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Abstract—Fog/Edge computing emerges as a novel computing paradigm that harnesses resources in the proximity of the

Internet of Things (IoT) devices so that, alongside with the cloud servers, provide services in a timely manner. However, due to the ever-

increasing growth of IoT devices with resource-hungry applications, fog/edge servers with limited resources cannot efficiently satisfy

the requirements of the IoTapplications. Therefore, the application placement in the fog/edge computing environment, in which several

distributed fog/edge servers and centralized cloud servers are available, is a challenging issue. In this article, we propose a weighted

cost model to minimize the execution time and energy consumption of IoTapplications, in a computing environment with multiple IoT

devices, multiple fog/edge servers and cloud servers. Besides, a new application placement technique based on the Memetic Algorithm

is proposed to make batch application placement decision for concurrent IoTapplications. Due to the heterogeneity of IoTapplications,

we also propose a lightweight pre-scheduling algorithm to maximize the number of parallel tasks for the concurrent execution. The

performance results demonstrate that our technique significantly improves the weighted cost of IoTapplications up to 65 percent in

comparison to its counterparts.

Index Terms—Fog computing, edge computing, Internet of Things (IoT), application placement, optimization, application partitioning
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1 INTRODUCTION

DUE to recent advances in hardware and software technol-
ogies, the number of Internet of Things (IoT) devices (e.g.,

smartphones, smart cameras, smart vehicles, etc) has signifi-
cantly increased, so that IoT devices and their applications
have become pervasive in modern digital society. However,
the IoTparadigm, inwhich heterogeneousdevices can connect
and communicate together, generates a huge amount of data
that needs processing and storage. According to Cisco, it is
anticipated that by 2030, approximately 500 billion IoT devices
will be connected to the Internet [1]. In addition, the number of
real-time and latency-sensitive applications such as smart
transportation, smart health-care, augmented reality, and
smart buildings requiring large amounts of computing and
network resources has increased significantly [2]. Moreover,
performing such resource-hungry applications requires a con-
siderable amount of energy to be consumed, which signifi-
cantly affects the performance of IoT devices such as mobile
devices and sensors, due to their limited battery lifetime.

As a centralized solution, the cloud computing pmaradigm
is one of the main enablers of the IoT, in which unlimited and
elastic resources are available to execute IoT’s computation-
intensive applications. The execution time of IoT applications
and IoT devices’ energy consumption can be reduced by off-
loading (i.e., application/task placement) all/some of their
computation-intensive tasks to different cloud servers [3].
However, IoT devices suffer from low bandwidth and high
latency when communicating with cloud servers. These latter
are mainly because IoT devices are connected to the cloud
servers via Wide Area Network (WAN) which provides low
bandwidth, and the far distance of cloud servers and IoT devi-
ces which leads to high latency [4]. Besides, the huge amount
of incoming data to the cloud servers and resource-hungry
nature of emerging IoT applications requiring more comput-
ing and storage resources, lead to congestion in the cloud
servers. Hence, not only the cloud servers cannot efficiently
satisfy the requirements of emerging resource-hungry IoT
applications, but also they may incur more energy consump-
tion for IoT devices due to their low bandwidth.

To reduce the huge amount of incoming data to the cloud
servers, and alleviate the high latency and low bandwidth
problem, a new computing paradigm, called Fog Computing
has emerged. It provides an intermediate computing layer
between cloud servers and IoT devices in which several het-
erogeneous fog servers are distributed. These fog servers
have fewer resources (e.g., CPU, RAM) in comparison to
cloud servers, while they provide higher bandwidth with less
latency for IoT devices since they can be accessed via Local
Area Network (LAN) [4], [5]. In our view, edge computing
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harnesses only edge resourceswhile fog computing harnesses
both edge and cloud resources (although some of the works
use these terms interchangeably). Considering the potential
of fog computing, IoT devices can perform their resource-
hungry and latency-sensitive applications with improved
Quality of Service (QoS) by offloading all/some of their appli-
cations to fog or cloud servers based on their QoS require-
ments [6], [7]. It also leads to less congestion in cloud servers
since distributed fog servers can ease the burden of cloud
servers for processing and storage of incoming data from IoT
devices. However, considering the large number of heteroge-
neous IoT devices whose applications require various level of
QoS, it is challenging to decide whether the execution of such
applications on remote servers (whether fog or cloud servers)
is beneficial or not. Besides, the ever-increasing number of
IoT devices causes more requests to be forwarded to the fog
servers, which may incur congestion due to their limited
resources. This latter may result in more execution time and
energy consumption for IoT devices.

To address the aforementioned issues, we propose an effi-
cient application placement technique to jointly optimize the
execution time and energy consumption of IoT devices in an
environment with multiple heterogeneous cloud and fog
servers. Themain contributions of this paper are as follows.

� We propose a weighted cost model for application
placement of multiple IoT devices to minimize their
execution time and energy consumption.

� We put forward a dynamic and lightweight pre-
scheduling technique to maximize the number of par-
allel tasks for execution. Considering theNP-Complete
nature of application placement in fog computing
environments, we propose an optimized version of
the Memetic Algorithm (MA) to achieve a well-suited
solution in reasonable decision time.

� We embed a fast failure recovery method in our tech-
nique to assign failed tasks to appropriate servers in
a timely manner.

The rest of the paper is organized as follows. Relevant
work of application placement techniques in fog computing
environments is discussed in Section 2. The system model
andproblem formulations are presented in Section 3. Section 4
presents our proposed applications placement technique. We
evaluate the performance of our technique and compare it by
the state-of-the-art techniques in Section 5. Finally, section 6
concludes the paper and draws futureworks.

2 RELATED WORK

In this section, relatedworks for application placement techni-
ques in fog computing environments are discussed, where
cloud and fog servers work collaboratively to satisfy the IoT
application requirements. They are divided into independent
and dependent categories based on the dependency mode of
their IoT applications’ constituent parts (e.g., tasks). Each IoT
application can be modeled as a set of independent or depen-
dent tasks. The dependent one refers to applications consisted
of several dependent tasks so that each new task runs only
when its predecessor tasks are completely performed. How-
ever, in the independent one, the applications’ tasks do not
have such constraints for execution.

2.1 Independent Tasks

Huang et al. [8] proposed a task placement algorithm where
multiple mobile devices offload their independent tasks to
multiple edge servers and one cloud server. In this technique,
each mobile device decides whether each task should be off-
loaded or not, and in case of offloading, which edge or cloud
server is suited for execution of each task. An energy-aware
cloudlet selection technique was proposed in [9] to meet the
latency requirement of incoming tasks from one IoT device.
Haber et al. [10] proposed an offloading algorithm deployed
in the cloud layer, aiming atminimizing the energy consump-
tion of several mobile devices while satisfying the latency
requirements ofmobile applications. It is obtained by optimiz-
ing mobile devices’ transmission power and the assigned
server computation. An offloading algorithm based on the
Lyapunov optimization was proposed in [11] to reduce the
execution time of IoT applications by offloading the task to
either the single fog server or one cloud server.Mahmud et. al.
[12] proposed a Quality of Experience (QoE)-aware applica-
tion placement technique in which independent tasks of IoT
devices are placed in the fog or cloud servers. Chen et al. [13]
considered amulti-user environmentwith a single computing
access point and a remote cloud server, in which the indepen-
dent tasks ofmobile users can be processed locally, at the com-
puting access point, or the cloud server. Hong et al. [14]
proposed a game-theoretic approach for computation offload-
ing, andmulti-hop cooperative-messagingmechanism for IoT
devices. It considers that each IoT device decides either to for-
ward its single task to the fog or cloud server if it has access to
wireless networks or to collaborate with other IoT devices
that have access towireless networks for forwarding its task.

2.2 Dependent Tasks

In the dependent category, related works modeled their
applications by Directed Acyclic Graph (DAG) in which
each vertex represents one task of IoT application, and each
edge shows data flow (i.e., dependency) between two tasks.

Neto et al. [15] and Wu et al. [16] proposed a partition-
ing algorithm for a single mobile device to offload their
computation-intensive tasks to a single edge or cloud server.
The placement engine of these proposal are placed at the
mobile device aiming at finding a group of tasks for offload-
ing, by which the execution time of mobile application and
energy consumption of mobile device become reduced. The
main goal of [17], [18] is to minimize the execution time of IoT
applications in an environment in which multiple fog servers
and a cloud server are accessible for the application place-
ment. Lin et al. [17] considered only one mobile device in its
system model for offloading, while Stavrinides et al. [18]
attempted to place tasks of multiple users requiring low com-
munication overhead at the cloud server and those tasks
that have more communication overhead at the edge layer.
Mahmud et al. [19] proposed a latency-aware application
placement policy in an environmentwithmultiple fog servers
and a single cloud server. Although the above-mentioned
techniques consider task placement as their main objective,
Bi et al. [20] proposed a solution for joint optimization of ser-
vice caching placement and computation offloading.

The proposed placement engines in the aforementioned
works made application placement decisions for different
users at different time slots, or only consider a fraction of a
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whole of each user’s tasks at each time slot. However, Xu
et al. [4] proposed a batch task placement based on Genetic
Algorithm (GA), in which mobile applications of multiple
users are forwarded to the single central edge server for
application placement decision.

2.3 A Qualitative Comparison

Table 1 identifies and compares key elements of related
works with ours in terms of their IoT application, architec-
tural, and placement engine properties. In the IoT applica-
tion section, the dependency mode of each proposal is
studied which can be either independent or dependent.
Moreover, we study how each proposal modeled IoT appli-
cation in terms of the number of tasks and heterogeneity.
This latter demonstrates whether IoT applications consist of
homogeneous or heterogeneous tasks in terms of their com-
putation and data flow. In the architectural section, the
attributes of IoT devices, fog/edge servers, and cloud serv-
ers are studied. For IoT devices, the overall number of devi-
ces and their type of requests are identified. The different
request number shows that each device has a different num-
ber of requests compared to other IoT devices. In the fog
and cloud layers, the number of fog and cloud servers, the
cooperation between different fog/cloud servers, and the
heterogeneity in terms of servers’ specifications are identi-
fied, respectively. The position of placement engine, the
capability of batch placement, and decision parameters are
also studied in the placement engine section.

Considering application placement techniques proposed
for fog computing environments, this work proposes a
batch application placement technique for an environment
consisting of multiple devices in the IoT layer, multiple
fog/edge servers in the edge layer, and multiple cloud serv-
ers in the cloud layer. To the best of our knowledge, this is
the only work that considers the aforementioned fog com-
puting environment and proposes a weighted cost model to
jointly minimize the execution time of IoT applications and

energy consumption of IoT devices. Our weighted cost
model not only can be applied for our general fog comput-
ing environment, but it also can be used for simpler fog
computing environments with a single IoT device, single
fog server, single cloud server, or any combination thereof.
In addition, it is important to note that the IoT applications
are considered as heterogeneous DAGs (i.e., workflows)
with a different number of tasks and data flows. Hence, we
propose a lightweight pre-scheduling algorithm to organize
incoming tasks of different DAGs, so that the number of
tasks for parallel execution becomes maximized. Then, an
optimized version of the Memetic Algorithm (MA) is pro-
posed to perform application placement in a timely manner.

3 SYSTEM MODEL AND PROBLEM FORMULATION

We consider a framework consisting of multiple IoT devi-
ces, multiple fog (i.e., edge) servers, multiple cloud servers,
and brokers, in which IoT devices can locally execute their
workflows (i.e., DAGs) or completely/partially place them
on cloud servers and/or fog servers for execution. Fig. 1
represents an overview of our system model.

TABLE 1
The Qualitative Comparison of the Current Literature

Fig. 1. An overview of our system model.
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In this system framework, each broker supports up to N
IoT devices, which are distributed in its proximity. The bro-
ker (which can be a fog server) receives workflows from dif-
ferent IoT devices, and periodically makes task placement
decisions based on the requirements of IoT applications and
the current status of the network. According to the result of
application placement decisions, each IoT device under-
stands to which server each constituent part of its workflow
should be sent, or it should be executed locally on the IoT
device.

3.1 Application Workflow

Each IoT application can be partitioned based on different
levels of granularity such as class and task, just to mention a
few [21]. Without loss of generality, we represent the appli-
cation running on the nth IoT device as a DAG (i.e., work-
flow) of its tasks Gn ¼ ðVn; EnÞ; 8n 2 f1; 2; . . . ; Ng, where
Vn ¼ fvn;ij1 � i � jVnjg denotes the set of tasks running on
the nth IoT device, and En ¼ fen;i;jjvn;i; vn;j 2 Vn; i 6¼ jg illus-
trates the set of data flows between tasks. As an illustration,
en;i;j represents the dependency between vn;i and vn;j of the
application running on the nth IoT device.

Considering the number of instructions for each task vn;i,
its corresponding weight is represented as vwn;i. Besides, the
associated weight of each edge ewn;i;j shows the amount of
data that the task vn;j receives as an input from vn;i. Since
IoT applications are modeled as DAGs, each task vn;i cannot
be executed unless all its predecessor tasks, denoted as
Pðvn;iÞ finish their execution.

3.2 Problem Formulation

We formulate the task placement problem as an optimiza-
tion problem aiming at minimizing the overall execution
time of IoT applications and energy consumption of IoT
devices.

Since different servers are available to run each task vn;i,
the set of all available servers is represented as S with
jSj ¼ M. The Sy;z represents one server, in which y repre-
sents the type of server (the IoT device (y ¼ 0), fog servers
(y ¼ 1), cloud servers (y ¼ 2)) and z denotes that server’s
index. The offloading configuration of the workflow belong-
ing to the nth IoT device is represented as Xn, and the xn;i

denotes the offloading configuration for each task vn;i,
which is obtained from the following criteria:

xn;i ¼
0; sy;z ¼ s0;n;
1; sy;z 2 fs1;1; s1;2; � � � ; s1;fg jzj ¼ f
2; sy;z 2 fs2;1; s2;2; � � � ; s2;cg; jzj ¼ c

8<
: ; (1)

where xn;i ¼ 0 depicts that the ith task is assigned to the nth
IoT device (s0;n) for local execution, and xn;i ¼ 1 and xn;i ¼ 2
denote that the ith task is assigned to one of fog servers and
cloud servers, respectively, for the remote execution. More-
over, the f and c show the number of available fog servers
and cloud servers respectively.

3.2.1 Weighted Cost Model

The goal of the task placement technique is to find the
best possible configuration of available servers for each
IoT application so that the weighted cost of execution for

each IoT device becomes minimized, as depicted in the
following:

min
cg ;cu2½0;1�

CðXnÞ; 8n 2 f1; 2; . . . ; Ng; (2)

where

CðXnÞ ¼ cg �
GðXnÞ
GLocn

þ cu �
QðXnÞ
QLocn

; (3)

s.t.

C1 : VMfog;i � Cfog;i; 8i 2 fS1;1; . . . ;S1;fg (4)

C2 : jxn;ij ¼ 1; 8n 2 f1; 2; . . . ; Ng; 1 � i � jVnj (5)

C3 : CðPðvn;iÞÞ � CðPðvn;iÞ þ vn;iÞ; (6)

where GðXnÞ, QðXnÞ, GLocn , and QLocn demonstrate the exe-
cution time, energy consumption, local execution time and
local energy consumption of the nth IoT device’s workflow,
respectively. Besides, cg and cu are control parameters for
execution time and energy consumption, by which the
weighted cost model can be tuned according to the users’
requirements. Moreover, we assume that each task can be
exactly assigned to one Virtual Machine (VM) of one fog or
cloud server. C1 denotes that the number of instantiated
VMs of the ith fog server VMfog;i is less or equal to the maxi-
mum capacity of that fog server Cfog;i. C2 represents that
each task i belonging to the workflow of nth IoT device can
only be assigned to one server in each time slot. In addition,
C3 indicates that the predecessor tasks of vn;i should be exe-
cuted before the execution of the task vn;i.

3.2.2 Execution Time Model

Considering the Eq. (3), the weighted cost optimization is
equal to the execution time model when cg ¼ 1 and cu ¼ 0.

The goal of execution time optimization model is to find
the optimal configuration of the application running on the
nth IoT device so that the execution time of that application
decreases. The overall execution time of each candidate con-
figuration can be defined as the sum of latency in task off-
loading (Glat

Xn
), the computing time of workflow’s tasks

based on their assigned servers (Gexe
Xn

) and the data transmis-
sion time between each pair of dependent tasks in each
workflow (Gtra

Xn
), as depicted in the following:

GðXnÞ ¼ Gexe
Xn

þ Glat
Xn

þ Gtra
Xn

: (7)

The computing execution time that corresponds to the
application running on the nth IoT device is calculated by:

Gexe
Xn

¼
X

xn;i2Xn

gexe
xn;i

; (8)

where gexexn;i
shows the computing time of task vn;i, and is cal-

culated based on its corresponding assigned server from the
following equation:

gexexn;i
¼

vw
n;i

loccpu ; xn;i ¼ 0
vw
n;i

SFf�loccpu
; xn;i ¼ 1

vw
n;i

SFc�loccpu ; xn;i ¼ 2

8>><
>>: ; (9)
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where loccpu demonstrates the computing power of the IoT
device, and SFf and SFc denote the speedup factor of fog
servers and cloud servers, respectively.

The offloading latency Glat
Xn

of tasks corresponding to the
nth IoT device is calculated based on tasks’ assigned servers:

Glat
Xn

¼
X

xn;i2Xn

glatxn;i
; (10)

where g lat
xn;i

illustrates the offloading latency of task vn;i, and

is calculated according to its corresponding assigned server
from the following equation:

g lat
xn;i

¼
0; xn;i ¼ 0
LLAN; xn;i ¼ 1
LWAN; xn;i ¼ 2

8<
: ; (11)

where LLAN and LWAN correspond to the latency of LAN
and WAN respectively.

The tasks’ transmission time of the workflow corre-
sponding to the nth IoT device is calculated by:

Gtra
Xn

¼
X

en;i;j2En
gtra
en;i;j

; (12)

where the transmission time of each pair of dependent tasks
vn;i and vn;j is calculated as follows:

gtra
en;i;j

¼

ew
n;i;j

BLAN
; CTi ¼ CT1; CT3

ew
n;i;j

BWAN
; CTi ¼ CT2; CT4

0; CTi ¼ CT5

8>><
>>: ; (13)

where BLAN and BWAN stand for the bandwidth (i.e., data
rate) of LAN and WAN respectively. The CTi represents
possible transmission configuration for each edge en;i;j
according to the assigned servers of its tasks vn;i and vn;j to
calculate transmission time. The possible transmission con-
figurations are defined as:

CTiðewn;i;jÞ ¼

xn;i � xn;j ¼ 0
& xn;i ¼ 1 i ¼ 1

&SIðvn;iÞ � SIðvn;jÞ 6¼ 0

xn;i � xn;j ¼ 0
& xn;i ¼ 2 i ¼ 2

&SIðvn;iÞ � SIðvn;jÞ 6¼ 0

xn;i � xn;j ¼ 1; i ¼ 3

xn;i � xn;j > 1; i ¼ 4

xn;i � xn;j ¼ 0
&SIðvn;iÞ � SIðvn;jÞ ¼ 0; i ¼ 5

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

; (14)

where � is XOR binary operation and SIðvn;iÞ is a function
that returns the assigned server’s index (i.e., z) of ith task
belonging to the nth workflow. CT1 denotes that the invoca-
tion is between two tasks vn;i and vn;j that are assigned to two
different fog servers, and CT2 represents the configuration in
which the two tasks run on two different cloud servers. The
invocation between two tasks assigned to the IoT device and
one of fog server is depicted in CT3. CT4 is used to show two

different configurations. The first one is whenever the two
tasks are assigned to the IoT device and one of the cloud serv-
ers, while the second one illustrates that one task is assigned
to one of the cloud servers and the second task is assigned to
one of the fog servers. Finally, CT5 refers to the condition that
two tasks are assigned exactly to the same server, for which
the transmission time is equal to zero.

3.2.3 Energy Consumption Model

According to Eq. (2), the weighted cost optimization is equal
to the energy consumption model when cg ¼ 0 and cu ¼ 1.
The energy consumption model aims at finding the best-
possible configuration of the application’s tasks to minimize
the energy consumption of the nth IoT device.

The overall energy consumption of each candidate con-
figuration can be defined as the sum of energy consumed in
task offloading (Qlat

Xn
), the energy consumption for the com-

puting of tasks (Qexe
Xn

), and the energy consumed for the

data transmission between each pair of dependent tasks
(Qtra

Xn
) of that application, as depicted in the following:

QðXnÞ ¼ Qexe
Xn

þQlat
Xn

þQtra
Xn

: (15)

The amount of energy consumed to compute the application
belonging to the nth IoT device is defined as follows:

Qexe
Xn

¼
X

xn;i2Xn

uexexn;i
; (16)

where uexexn;i
represents the energy consumption required to

compute the task vn;i, as calculated in the following:

uexexn;i
¼

gexe
xn;i

� Pcpu; xn;i ¼ 0

gidle
xn;i

� Pidle; xn;i ¼ 1; 2

(
; (17)

where Pcpu is the CPU power of the IoT device on which the
task vn;i runs. Since we only consider the energy consump-
tion from IoT device perspective, whenever each task is off-
loaded to the fog servers (xn;i ¼ 1) or cloud servers
(xn;i ¼ 2), the respective energy consumption is equal to the

idle time of the IoT device gidlexn;i
multiplied to the power con-

sumption of that device in its idle mode Pidle.
The energy consumed to offload applications’ tasks

belonging to the nth IoT device Qlat
Xn

is calculated by:

Qlat
Xn

¼
X

xn;i2Xn

ulatxn;i
; (18)

where ulatxn;i
stands for the offloading energy consumption of

the task vn;i and is obtained from:

ulatxn;i
¼ 0; xn;i ¼ 0

g lat
xn;i

� Pidle; xn;i ¼ 1; 2

�
: (19)

The transmission energy consumption Qtra
Xn

correspond-
ing to the nth IoT device is obtained from:

Qtra
Xn

¼
X

xn;i2Xn

utraxn;i
; (20)

where the transmission energy between each pair of depen-
dent tasks vn;i and vn;j is calculated as follows:
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utraen;i;j
¼

ew
n;i;j

BLAN
� Ptransfer; CEi ¼ CE1

ew
n;i;j

BWAN
� Ptransfer; CEi ¼ CE2

0; CEi ¼ CE3

8>><
>>: ; (21)

where the transmission power of the IoT device is denoted
as Ptransfer, and the CEi shows transmission configuration
for each edge en;i;j based on the assigned servers of its tasks
to calculate the transmission energy, which is calculated
from:

CEiðewn;i;jÞ ¼
xn;i � xn;j ¼ 1; i ¼ 1
xn;i � xn;j ¼ 2; i ¼ 2
otherwise; i ¼ 3

8<
: ; (22)

where CE1 denotes that the data flow is between two tasks
vn;i and vn;j that are assigned to the IoT device and fog serv-
ers. Moreover, CE2 is used to represent the invocation
between two tasks that are assigned to IoT device and cloud
servers. Because the energy consumption is considered
from the IoT device perspective, the transmission energy
consumption is equal to zero whenever one of the partici-
pating tasks in each edge ewn;i;j is not assigned to the IoT
device, as represented in CE3.

4 A NEW APPLICATION PLACEMENT TECHNIQUE

Our proposed application placement technique is divided
into three phases: pre-scheduling, batch application place-
ment, and failure recovery. In the pre-scheduling phase, an
algorithm is proposed by which brokers can organize the
concurrent IoT devices’ workflows. Next, we propose an
optimized version of Memetic Algorithm (MA) for batch
application placement to minimize the weighted cost of
each IoT device. Beside, to overcome any potential failures
in the runtime, we embed a lightweight failure recovery
method in our technique.

4.1 Pre-Scheduling Phase

The broker receives concurrent workflows from IoT devices
in its decision time slot and organizes them based on their
respective dependencies. Moreover, it calculates the local
execution time and energy consumption of IoT devices
based on their respective workflows.

Workflows of IoT devices are heterogeneous in terms of
the number and weight of tasks, dependencies, and the
amount of dataflow between each pair of dependent tasks.
Moreover, the order of execution of tasks in each workflow
should be sorted so that a new task vn;i cannot be executed
unless all tasks in its Pðvn;iÞ finish their execution.

4.1.1 Algorithmic Process

Algorithm 1 demonstrates how the pre-scheduling phase
organizes tasks of each workflow and accordingly creates a
list of schedules of concurrent workflows. In Algorithm 1,
for each workflow, the local execution time and energy con-
sumption are calculated and stored in LocTime and
LocEnergy, respectively (lines 3 and 4). Since DAGs can
have several root vertices (i.e., source nodes), the
RootFinder method finds all the root vertices of each DAG
and stores them in Sourcen (line 5). This method checks
whether the Pðvn;iÞ is equal to null or not for each task i in

the nth workflow, and if it equals to null returns that task
as one source root. The SingleRootTransformer method
receives the WFn and Sourcen and creates a new DAG,
called DAG

?

n, in which the workflow has only a single
source root (line 6). To obtain this, we create a dummy ver-
tex (called DummyRootn) and connect this vertex to all
source vertices of Sourcen obtained from the original DAG.
This enables us to run Breadth-First-Search (BFS) algorithm
overDAG

?

n starting from theDummyRoot, by which we can
specify scheduling number for each vertex (i.e., BFS level of
each vertex) (line 7). The main outcome of the first loop
(lines 2-8) of this algorithm is providing a schedule number
for tasks of each workflow, by which the concurrent tasks of
each workflow are specified. Because our proposed batch
application placement algorithm concurrently decides for
several workflows at each time slot, it is required to com-
bine these workflows based on their respective schedule
number. To achieve this, the algorithm iterates over all
workflows, so that tasks with same schedule number (either
from same or different workflows) are stored in the respec-
tive row of a 2D Arraylist called FinalOrderedList. The
getðxÞ and addðvn;iÞ methods are used to access a row in the
2D Arraylist (i.e., one schedule), and to add a new entry to a
list, respectively (line 12).

Algorithm 1. Pre-Scheduling Phase

Input:WF : List of all workflows
Output: FinalOrderedList, LocTime, LocEnergy
/* N: Number of workflows, WFn: The nth workflow in

the WF, LocTime & LocEnergy: Lists storing

local execution time and energy consumption of

workflows, FinalOrderedList: A 2D Arraylist in

which tasks in each row can be executed in par-

allel */
1 N ¼ jWF j
2 for n ¼ 1 to N do
3 LocTime.add(CalLocalExeTime(WFn))
4 LocEnergy.add(CalLocalExeEnergy(WFn))
5 Sourcen = RootFinder(WFn)
6 DAG

?

n = SingleRootTransformer(WFn, Sourcen)
7 BFS(DAG

?

n,DummyRootn)
8 end
9 for n ¼ 1 to N do
10 for i ¼ 1 to jWFnj do
11 integer x = CheckOrderNumber(vn;i)
12 FinalOrderedList.get(x).add(vn;i)
13 end
14 end

4.1.2 Example

Fig. 2 demonstrates how this pre-scheduling phase works.
Fig. 2a represents two workflows with five and eight verti-
ces. The first workflow has one source vertex while the sec-
ond workflow has three source vertices (represented by
gray color). After identifying the source vertices, the
SingleRootTransformermethod creates aDAG

?

n with single
source vertex, as depicted in Fig. 2b. Next, the BFS algo-
rithm is applied on the DAG

?

n to specify the schedule num-
ber for each task as depicted in Fig. 2c. This latter helps to
identify how many tasks can be executed in parallel in each
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schedule. When the schedule number of all tasks in all
workflows are identified, the tasks with the same schedule
numbers are placed together in a 2D Arraylist (called
FinalOrderedList) as depicted in Fig. 2d.

4.2 Batch Application Placement Phase

We propose a batch application placement algorithm in
which a Memetic Algorithm (MA) is employed to make
placement decisions for tasks of each schedule. Because
tasks in each schedule are either independent tasks in one
workflow or tasks from different workflows (which do not
have any dependency), they can be executed in parallel.

Algorithm 2. Batch Task Placement Phase

Input: WF : The list of all workflows ,FinalOrderedList: The
2D Arraylist containing all schedules

Output: finalConfigs, finalCost
/* N: Number of workflows, WFn: The nth workflow,

Q: Number of all schedules, MAResultList: A

global 2D list container in which each row

stores the offloading configuration of one

schedule,finalConfigs: A 2D Arraylist container

storing obtained severs’ configuration of each

workflow, finalCost: An array to store the execu-

tion cost of each workflow */
1 MAResultList = null
2 for i ¼ 1 to Q do
3 MAResult:getðiÞ = APMA(FinalOrderedList:getðiÞ)
4 finalConfigs = ResultProcessor(MAResultList:getðiÞ)
5 end
6 for n ¼ 1 to N do
7 finalCost½n� = CostCalculator(finalConfigs)
8 end

An overview of the proposed batch application placement
phase is presented in Algorithm 2. This phase receives the

list of all workflows WF and schedules FinalOrderedList
as an input, and outputs the workflows’ configuration
finalConfigs and the execution cost of all workflows
finalCost. Considering the number of schedules, the Appli-
cation Placement Memetic Algorithm (APMA) is invoked to
decide for tasks of the current schedule while considering
the server assignments of previous schedules (line 3). Since
tasks in each schedule are from one or several workflows,
the ResultProcessorðMAResultListÞ method receives tasks
assignments of all schedules MAResultList, organize tasks
assignments of each workflow, and stores them in a 2D
Arraylist called finalConfigs so that each row represents
oneworkflow (line 4).When task assignment of all schedules
is finished, the CostCalculatorðfinalConfigsÞ method calcu-
lates the execution cost of each workflow based on the
respective obtained configuration. Since themain function of
this phase is the APMA, we illustrate how this algorithm
works in detail in what follows.

4.2.1 Application Placement Memetic

Algorithm (APMA)

TheMemetic Algorithm (MA) is algorithmic pairing of evolu-
tionary-based search methods such as GA with one or more
refinement methods (i.e, local search, individual learning),
used for different types of optimizationproblems such as rout-
ing and scheduling [22]. In the MA, each candidate solution is
represented by an individual and the solution is extracted
from a set of candidate individuals called population.

We propose an Application Placement Memetic Algo-
rithm (APMA) based on the GA functions, in which local
search is applied to the selected individuals of each itera-
tion. This latter helps the APMA converge faster to the best-
possible solution. In the APMA, each candidate configura-
tion of servers assigned to tasks of one schedule is encoded
as an individual. The atomic part of each individual is a
gene which represents a task in a schedule and carries a

Fig. 2. An example demonstrating the pre-scheduling phase.
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tuple ðx; yÞ illustrating the type of assigned server x and the
index of that server y. The values for each tuple is derived
from the Eq. (1) in which values for type and index of serv-
ers are defined. Moreover, the length of individuals in each
schedule depends on the number of genes (i.e., tasks) on
that schedule. A sample individual in our technique is
depicted in Fig. 3 representing a sample configuration for
tasks in the second schedule of Fig. 2d.

The APMA is made up of five main steps called initiali-
zation, selection, crossover, mutation, and local search. The
first four steps are among population-based operations
used in GA while the local search step is used as the refine-
ment method. Besides, the utility of each candidate individ-
ual is evaluated by a fitness function enabling the APMA to
select the best individuals in each iteration. An overview of
the APMA is presented in Algorithm 3.

Algorithm 3. An Overview of APMA

Input: scheduleTasks: A set of tasks for one schedule
Output: selectedListop:getð0Þ
/* I:Maximum iteration number, selectedList: The

best individuals of respective population

found in the in each iteration */
1 selectedListop=null; selectedListdp=null
2 Initialization(scheduleTasks)
3 selectedListop=Selection(OP )
4 selectedListdp=Selection(DP )
5 for i=1 to I do
6 Crossover(selectedListop; selectedListdp)
7 Mutation(selectedListop; selectedListdp)
8 LocalSearch(selectedListop; selectedListdp)
9 selectedListop = selection(OP )
10 selectedListdp = selection(DP )
11 end

4.2.2 Initialization Step

In this step, required parameters for the APMA including the
maximum number of iterations I, population size PopSize,
and individuals in the population are initialized. Moreover,
alongside with Original Population (OP ), a new population
is defined to enhance the diversity of solutions, called Diver-
sity Population (DP ). Since the main goal of the APMA is to
find the best-possible configuration of servers by which the
local execution cost decreases, a pre-defined individual is
produced for the OP , in which tuple values of all genes are
set to their respective local servers (i.e., IoT devices). This
reduces the number of low utility individuals because those
whose fitness values are worse than the pre-defined individ-
ual are not selected in the subsequent iterations. The rest of
the individuals in theOP and individuals in theDP are gen-
erated randomly in the initialization step.

4.2.3 Fitness Function

The APMA uses two global and local fitness functions for
OP , which are used to evaluate the utility of each individual
Fop
g ðindvÞ (representing the utility of a servers’ configuration

for tasks of one schedule indv), and each task of one work-
flow on that schedule Fop

l ðvn;iÞ (representing the cumulative
utility of the given task plus the utility of other tasks in that
workflow), respectively. The Fop

l ðvn;iÞ receives a task vn;i and
calculates the local fitness value based on Eq. (2) with the
assumption that the execution cost of unassigned tasks in
one workflow is equal to zero. Moreover, Algorithm 4 dem-
onstrates how the global fitness of each individual Fop

g ðindvÞ
is calculated. The Fop

g ðindvÞ is the sum of local fitness
Fop
l ðvn;iÞ of tasks on that schedule. However, due to the paral-

lel execution of multiple tasks of one workflow in each
schedule, the maximum of local fitness Fop

l ðvn;iÞ values of
tasks belonging to the same workflow MaxLoc are first
calculated (lines 1-11). The responsibility of finding tasks
of the same workflow in one schedule is handled by the
ParallelTaskCheck method that stores parallel tasks of one
workflow in the parallelSet (line 3). Then, the local fitness of
each task in the parallelSet is calculated and the maximum
local fitness of tasks belonging to that workflow is stored in
MaxLoc (lines 4-10). Finally, the global fitness value gBest
can be obtained by summation on all values of MaxLoc,
which stores the maximum local fitness of each workflow up
to that schedule (lines 12-14).

Algorithm 4. Global Fitness Function of OP : Fop
g

Input: indv: An individual showing tasks of one schedule
Output: gBest
/* WF: Set of all workflows , parallelSet = A con-

tainer to store parallel tasks of one workflow,

MaxLoc: A container to store the maximum local

fitness of each workflow in the schedule, gBest:
The global best fitness value,N ¼ jWF j */

1 for n=1 toN do
2 parallelSet = null
3 parallelSet = ParallelTaskCheck(indv,WFnÞ
4 MaxLoc½n� = Fop

l ðparallelSet:getð1ÞÞ
5 for i=1 to jparallelSetj do
6 tempMax = Fop

l ðparallelSetiÞ
7 if tempMax >MaxLoc½n� then
8 MaxLoc½n� = tempMax
9 end
10 end
11 end
12 for i=1 toMaxLoc do
13 gBest = gBest +MaxLoc:getðiÞ
14 end

The principal goal of the diversity population (DP ) is to
diversify the individuals in the APMA so that the probabil-
ity of getting stuck in local optimum decreases. Hence, the
fitness function of DP , Fdp

g ðindvÞ, is different from the OP
and is calculated in what follows:

Fdp
g ðindvdpr Þ ¼

XPopSize
i¼1

Hðindvopi ; indvdpr Þ; (23)

where PopSize represents the population size of OP andDP
in the APMA. Individual of OP and DP are displayed by

Fig. 3. An individual representing a sample server configuration for
second schedule of Fig. 2d.
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indvopi and indvdpr , respectively. Besides, Hðindvopi ; indvdpr Þ is
the Hamming distance function that calculates the differ-
ence between individuals received as its arguments in terms
of assigned servers to their tasks, and is defined as:

Hðindvopi ; indvdpr Þ ¼
Xf
k¼1

df; (24)

where f displays the size of that individual (i.e., schedule).
In Eqs. (23) and (24), to calculate the fitness of one indi-

vidual of DP , we calculate its difference by all individuals
in the OP , and the individual with a higher difference
receives better fitness value. This helps to maintain individ-
uals with a higher difference in the DP that better diversify
the individuals in the APMA. Since different type of servers
(i.e., IoT, Fog, and cloud) with different number of servers
in each type (i.e., server index) are considered in the system
model, a diversity factor df is defined which describes the
fitness of each task according to the type and index of its
assigned server. This latter is obtained from what follows:

df ¼

2; sgnðjST ðindvopi;kÞ � ST ðindvdpr;kÞjÞ ¼ 1

sgnðjST ðindvopi;kÞ � ST ðindvdpr;kÞjÞ ¼ 0
1; &

sgnðjSIðindvopi;kÞ � SIðindvdpr;kÞjÞ ¼ 1

sgnðjST ðindvopi;kÞ � ST ðindvdpr;kÞjÞ ¼ 0
0; &

sgnðjSIðindvopi;kÞ � SIðindvdpr;kÞjÞ ¼ 0

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

; (25)

where the kth task (i.e., gene) on those individuals are
depicted as indvopi;k and indvdpr;k, respectively. sgn is the sym-
bolic function, which is defined as:

sgnðjx� yjÞ ¼ 0; x ¼ y
1; x 6¼ y

�
; (26)

According to Eq. (25), if the server type of each task in the
DP (i.e., ST ðindvdpr;kÞ) is different from the server type of cor-
responding task in an individual of OP (i.e., ST ðindvopi;kÞ), it
receives higher fitness value. However, in condition that the
server types of these tasks are equal, the df is set to 1. More-
over, if the two tasks are assigned to exactly one server (i.e.,
same server type and server index), the fitness value for
that task in theDP is equal to zero.

4.2.4 Selection Step

The goal of selection is to choose the high utility individuals
from both OP and DP based on their respective fitness
functions for next iterations. To achieve this, the individuals
of OP and DP are sorted based on their respective fitness
functions and the top three of individuals plus one random
individual from each population are selected and stored in
the selectedListop and selectedListdp, respectively.

4.2.5 Crossover and Mutation Steps

The goal of crossover step is to generate new individuals
(called offspring) by a combination of individuals selected
in the selection step (called parents). The APMA applies a

two-point crossover operation to each pair of selected
parents and creates two offspring from them. In each itera-
tion, the total number of new offspring for each population
is calculated based on the following equation:

off spring Number ¼ n!

ðn� kÞ! ; k ¼ 2: (27)

In the two-point crossover, two crossover points are ran-
domly selected from the parents. Then, genes in between the
two crossover points are exchanged between the parent indi-
viduals while the rest remain unchanged. Since the APMA
uses two populations OP and DP , the crossover between
individuals of each population is called inbreeding, while
the crossover between individuals of different populations is
called crossbreeding. The crossbreeding provides diversity
in individuals which helps to avoid local optimal values
with higher probability. Besides, the outcomes of cross-
breeding are stored in selected list of both populations
selectedListop, selectedListdp, while the results of inbreedings
are only stored in the selected list of respective populations.

In the APMA, the mutation function, based on the pre-
defined probability, modifies several genes of offspring in
hope of generating individuals with higher utility.

4.2.6 Local Search Step

Considering the fact that crossover points and genes for the
mutation are selected randomly, a new function called local
search is definedwhichworks based on the local fitness func-
tion of theOP (Fop

l ðvn;iÞ). It is worth mentioning that the ran-
domness provided by the crossover function andmutation is
essential since it provides the opportunity to jump out from
local optimal points with a higher probability. The local
search function, alongside with those random functions,
leads to faster convergence to the global optimal solution.
Algorithm 5 demonstrates the process of local search step.

Algorithm 5. Local Search Step

Input: selectedListop: Selected list of the OP , selectedListdp:
Selected list of theDP

/* tempList: A temporary list container storing

the best-found tuple values for each gene in the

individual */
1 size=jselectedListopj
2 tempList=setList(MAXINT)
3 for i=1 to jindvj do
4 for j=1 to size do
% j iterates over jselectedListopj
5 if Fop

l ðindvopj;iÞ < tempList:getðiÞ then
6 tempList½i�=Fop

l ðindvopj;iÞ
7 end
8 end
9 end
10 selectedListop.add(CreateNewIndv(tempList:getðiÞ))
11 UpdatePop(OP; selectedListop)
12 UpdatePop(DP; selectedListdp)

Although the local search function increases the probabil-
ity to converge faster to the global optimal solutions, two
problems may occur. First, if the local search functions are
used solely, the probability of getting stuck in the local
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optimal points increases. Second, for problems with a large
solution space, the local search function requires a significant
amount of time to visit the search space. Hence, these two
factors should be considered while designing a local search
function in the APMA. To address the first issue, the cross-
over and mutation functions which provide randomness are
kept in the APMA.Moreover, the diversity populationDP is
created which ensures diversity in each iteration. To benefit
from the local search function while decreasing its searching
time, we reduce the search space for local search by only con-
sidering the individuals in the selected list of OP (i.e.,
selectedListop) (line 1). The setListðMAXINT Þ initializes the
tempList with infinite value for all its indexes. Considering
individuals in the selectedListop, genes with the same index
number are evaluated in terms of their local fitness values
Fop
l ðindvopj;iÞ and best genes are selected and stored in the

respective index number of tempList (lines 3-9). Since
the fitness function is defined according to the execution
cost, the less fitness value means better assignment (line 5).
Afterward, a new individual is created and stored in the
selectedListop (line 10). Finally, the updated selectedListop in
the local search step and the selectedListdp are then com-
bined with theOP andDP respectively, and top individuals
of each population (up to the PopSize) are selected for the
populations of the next iteration (lines 11-12).

Whenever the APMA reaches to its stopping criteria, the
best individual of the OP stored in selectedListop:getð0Þ is
returned as the result of the APMA.

4.3 Failure Recovery Phase

Failures can happen in any systems, and hence, providing
an efficient failure recovery method is of paramount impor-
tance. In our system, brokers always keep records of free
servers and check whether they are planned to perform a
task in the near future or not. Besides, considering the
assigned server to each task, they estimate the completion
cost of each task based on its local fitness value Fop

l ðvn;iÞ. So,
if the execution of any tasks fails, the failure recovery
method is called to select a surrogate server for that task.
The failure recovery method receives the list of current free
servers (including IoT devices) and failed task as inputs.
Then, it calculates the local fitness value Fop

l ðvn;iÞ of that
tasks for free servers. Finally, tasks will be forwarded to the
server with the least Fop

l ðvn;iÞ for the execution.

4.4 Complexity Analysis

The Time Complexity (TC) of our technique depends on its
three phases. We consider the number of incoming work-
flows to the broker as N and the maximum number of tasks
for all workflows as L. The most time-consuming part in the
pre-scheduling phase (Algorithm 1) is the BFS which
requires OðLþ jEjÞ time to visit all tasks of one workflow in
which jEj represents the number of data flows. In the dense
DAG, the jEj ¼ OðL2Þ. Hence, the TC of pre-scheduling
phase at the worst case is of OðN � L2Þ. In addition, in the
best-case scenario, if we assume N ¼ 1, and jEj ¼ OðLÞ for
sparse DAGs, the TC is of OðLÞ.

The batch task placement phase (Algorithm 2) calls the
APMA (Algorithm 3)Q timeswhereQ represents the number
of schedules. To calculate the TC of the second phase, we

ignore the iteration size I and the population size popSize of
the APMA since they are constant values. In the APMA, the
local fitness function Fop

l ðvn;iÞ and ParallelTaskCheck which
are invoked from the global fitness function (Algorithm 4) are
the most repeated functions, defining the TC of the batch
application placement phase. The TC of ParallelTaskCheck
depends on the size of indvwhich at most can beN � ðL� 1Þ
in the case that each workflow has L� 1 parallel tasks in one
schedule. Hence, the TC of parallelTaskCheck at the worst
case is ofOðQ�N2 � LÞ. The maximum length of parallelSet
(line 5 of Algorithm 4) is L� 1, and hence, the local fitness
function Fop

l ðvn;iÞ is called Q�N � ðL� 1Þ times. Moreover,
the instructions in the Fop

l ðvn;iÞ at most can be executed L
times since the local fitness function only considers tasks of
oneworkflowwhich are atmostL. Finally, the TC of the batch
task placement phase (Algorithm 2) at the worst case is of
OðQ� ðN � L2 þN2 � LÞÞ. In addition, in the best-case sce-
nario, if we assumeN ¼ 1, the TC is ofOðQ� L2Þ.

The TC of the failure recovery phase depends on the TC
of local fitness function Fop

l ðvn;iÞ which is of OðLÞ, and the
number of free servers which at most is equal to all available
servers in the system M. Hence the TC of this phase at the
worst case is of OðM � LÞ. In addition, in the best-case sce-
nario, no failure happens in the system.

Considering that in all cases 2 � Q, the TC of our tech-
nique at the worst case is polynomial and is represented as
OðQðNL2 þN2LÞ þMLÞ. Besides, in the best-case scenario,
where N ¼ 1, Q ¼ 2, and no failures occur in the system,
the TC is of OðL2Þ.

5 PERFORMANCE EVALUATION

In this section, the system setup and parameters, and
detailed performance analysis of our technique in compari-
son to its counterparts (especially [4]) are provided.

5.1 System Setup and Parameters

In our experiments, all techniques are implemented and
evaluated using iFogSim simulator [23]. We used two types
of workflows, namely, real workflows of applications and
synthetic workflows. For the real workflows, we used the
DAGs extracted from the face recognition application [16]
(Workflow1) and the QR code recognition application [24]
(Workflow2). Moreover, to consider other possible forms
of workflows, several synthetic workflows are generated
(Workflow3 to Workflow6). We consider an environment in
which six IoT devices are available and each IoT device has
one specific workflow from Workflow1 to Workflow6. Each
group of six IoT devices is connected to one fog broker, and
fog brokers have access to six fog servers and three cloud
servers. In this setup, each fog server has three VMs while
each cloud server is assumed to have 16 VMs. The comput-
ing power of IoT devices is considered as 500 MIPS [4] and
their power consumption in processing and idle states are
0.9Wand 0.3W respectively. Besides, the transmission power
consumption of IoT devices is 1.3W [25].We also assume that
the computing power of eachVMof fog servers is 6 or 8 times
more than IoT devices [4], [26] while the computing power of
each VM of cloud servers are 10 or 12 times more than IoT
devices [4]. The summary of our evaluation parameters and
their respective values is presented in Table 2.
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5.2 Performance Study

We employed three quantitative parameters including exe-
cution time, energy consumption, and weighted cost to
comprehensively study the behavior of our technique in dif-
ferent experiments. Five experiments are conducted to ana-
lyze the efficiency of techniques in terms of various
bandwidths, different iteration sizes, techniques’ decision
times, failure recovery, and system size analysis. Both cg

and cu are set to 0.5 meaning that the importance of execu-
tion time and energy consumption is equal in the results.
However, these parameters can be adjusted based on the
users’ requirements and network conditions. To analyze the
efficiency of our technique, the following methods are
implemented for comparisons:

� Local: In this method, all tasks of workflows are exe-
cuted locally on their respective IoT devices, and
hence, no parallel execution of tasks can be per-
formed for workflows. The results of this method
can be used as a reference point to analyze the gain
of application placement techniques.

� Only Edge: In this method, all tasks of workflows are
offloaded to the fog/edge servers in the edge layer

for the execution. If the VMs of all servers are full and
there is no free VMs, the remaining tasks have to wait
until free computing resources become available.

� Only Cloud: In this method, all tasks of workflows are
executed on the cloud servers.

� COM2019: To the best of our knowledge, there is no
work considering batch application placement in a
scenario with multiple IoT devices, multiple fog
servers, and multiple cloud servers. Therefore, we
updated the fitness function and chromosome struc-
ture of the [4], which only consider single fog server
and single cloud server, to become compatible with
our system model. Afterward, the efficiency of its
heuristics and searching methods are compared
with the other techniques.

� ULOOF: This is the extended version of user level
online offloading technique [15], so that it can con-
sider scenarios with multiples cloud and fog/edge
server for task placement.

The obtained results of each workflow are the average of
10,000 runs with a 95 percent confidence interval.

5.2.1 Bandwidth Analysis

In this experiment, we study the behavior of techniques in
various bandwidth values as depicted in Fig. 4. The maxi-
mum iteration size I and population size PopSize are set to
100 and 20, respectively.

Fig. 4 shows that as the bandwidth increases, the execu-
tion time, energy consumption, and weighted cost of work-
flows decrease, meaning better application placement gain
in comparison to local execution of workflows. Moreover,
in most of cases, the only edge method outperforms the
only cloud because the fog servers are distributed at the
proximity of IoT devices and can be accessed by higher
Bandwidth and less latency. However, since the resources
of fog servers are limited compared to cloud servers, it can-
not obtain the best-possible outcome. This is why the
COM2019 and the ULOOF obtain better results in most sce-
narios than only cloud and only edge methods. They use

TABLE 2
Evaluation Parameters

Evaluation Parameters Value

Number of IoT devices 6
Number of Fog/Edge servers 6
Number of Cloud servers 3
Bandwidth of LAN (2000,4000) KB/s
Bandwidth of WAN (500,1000) KB/s
Delay of LAN 0.5 ms
Delay of WAN 30 ms
Computing power of IoT devices 500 MIPS
Speedup Factor of Fog/Edge Servers’ VMs (6, 8)
Speedup Factor of Cloud Servers’ VMs (10, 12)
Idle Power Consumption of IoT device 0.3 W
CPU power of IoT devices 0.9 W
Transmission Power of IoT devices 1.3 W

Fig. 4. Execution cost of workflows with different bandwidth values.
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the resources of cloud and fog servers simultaneously,
resulting in the parallelization of more tasks. As it can be
seen, our proposed technique is superior to all other meth-
ods due to two important reasons. First, similar to the
COM2019 and the ULOOF, it utilizes the resources of fog
and cloud servers simultaneously. Second, due to its local
fitness function, local search, and the diversity provided by
the DP , it stays away from local optimal values with higher
probability, converges faster to the optimal solution, and
hence, outperforms the COM2019 and the ULOOF.

It is worth mentioning that in some cases such as
Workflow5 in Fig. 4c, the weighted cost of the only cloud
method is less than the local execution, however, its execu-
tion time in Fig. 4a is far more than the local execution. This
is because the cg and cu are set to 0.5, which give equal
importance to execution time and energy consumption.
Therefore, due to lower value for the energy consumption
in this workflow compared to its obtained execution time,
the weighted cost shows low gain for the task placement.

5.2.2 Maximum Iteration Number Analysis

One of the important parameters for comparing evolutionary
application placement techniques is the maximum iteration
number, through which their convergence speed to the opti-
mal solution can be evaluated. In this experiment, the perfor-
mance of COM2019 and our technique are studied. Since the
solution of the local execution, only edge, only cloud, and
ULOOF methods do not change in different iterations, the
obtained results of these methods are just depicted to better
understand the efficiency of other techniques. For this exper-
iment, the PopSize, the LAN, and WAN bandwidths are set
to 20, 2000 KB/s and 500 KB/s, respectively.

It can be seen from Fig. 5 that the increase in maximum
number of iterations I leads to better solutions for both our
technique and the COM2019 for all workflows in compari-
son to the ULOOF, local, only edge, and only cloud meth-
ods. However, our technique converges to the better
solution in a smaller number of iteration compared to the
COM2019. The Fig. 5a shows that the obtained results of
our technique in I ¼ 50 for all workflows outperform the
obtained results of the COM2019 even at I ¼ 200. This trend
can also be seen in Fig. 5b for weighted cost of execution,
while in Fig. 5c the obtained results of the COM2019 and
our technique are closer to each other. It is important to
note that although better solutions can be found by increas-
ing the maximum number of iterations (if the techniques do

not get stuck in the local optimal points), the decision time
of algorithms also increases that can be critical for some of
workflows, especially for latency-sensitive ones.

5.2.3 Decision Time Analysis

This experiment analyzes the efficiency of each technique
based on the decision time required to obtain a well-suited
solution. Although application placement algorithms offer
server configurations by which the execution time and
energy consumption of IoT applications can be reduced, the
time that they spend to reach that solution is also important.
This is mainly because obtaining good server configurations
for IoT applications in a long period of time can negatively
affect the execution time requirements of IoT applications.
Another important reason elaborating the importance of the
decision time analysis, especially for evolutionary algo-
rithms, is that only iteration size analysis cannot solely
judge the efficiency of one application placement technique.
This is because one technique can reach to better solutions
in a small number of iterations compared to its counter-
parts, however, the time spent on each iteration may be far
more than other techniques resulting in longer decision
time. Hence, although the maximum iteration size analysis
is required, the decision time analysis acts as a supplemen-
tary analysis to ensure the efficiency of one technique. In
this experiment, the population size PopSize is set to 20, and
the LAN and WAN bandwidths are 2000 KB/s and 500
KB/s, respectively.

Table 3 represents obtained execution times of our pro-
posed solution and COM2019 for four different decision

Fig. 5. Execution cost of workflows with different maximum iteration number values.

TABLE 3
Decision Time Analysis

Decision Time Technique
Workflow Execution Time Result

WF1 WF2 WF3 WF4 WF5 WF6

100 ms
Proposed 2.412 2.467 2.758 3.638 3.837 1.649
COM2019 4.333 2.917 3.422 6.276 6.526 3.09

200 ms
Proposed 2.345 2.397 2.610 3.430 3.384 1.446
COM2019 4.073 2.707 2.984 5.344 5.109 2.529

300 ms
Proposed 2.288 2.302 2.455 2.869 3.362 1.344
COM2019 3.656 2.494 2.868 4.388 4.709 2.746

400 ms
Proposed 2.229 2.204 2.403 2.587 2.870 1.304
COM2019 3.623 2.445 2.753 3.663 4.295 2.523
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times. Since the execution time result of the ULOOF does not
change in different decision times, its respective results are
not presented in Table 3, however, its average decision time
is roughly 30ms. As the decision time of techniques increases
from 100 ms to 400 ms, the execution time of techniques
decreasesmeaning that the higher utility results are obtained.
The obtained results of our solution gradually decrease
from 100 ms to 400 ms, while the results of COM2019 has a
significant decreasing trend in the range of 100-200 ms and
200-300 ms, and gradually decrease between 300-400 ms,
which means that the results of COM2019 approximately
converged at 400 ms. It can be clearly seen that our technique
not only provides better values compared to the COM2019 in
the equivalent decision time, but its results at 100ms also out-
perform the results of the COM2019 at 400 ms. This demon-
strates that, regardless of number of iterations, our technique
converges faster to the optimal solutions.

5.2.4 Failure Recovery Analysis

This experiment analyzes the effect of failure recovery
method in application placement techniques. Since the
COM2019 and ULOOF do not have any failure recovery
method, we present results of our technique with failure
recovery mode (FR Mode) when the probability of failure
occurrence is 5 percent in comparison to the local execution,
as depicted in Table 4. In this experiment, the maximum iter-
ation size I is equal to 100 and values of the rest of parame-
ters are set as same as parameters in decision time analysis.

Table 4 shows that obtained results of our technique with
FR mode still outperform results of local execution for all
workflows and achieve offloading gain. In techniques ignor-
ing failure recovery in their consideration, failed tasks result
in incomplete execution of workflows due to dependencies
among tasks of one workflow. However, our technique, by
accepting a small overhead of failure recovery phase, can
achieve a reasonable gain in comparison to local execution.

5.2.5 System Size Analysis

In this experiment, we analyze the effect of system size on
different application placement techniques. In our system,

each fog broker makes application placement decisions for
its respective IoT devices. Hence, to analyze the perfor-
mance of our proposed technique, we increase the number
of IoT devices and fog servers per each fog broker from 6 to
24 by the step of 6. Moreover, in this experiment, we use the
same workflows as the previous experiments. In addition,
the LAN, and WAN bandwidths are set to 2000 KB/s and
500 KB/s, respectively, and the rest of parameters are as the
same as values of Table 2.

The Fig. 6 shows the result of Cumulative Execution Time
(CET), Cumulative Energy Consumption (CEC), and Cumu-
lative Weighted Cost (CWC) when different numbers of IoT
devices are connected to one fog broker. The term cumula-
tive refers to the aggregate execution cost of all IoT devices
(e.g., the CET shows the aggregate execution time of all IoT
devices in scenarios with different number of IoT devices).
In Fig. 6, the CET, CEC, and CWC increase as the number of
IoT devices increases. In all scenarios, the CET, CEC, and
CWC of all methods are lower than the local execution cost,
however, our proposed technique outperforms other meth-
ods in all scenarios and results in lower cost. In addition, the
performance of the ULOOF and COM2019 is roughly the
same in scenarios with six IoT devices, however the ULOOF
shows better performance for the rest of scenarios. This latter
is because ULOOF is independent of maximum number of
iteration while the performance of the COM2019 largely
depends on themaximumnumber of iterations.

6 CONCLUSION AND FUTURE WORK

We proposed a weighted cost model for optimizing the exe-
cution time and energy consumption of IoT devices in a het-
erogeneous computing environment, in which multiple IoT
devices, multiple fog servers, and multiple cloud servers
are available. We also proposed a batch application place-
ment technique based on the Memetic Algorithm to effi-
ciently place tasks of different workflows on appropriate
servers in a timely manner. Besides, a light-weight failure
recovery technique is proposed to overcome the potential
failures in the execution of tasks in runtime. The effective-
ness of our technique is analyzed through extensive experi-
ments and comparisons by the state-of-the-art techniques in
the literature. The obtained results demonstrate that our
technique improves its counterparts by 65 and 51 percent in
terms of weighted cost in bandwidth analysis and execution
time in decision time analysis, respectively. The perfor-
mance results demonstrate that our technique achieves up
to 65 percent improvement over existing counterparts in
terms of the weighted cost.

TABLE 4
Failure Recovery Analysis

Technique Workflow Execution Time Results

WF1 WF2 WF3 WF4 WF5 WF6

Proposed (FR Mode) 2.7132 2.6243 2.8642 3.4125 3.6321 1.4685
Local 6.4354 10.031 5.5194 8.9654 6.0520 8.0180

Fig. 6. System size analysis with different number of IoT devices per fog broker.
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As part of future work, we plan to extend our proposed
weighted cost model to consider other aspects such as mon-
etary cost. Moreover, we plan to apply mobility models in
this scenario and adapt our proposed application placement
technique accordingly.
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