, 2, . . . ,M}. At the
commencement of each time slot, every vehicle generates a
computational task, i.e.,

φvi (t) = {di(t), ci, πmax
i (t)}, (1)

where di(t) indicates the data volume of the task for vehicle i in
the tth time slot, and ci denotes the number of CPU cycles neces-
sary to process a single bit of data by vehicle i. This value varies
between local and edge processing due to differences in device
construction and performance. πmax

i (t) represents the maxi-
mum permissible latency for the task. Concurrently, given that
the edge RSU integrates communication-sensing-computation
functionalities, it also generates respective computational tasks
denoted as φe(t) = {de(t), ce, πe(t)}.

In this paper, we employ a binary offloading strategy, with
the offloading decision represented as xi(t) ∈ {0, 1}. Specifi-
cally, xi(t) = 0 indicates that the task is executed locally, while
xi(t) = 1 suggests that the task is offloaded for execution at the
RSU.

1) Sensing-Enhanced Communication Model: In the context
of Integrated Sensing and Communication (ISAC), the collab-
orative benefits between communication and sensing functions
are evident. Scholars in the field have explored the synergistic
gains between communication and sensing. Broadly, the synergy
between communication and sensing can be categorized into two
types: sensing-enhanced communication and communication-
enhanced sensing. Existing research [35], [36] on the synergistic
benefits of communication and sensing in ISAC often propose
specific technical solutions on a case-by-case basis. However,
there is a lack of comprehensive characterization methods for
performance improvement resulting from the collaboration be-
tween communication and sensing. Therefore, performance en-
hancement in this area remains an open question. In [6], a frame-
work for mmWave communication radar cooperative systems
is presented. This vehicle network utilizes on-board mmWave
radars and techniques like frequency division multiplexing to
perform sensing and communication simultaneously. As the
communication frequency band advances, the gains in both
sensing and communication effectiveness will increase.

Let CG (communication gains) represent the ratio of the
communication rate under sensing-assisted conditions to the
communication rate under non-assisted conditions.

CG =
Rsen

R
, (2)

where Rsen is the communication ratio enhanced by sensing,
and R is the communication ratio without the enhancement of
the sensing.

Let ri(t) be the data transmission rate between the vehicle
and RSU:

ri(t) = B log2

(
1 +

Pi(t)gi(t)

N0

)
, (3)

where B represents the communication bandwidth between the
vehicle and RSU, Pi(t) is the transmission power, N0 is the
Gaussian white noise power, and gi(t) is the channel gain. It’s
assumed that the channel gain remains constant within a time
slot. The channel gain gi(t) = D−li is defined, where −l is the
path loss exponent and Di is the distance between vehicle i and
the RSU.
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Therefore, the ISAC-enhanced communication rate can be
expressed as follows:

Ri(t) = CG ∗ ri(t). (4)

2) Local Processing Model: In this case, letT l
i (t)be the local

execution time, andEl
i(t) represents the local execution energy.

T l
i (t) =

di(t)ci
f li (t)

, (5)

El
i(t) = κtli(t)

(
f li (t)

)3
, (6)

where κ is the energy consumption parameter for computing,
and f li (t) represents the computing capability of vehicle i at the
tth time-slot.

3) Edge Processing Model: First, concerning the computa-
tional tasks generated at the edge, let fe(t) denote the computing
resources allocated by the edge server for itself in time slot t.
The required time to complete the task φe(t) is given by:

tRSU (t) =
de(t)ce

fe(t)
. (7)

Given that the data volume size of computation results is
typically smaller than that of uploading the computing task, and
the downlink data transmission rate is generally faster than the
uplink data transmission rate, for simplification, the downlink
transmission delay of returning the computation results can be
neglected.

Let the task upload latency for offloading to RSU be Tup
i (t),

T e
i (t) be the expected edge computation latency, and Eup

i (t) be
the energy consumption during task upload. These are repre-
sented by the following:

Tup
i (t) =

di(t)

Ri(t)
, (8)

T e
i (t) =

di(t)ci
fi(t)

, (9)

Eup
i (t) =

di(t)

Ri(t)
Pi(t), (10)

where fi(t) is the computing resource allocated to vehicle i at
the RSU’s edge server.

D. Queuing Models

Each vehicle is equipped with two queues: one for tasks await-
ing local computation and another for tasks pending offloading
to the RSU. At the RSU, a designated queue is set up for each
vehicle to hold tasks that are in line for processing.
� Local Queue

QL
i (t+ 1)=max

{
QL

i (t)−
f li (t)σ

ci
+ (1− xi(t)) di, 0

}
,

(11)
where ci is the CPU cycle number of processing a bit of
data.

� Local Waiting Queue

QO
i (t+ 1) = QO

i (t)−Bi(t) + xi(t)di(t), (12)

whereBi(t) is the data size offloaded from the vehicle i to
RSU in time slot t. Bi(t) can be denoted by:

Bi(t) = min
{
QO

i (t), ri(t)σ
}
. (13)

� Edge Queue

QE
i (t+ 1) = max

{
QE

i (t)−
fi(t)σ

ci
+Bi(t), 0

}
.

(14)
Drawing upon Little’s Law, under steady-state conditions, the

average queue lengthL in the system is equivalent to the average
arrival rate λ multiplied by the average waiting time.

The queuing delay for tasks offloaded to the edge can be
expressed as:

T eq
i (t) =

Q̃E
i (t)

B̃i(t)
, (15)

where Q̃E
i (t) denotes the moving time-averaged task queue

length,

Q̃E
i (t) =

1

m

t∑
j=t−m+1

QE
i (j). (16)

Furthermore, B̃i(t) represents the moving time-averaged task
arrival rate:

B̃i(t) =
1

m

t∑
j=t−m+1

Bi(t). (17)

The local queueing delay when tasks are chosen to be pro-
cessed locally is as follows:

T lq
i (t) =

Q̃L
i (t)

Ãi(t)
. (18)

Consequently, the overall delay and total energy consumption
for the vehicle i during time slot t can be encapsulated as follows:

Ti(t) = (1− xi(t)) [T l
i (t) + T lq

i (t)] + xi(t)[T
up
i (t)

+ T e
i (t) + T eq

i (t)], (19)

Ei(t) = (1− xi(t))El
i(t) + xi(t)E

trans
i (t). (20)

E. Problem Formulation

The system’s utility function during the time slot t can be
defined as:

Ui(t) = αβTi(t) + (1− α)Ei(t), α ∈ [0, 1], (21)

where α represents the weights assigned to delay and energy
consumption, and β acts as a normalization coefficient to equate
the magnitudes of delay and energy consumption. The values
of α can be adjusted according to different types of tasks. For
instance, if α = 1, it signifies that the task is time-sensitive.
Extending this, let U(t) =

∑N
i=1 Ui(t).

We assume that x, f and P represent the offloading de-
cision, computational resources, and communication power,
respectively, as the three categories of decision variables. The
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optimization problem can be formulated as follows:

P1 : min
x,f,P

lim
M→∞

1

M

M−1∑
t=1

E [U(t)] (22)

s.t. C1: xi(t) ∈ {0, 1}, ∀i ∈ V, ∀t ∈ T (22a)

C2: fe(t) +
N∑
i=1

fi(t) ≤ fmax, ∀t ∈ T (22b)

C3: 0 ≤ f li (t) ≤ f local_max
i (t), ∀i ∈ V, ∀t ∈ T (22c)

C4: 0 ≤ Pi(t) ≤ Pmax
i , ∀i ∈ V, ∀t ∈ T (22d)

C5: 0 ≤ T q
i (t) ≤ μ,∀i ∈ V, ∀t ∈ T (22e)

C6: 0 ≤ TRSU (t) ≤ σ,∀t ∈ T (22f)

C7: lim
M→∞

1

M

M∑
t=1

E[QL
i (t)] <∞, ∀i ∈ V (22g)

C8: lim
M→∞

1

M

M∑
t=1

E[QE
i (t)] <∞, ∀i ∈ V (22h)

C9: lim
M→∞

1

M

M∑
t=1

E[ei(t)] ≤ et, ∀i ∈ V (22i)

where the constraintC1 indicates that either a task is offloaded or
locally executed,C2 andC3 define the maximum computational
resource constraint respectively for the edge server and vehicle,
C4 specifies the maximum transmission power constraints for
the vehicle,C5 addresses the queuing latency limits for tasks,C6

encapsulates the delay constraints for computation tasks on the
edge side, C7 and C8 impose stability constraints on the queues
at both the vehicle and edge server, ensuring that the queue
lengths do not grow indefinitely over time, and C9 pertains to
the long-term average energy consumption limitations for the
vehicle.

IV. LYAPUNOV-GUIDED OFFLOADING ALGORITHM

BASED ON THE SAC

A. Problem Transformation With Lyapunov Optimization

We introduce the Lyapunov optimization method to transform
the long-term delay constraint C7, C8 and energy consumption
constraint C9 to get the optimal computation offloading and
resource allocation decision.

To address the average energy consumption constraint, a
virtual queue representing energy consumption backlog in the
vehicle at every instance is introduced, assumed to have an initial
condition of Vi(0) = 0. The virtual queue’s update process can
be expressed as:

Vi(t+ 1) = max {Vi(t)− e(t) + Ei(t), 0} , ∀i = 1, 2, . . . , N
(23)

where e(t) represents the data packet processed by the virtual
queue in the time slot t and is i.i.d, while ei(t)denotes the
incoming data packet for the virtual queue. A high backlog value,

Vi(t), indicates that the energy consumed due to algorithmic
decisions significantly exceeds the set long-term average.

Transforming the above equation:

Vi(t+ 1)− Vi(t) + e(t) ≥ Ei(t). (24)

Summing over t, we have:

Vi(M)− Vi(0)
M

+ e(t) ≥ 1

M

M−1∑
t=0

Ei(t). (25)

Given that Vi(0) = 0, taking expectations on both sides:

lim
M→∞

E[Vi(M)]

M
+ e(t) ≥ 1

M

M−1∑
t=0

E[Ei(t)]. (26)

Based on Lyapunov optimization theory, to ensure that the
long-term average energy does not exceed its constraint, the
following condition should hold:

lim
M→∞

E[Vi(M)]

M
= 0. (27)

This implies that the constraintC8 is inherently satisfied if the
virtual queue Vi(t) is mean-rate stable. The collection of virtual

queues Vi(t) is denoted as V (t)
Δ
= [V1(t), V2(t), . . . , VN (t)].

Likewise, we have QL(t)
Δ
= [QL

1 (t), Q
L
2 (t), . . . , Q

L
N (t)]

and QE(t)
Δ
= [QE

1 (t), Q
E
2 (t), . . . , Q

E
N (t)], with Θ(t)

Δ
=

{V (t), QL(t), QE(t)}.
The Lyapunov function is defined as:

L (Θ(t))
Δ
=

1

2

(
N∑
i=1

Vi(t)
2 +

N∑
i=1

QL
i (t)

2
+

N∑
i=1

QE
i (t)

2

)
.

(28)
Introducing the Lyapunov drift function:

Δ(Θ(t))
Δ
= E [L (Θ(t+ 1))− L (Θ(t)) |Θ(t)] . (29)

Utilizing the Lyapunov-drift-penalty framework, we define
the Lyapunov drift punishment function, and simultaneously
solve for the minimum of the Lyapunov drift and the objective
function:

minΔv(t)
Δ
= Δ(Θ(t)) + V · U(t), (30)

where the weightV balances the relative significance of between
Δ(Θ(t)) andU(t). Consequently, we can dynamically construct
an offloading strategy that balances the queue backlog, delay and
energy consumption, adapting to real-time scenarios.

Next, in order to derive the upper bound for Δv(t), it is
necessary to introduce Lemma 1.

Lemma 1: Let Q(t+ 1), Q(t), a(t), and b(t) ≥ 0, if Q(t+
1) = max{Q(t)− a(t) + b(t), 0}, then we have,

Q(t+ 1)2 −Q(t)2 ≤ 2Q(t) (b(t)− a(t)) + (b(t)− a(t))2 .

The detailed proof is attached to Appendix A, available online.
By applying Lemma 1 to the virtual energy queue mentioned in
the paper, we have

Vi(t+ 1)2−Vi(t)2≤2Vi(t) (Ei(t)− e(t))+(Ei(t)− e(t))2 .
(31)
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Summing (31) over all vehicles, it holds

1

2

N∑
i=1

(
Vi(t+ 1)2 − Vi(t)2

)
≤ 1

2

N∑
i=1

[2Vi(t) (Ei(t)− e(t))

+ (Ei(t)− e(t))2]. (32)

Then, for the sake of simplicity in subsequent expressions,
we define

L (V (t))
Δ
=

1

2

N∑
i=1

Vi(t)
2, (33)

Δ(V (t))
Δ
= E [L (V (t+ 1))− L (V (t)) |Θ(t)] . (34)

By applying the aforementioned definition to (33), it becomes
evident that

L (V (t+ 1))− L (V (t)) ≤ B1(t) +

N∑
i=1

Vi(t) (Ei(t)− e(t)) ,

(35)
where B1(t) =

1
2

∑N
i=1(Ei(t)− e(t))2.

Lemma 2: Given that the vector Θ(t)
Δ
=

{V (t), QL(t), QE(t)} is the workload backlog status of
queues, the Lyapunov drift function Δ(Θ(t)) can be controlled
by an upper bound

Δ(Θ(t)) ≤ B +

N∑
i=1

Vi(t)E [(Ei(t)− e(t)) |Θ(t)]

+
N∑
i=1

QL
i (t)E

[(
(1− xi(t)) di(t)−

f li (t)σ

ci

)
|Θ(t)

]

+

N∑
i=1

QE
i (t)E

[(
Bi(t)−

fi(t)σ

ci

)
|Θ(t)

]
, (36)

where B = B1 +B2 +B3 and B > 0 is a finite constant.
The detailed proof is attached to Appendix B, available online.

Then, according Lemma 2, we discern that:

Δv(t) ≤ B +
N∑
i=1

Vi(t)E [(Ei(t)− e(t)) |Θ(t)]

+

N∑
i=1

QL
i (t)E

[(
(1− xi(t)) di(t)−

f li (t)σ

ci

)
|Θ(t)

]

+

N∑
i=1

QE
i (t)E

[(
Bi(t)−

fi(t)σ

ci

)
|Θ(t)

]
+ V · U(t). (37)

B. Problem Reformulation

It’s evident that the drift-penalty function has an upper bound
at each moment, represented by the right side of (37). Conse-
quently, the original problem can be approximated by solving
for the minimal value of this bound. The problem can be refor-
mulated as follows:

P2 : min
x,f,P

E

{
B +

N∑
i=1

Vi(t)E [(Ei(t)− e(t)) |Θ(t)]

+

N∑
i=1

QL
i (t)E

[(
(1− xi(t)) di(t)−

f li (t)σ

ci

)
|Θ(t)

]

+
N∑
i=1

QE
i (t)E

[(
Bi(t)−

fi(t)σ

ci

)
|Θ(t)

]
+ V · U(t)

}
,

s.t. Constraints : (C1)− (C6). (38)

V. LYAPUNOV-GUIDED DRL APPROACH

A. MDP Modeling

The DRL method is used to solve the proposed problem. We
first formulate the problem as a Markov decision process (MDP)
to accurately describe the offloading and resource allocation
decision processes. Here we present the elements of the MDP,
including the state space, action space, and reward function.
� State: Let the state space of the vehicle i at time t be si(t).

The state space includes information like speed vk(t). Let
li(t) denote the longitude and latitude coordinates of the
vehicle at time t. f local_max

i (t) and fmax are separately
the maximum computation resources at vehicle i and RSU.
Therefore, the state space at time t can be expressed as:

S(t) = (s1(t), s2(t), . . . , sN (t)), (39)

where si(t) = [li(t), vk(t), f
local_max
i (t), fmax, pmax

i ,
Vi(t), Q

L
i (t), Q

E
i (t)].

� Action: The action space consists of four parts: the com-
putation offloading strategy xi(t), the edge computation
resource allocation strategy fi(t) and fe(t), the local com-
putation resource allocation strategyf li (t), and the trans-
mission power resource allocation strategy pi(t).
Therefore, the action space is given as,

A(t) = (a1(t), . . . , aN (t), ae(t)), (40)

where ai(t) = [xi(t), fi(t), f
l
i (t), pi(t)] and ae(t) =

fe(t).
� Reward: The reward function of our MDP is defined as the

negative of the Lyapunov optimization-based transformed
objective of P2.

R(t) = −
{
B +

N∑
i=1

Vi(t)E [(Ei(t)− e(t)) |Θ(t)]

+

N∑
i=1

QL
i (t)E

[(
(1−xi(t)) di(t)−

f li (t)σ

ci

)
|Θ(t)

]

+

N∑
i=1

QE
i (t)E

[(
Bi(t)−

fi(t)σ

ci

)
|Θ(t)

]

+ V · U(t)

}
. (41)
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Algorithm 1: SAC-Based Algorithm for Computation Of-
floading and Resource Allocation.
Require: Initialize the parameters for the critic networks
ω1, ω2, for the actor network πθ, and for the target
networks φ, φ̂. Initialize replay memory D, the initial state
s, and the parameter τ for soft updates.

Ensure: Optimal sequence of actions for computation
offloading and resource allocation strategies.

1: Initialize parameters: ω1, ω2, φ, θ1, θ2, φ̂, πθ; empty
replay memory D; set τ ;

2: for episode e = 1, 2, . . . , G do
3: Initialize the simulation environment;
4: Randomly generate and receive an initial state s;
5: for t = 1, . . . , T do
6: Select action at according to the current policy πθ

based on the state s;
7: Execute action at in the environment;
8: Observe reward rt and new state st+1;
9: Store the transition (st, at, rt, st+1) in the replay

memory D;
10: Sample a minibatch of K transitions

(si, ai, ri, si+1) from D;
11: for i = 1, . . . , N do
12: Calculate target value

yi = ri + γminj=1,2Qωj
(si+1, πθ(si+1))−

ψ log πθ(ai+1|si+1);
13: Update critic networks by minimizing the loss:

L(ωj) =
1
N

∑
i(Qωj

(si, ai)− yi)2;
14: Update actor network using the sampled policy

gradient;
15: Update target networks with soft update:

ω1 ← τω′1 + (1− τ)ω1;ω2 ← τω′2 + (1− τ)ω2

16: end for
17: end for
18: end for

B. SAC-Based DRL Algorithm

Unlike traditional reinforcement learning algorithms that fo-
cus solely on cumulative reward maximization, SAC incorpo-
rates an entropy term to encourage exploration, thereby strik-
ing a balance between exploitation and exploration [37]. This
entropy-augmented objective function leads to the development
of a more robust and explorative policy compared to DDPG and
other algorithms. Entropy is a measure of unpredictability or
uncertainty of a system. If p is its probability density function,
then the mathematical definition of entropyH(X) for a discrete
random variable X is given by:

H(X) = Ex∼p[− log p(x)]. (42)

In our algorithm, we aim to find a policy that maximizes the
cumulative reward while remaining sufficiently unpredictable,
hence improving exploration. The optimal policy in maximum

entropy reinforcement learning is defined as:

π∗ = argmax
π

Eπ

[∑
t

r(st, at) + ψH(π(·|st))
]
, (43)

where ψ represents the temperature parameter which adjusts the
relative importance of the entropy term against the reward.

This approach effectively balances the exploration-
exploitation trade-off by not only encouraging the policy
to seek higher rewards but also maintaining diversity in its
action distribution. As illustrated in Fig. 3, the SAC-based
algorithm utilizes five networks in total, which include one
policy network, two value networks, and two target value
networks. During the training process for each episode, the
actor network selects an action at according to the current
policy πθ(st). This action is executed in the environment,
leading to the next state st+1 and receiving a reward rt. The
tuple (st, at, rt, st+1) is stored in the replay buffer R.

For each learning step, a batch of transitions (si, ai, ri, si+1)
is sampled from the replay buffer. The target value yi for the
Q-function is computed as the sum of the reward ri and the
discounted minimum Q-value of the next state and action, minus
the log probability of the action, encouraging exploration. This
is used to update the critic networks by minimizing the loss
function, which is averaged over the batch:

LQ(ωj) =
1

N

N∑
i=1

(
Qωj

(si, ai)− yi
)2
, (44)

where yi = ri + γminj=1,2Qωj
(si+1, ãi+1)− ψ log πθ(ãi+1|

si+1) and ãi+1 ∼ πθ(·|si+1).
The policy π is updated by minimizing the actor loss:

Lπ(θ) =
1

N

N∑
i=1

(
ψ log πθ(ai|si)− min

j=1,2
Qωj

(si, ai)

)
.

(45)
Finally, the parameters of the critic networks ω1 and ω2 are
updated using soft updates with the target networks’ parameters
ω′1 and ω′2:

ωupdated
1 = τω′1 + (1− τ)ω1, (46)

ωupdated
2 = τω′2 + (1− τ)ω2, (47)

where τ represents the rate of the soft update.

VI. PERFORMANCE EVALUATION

A. Parameters Setting

All the simulated experiments are performed on a Python
3.11 platform with NVIDIA GeForce 2.1 GHz GPU, Intel(R)
Xeon(R) Silver 4214R 2.40 GHz CPU and 32 GB of RAM. The
related parameters of our system and algorithm are shown in
Table III.

Assuming the RSU is elevated at 4 meters, positioned 1 m
above the road surface and equipped with a range of 500 me-
ters [38], it oversees a three-lane highway where each lane is
3.5 meters wide, according to the conventional road standards.
And vehicles travel at a speed of 60km/h, and the system operates
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Fig. 3. The schematics of the proposed LySAC algorithm.

TABLE III
SIMULATION PARAMETERS

with a slot duration of one second. The configuration of other
parameters is primarily derived from [26] and [39]. We set
the Channel bandwidth W = 20 MHz and energy coefficient
κ = 10−26. We assume the path loss exponent l = 2.5 and
Gaussian white noiseN0 = 10−13. Besides, the communication
gains CG = 1.5 and the control parameter V = 5.

B. Numerical Normalization

In comparison to delay, energy consumption exhibits a signifi-
cantly larger magnitude, leading to the two not being on the same
scale. This discrepancy results in the minimal contribution of
delay in the experimental results, thereby marginally influencing
the offloading decisions for tasks.

To address this misalignment, normalization of both parame-
ters becomes necessary. However, conventional normalization

Fig. 4. Effect of different α on T/(β ×E).

methods are deemed unsuitable due to the presence of un-
known variables such as computational capacity and transmis-
sion power in the calculation of delay and energy consumption.
In light of these challenges, the approach proposed in [40] is
employed in this study, which can harmonize the magnitudes of
delay and energy consumption to the same level. This is achieved
by introducing a coefficient β such that T

βE ≈ 1.
Experiments were conducted by varying the value of α under

different numbers of vehicles, as illustrated in Fig. 4. As β
increases, the value of T

βE decreases. Notably, when β = 10,

it can be observed that T
βE ≈ 1 for various numbers of vehi-

cles. Consequently, setting β to 10 ensures the scales of delay
and energy consumption are unified for subsequent simulation
experiments.

C. Baselines

In this study, we compare the proposed LySAC scheme with
the following four algorithms:
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Fig. 5. The convergence of proposed schemes.

� Random: This approach involves randomly deciding the
offloading decisions, distributing computing resources
evenly at the edge, utilizing maximum computing power
locally, and setting communication power to the average
value, specifically 0.5 watts.

� EdgeQ: The Edge and Queue-based Computation Re-
source Allocation (EdgeQ) strategy involves fully offload-
ing tasks for edge processing, transmitting them via max-
imum communication power. At the edge, computation
resources are allocated based on the length of the task queue
for each vehicle.

� JCORA: The Joint Computation Offloading and Resource
Allocation scheme [15] employs a two-step process. Ini-
tially, computational tasks are classified using the Ad-
vanced K-Means Task Classification to assess offloading
feasibility. Subsequently, resource allocation is carried out
through a DDQN-based algorithm.

� LySACNI : The Non-ISAC-aided LySAC algorithm, which
means without considering the enhancement effect of ISAC
technology on the system’s communication rate, is other-
wise identical to the LySAC.

� LyDDPG: In the proposed computation offloading and
resource allocation scheme, the SAC algorithm is straight-
forwardly substituted with the DDPG algorithm for ex-
perimental comparison. This modified algorithm is named
LyDDPG.

D. Convergence of Proposed Schemes

The graph Fig. 5 indicates that the average rewards for both
the LySAC and LyDDPG algorithms improve as the number
of episodes increases, which suggests that both algorithms are
capable of learning and adapting their policies effectively across
different learning rates. The variability in performance, as de-
noted by the shaded areas, can be attributed to the differences
in the learning rates applied in each trial. And We adapt three
distinct learning rates: 0.02, 0.003, and 0.005.

It is notable that the LySAC algorithm consistently outper-
forms the LyDDPG across all three learning rates, as evidenced
by the higher average reward. Furthermore, the shaded areas sug-
gest that the variability in the LySAC’s performance is relatively

Fig. 6. System average cost varies with the number of vehicles.

small, particularly at higher episode counts, which could indicate
that LySAC is less sensitive to changes in learning rate compared
to LyDDPG. This could be interpreted as LySAC having a better
capacity to find a more optimal policy across a range of learning
rates, hence showing a more robust performance.

E. Average System Cost

The change of the average system cost is shown in Fig. 6. The
cost is calculated as the weighted sum of the delay and ten times
the energy consumption, with a lower value indicating better
performance.

All algorithms experience an increase in the average cost as
the number of vehicles grows. This trend can be attributed to the
increased computational demand and network congestion, lead-
ing to higher delays and energy consumption for local computa-
tion and task transmission. The Random strategy, as in previous
analyses, shows the steepest increase in cost with the addition of
vehicles, which reflects its non-strategic and inefficient approach
to task coordination. Its high cost is likely due to both significant
delays, as previously observed, and potentially high energy
consumption resulting from the lack of optimization in task
allocation and processing. The EdgeQ algorithm exhibits a lower
cost compared to the Random strategy, consistent with earlier
observations where the EdgeQ method outperformed Random
in terms of delay and the cost increase for EdgeQ is solely due to
the energy used in transmitting tasks to the edge servers. For the
deep learning-based algorithms–JCORA, LySACNI , LyDDPG
and LySAC–the graph shows that they perform better than the
non-deep learning algorithms in terms of average cost. Initially,
when the number of vehicles is low, these algorithms maintain a
low average cost, thanks to their efficient decision-making which
minimizes both delay and energy consumption. However, as the
number of vehicles exceeds 20, the average cost begins to rise
more sharply. This could be due to the increased frequency of
local computations and the associated energy consumption, as
well as the higher transmission energy costs due to network
congestion. Moreover, LySAC consistently shows the lowest
average cost, suggesting that it is the most effective in balancing
delay and energy consumption. Its performance indicates that
LySAC can make more optimal decisions and showcases its
potential for use in real-world vehicular networks.
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Fig. 7. System average delay varies with the number of vehicles.

F. System Average Delay

Fig. 7 illustrates the system average delay time of five
schemes. Notably, this comparison is conducted under the con-
dition where the weight parameter α is set to 1, indicating the
system is fully focused on delay without considering energy
consumption. This specific setting underscores the prioritization
of minimizing delay, providing a distinct perspective on the
efficacy of each scheme under delay-sensitive conditions.

It is observable that the average delay increases as the number
of vehicles grows, due to the limited computational resources
available at the edge server. As the number of vehicles increases,
the computational resources allocated to each vehicle decrease,
resulting in an increase in latency. The Random strategy, which
serves as a fundamental baseline among the evaluated algo-
rithms, consistently exhibits the highest latency, highlighting
the inefficacy of coordination schemes predicated on chance.
In contrast, the EdgeQ algorithm, which offloads tasks entirely
to the edge for execution, surpasses the random approach in
performance. This improvement is due to the greater abundance
of computational resources available at the edge compared to
those on the vehicles themselves.

When the vehicle number within the system is relatively
small, as at 5, 10, and 15, the increment in delay time is not
pronounced, due to the edge servers’ capacity to allocate ample
computational resources per vehicle. However, as the vehicle
count exceeds 20, the edge computational power available per
vehicle dwindles, and the system’s task queue begins to congest,
precipitating a rapid acceleration in the growth rate of the
average delay. Notably, the three deep learning-based algorithms
outperform the first two, demonstrating their superior adaptabil-
ity to dynamic environments and complex networks. Among
these, the LyDDPG algorithm performs superiorly relative to
JCORA, which may be attributed to the latter’s reliance on an
advanced K-means clustering for offloading decisions that do
not guarantee optimal decision-making as comprehensively as
LyDDPG and LySAC. The LySAC scheme, proposed in this
study, consistently maintains the lowest average delay across
the evaluated algorithms, demonstrating its potent adaptability
to the highly dynamic environment of vehicular networks and
its efficacy in managing computational and communicative re-
sources efficiently.

Fig. 8. Average local queue length with different algorithms.

Fig. 9. Average edge queue length with different algorithms.

G. The Queue Stability Performance

The two graphs, Figs. 8 and 9 illustrate the convergence
behavior of average queue lengths for local and edge queues,
respectively. However, it should be noted that the comparison of
all algorithms may not be necessary, as the Random and Edge
solutions do not incorporate control queue technology. There-
fore, our comparison is focused solely on the four algorithms that
feature queue control technology: JCORA, LyDDPG, LySACNI

and LySAC.
First, for the local queue length (Fig. 8), it’s evident that the

LySAC algorithm achieves a lower queue length compared to
the other three schemes as the number of episodes increases.
LySAC’s performance stabilizes quickly, maintaining a rela-
tively flat curve after an initial growth phase. This suggests that
LySAC efficiently manages local computational tasks, prevent-
ing backlog buildup and thus indicating an effective training
process that likely includes Lyapunov optimization principles
for stability and optimality.

Second, the edge queue length (Fig. 9) follows a similar
pattern, with LySAC demonstrating superior performance over
the other two algorithms. It shows a steady rise initially, but then
plateaus, indicating that it reaches a stable queue length swiftly.
This plateauing implies that LySAC is effectively balancing the
offloading process to the edge, avoiding excessive queue length
buildup, which is critical for maintaining system performance.

In comparison, both LyDDPG and JCORA exhibit a more
pronounced increase in queue lengths for both local and edge
queues. JCORA shows a steady but more gradual climb than
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Fig. 10. System average cost versus the control parameter V .

LySAC, suggesting a slower convergence towards an optimal
policy. LyDDPG, while outperforming LCORA at the edge, still
falls behind LySAC in the performance of queue length control,
indicating that while it manages edge offloading adequately, it
does not optimize as efficiently as LySAC. In summary, LySAC
not only achieves lower queue lengths at both local and edge
levels but also demonstrates quicker stabilization, reflecting its
effective learning and decision-making processes. This high-
lights LySAC’s potential to reach optimal performance more
rapidly and maintain system stability, making it a preferable
choice for managing vehicular network tasks.

H. Impact of Control Parameter V

Fig. 10 presents the relationship between the system average
cost and the control parameter V , which serves as a balancing
coefficient, moderating the trade-off between cost factors and
queue length within the system. The average cost initially de-
creases as V increases, then subsequently stabilizes, indicating
a complex trade-off. At lower values, a focus on cost reduction
seems effective, but as V grows, this results in longer queues.
Such an increase in queue lengths may, in turn, exacerbate delay
and energy consumption, consequently elevating the overall
system cost at higher values of V . This trend highlights the
importance of maintaining a balanced V to optimize the overall
performance of the system.

Fig. 10 shows that choosing a common optimal control pa-
rameter V is crucial for the four algorithms. When V is set to
5, the empirical data suggest that all four algorithms achieve
their minimum system average cost. With the right V , it is
possible to fine-tune the system for enhanced cost efficiency
while preserving the stability of queue lengths, thereby ensuring
a balanced operational framework.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a joint computation offloading
decision and resource allocation strategy in the VEC network,
designed to ensure minimal latency and energy consumption.
To tackle this challenge, we adopt the weighted sum of energy
consumption and delay as our objective function while ensuring
queue stability. Initially, we employ Lyapunov optimization
to transform the problem, securing task queue stability with-
out prior information. The transformed optimization problem,

characterized by its non-convexity and constraints on transmis-
sion power, radio resources, and edge server capacity, proves
challenging for traditional methods. Therefore, we introduce
an algorithm based on SAC reinforcement learning for joint
decision-making. Our simulation experiments demonstrate the
stability and effectiveness of our proposed method. Compared
to existing reinforcement learning approaches, it significantly
reduces latency and energy consumption while maintaining
queue length stability. However, while our method performs well
in simulations, it may encounter challenges in practical imple-
mentation due to its complexity and the impact of environmental
factors. Moreover, our study relies primarily on simulation data
and lacks validation through real-world experiments, which
somewhat limits the applicability of our method. Yet, these
drawbacks are more or less unavoidable in related literature.
Additionally, our decision-making process is semi-centralized
and executed on edge servers, which could hinder practicality
in dynamic and complex vehicular network environments. In
future research, we intend to explore a hybrid of distributed
and centralized decision-making strategies, such as employing
multi-agent reinforcement learning. This approach would allow
individual vehicles to autonomously select offloading options,
while the edge server would play a partial decision-making and
supportive role in the process.
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