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Abstract—Anomaly detection in dynamic networks aims to find network elements (e.g., nodes, edges, subgraphs, change points) with

significantly different behaviors from the vast majority, it can also devote to community detection and evolution and prediction tasks.

Most existing methods focus on one specific task, that is, only detect anomalies of one type of element isolated, so they lose the ability

to model the correlation and driving mechanism between different abnormal behavior. Considering that the anomaly detection of one

type of element is helpful to other types of elements, i.e., the temporal evolution hidden the dynamic networks are driven by indivisible

behavior patterns. So in this paper, we propose a unified Generation model to analyze the dynamic network for Exploring the Abnormal

Behaviors of different Scales (GEABS). It can model the relation and catch different levels (node, community and network) of anomaly

with a joint statistical network model and detect the community structure and its evolution. Specifically, we denote the parameters of

node popularity, community membership to generate the dynamic network with stochastic block model (SBM), we also describe the

varying of node and community by dynamic process. With a well-designed generative mechanism, it can detect the change point on

network level, temporal evolution on community level and abnormal behavior on node level synchronously, besides, it also detects the

community structure effectively. We also propose an effective optimization algorithm with variational inference. Experimental results

show that the GEABS achieves better performance on abnormal behavior and community structure compared with baselines.

Index Terms—Dynamic network, abnormal behavior, different levels, generation model, stochastic block model

Ç

1 INTRODUCTION

ANOMALY detection is an important task in data mining
and pattern recognition [1], [2]. Its purpose is to find

cases that hide rare patterns in a given data set that do not
conform to the expected normal behavior. Anomaly detec-
tion attracts much research and has been applied to many
fields, such as fraud detection [3] and abnormal behavioral
detection [4]. So a variety of methods have been proposed
in the past years. For that complex network can be used in
modeling a myriad of real-world systems, ranging from
international air transportation [5] to team collaboration net-
works [6], from social networks [7] to citation networks [8],
recent years, network anomaly detection has also been
received much attention and has become one of the key
issues in current research. Similar to anomaly detection, but
beyond it, anomaly detection in complex networks usually

refers to find nodes whose patterns significantly deviate
from the vast majority of the network [9], [10] or that trigger
the significant structural changes of the network at different
levels (i.e., micro level, mesoscopic level and macro
level) [11].

Since the network structure itself evolves over time
(dynamic or temporal network) [12], such as the addition
and disappearance of nodes and varying of edges which
also drive the dynamic behavior of communities. So it is dif-
ficult to determine whether changes in a dynamic network
are normal or abnormal. The causes of network anomalies
are also complex, and there are many forms of anomalies
denoted, including abnormal nodes, abnormal edges,
abnormal subgraphs, detection of change points [11]. At the
same time, anomaly detection in dynamic networks helps to
better understand the evolution status of the network,
assess the anomaly degree of the network and its impact,
and formulate effective intervention measures to deal with
potential crises in the network. For example, it can improve
the accuracy of community detection by properly using
anomaly detection to find the non-smooth evolution time
point, which is caused by the evolution of the network. It
can also be used in anomaly gene identification biological
systems, climate prediction and financial markets.

Generally, most existing anomaly detection methods are
usually based on a specific perspective, i.e., tracking the
evolution of dynamic networks at different times at the
macro, micro, and mesoscopic levels, respectively, ignoring
the mutual influence of anomalies at the three levels. For
example, [13], [14] focus on detecting anomalies at the micro
level (i.e., abnormal nodes or edges), [15], [16], [17] focus on
anomaly detection of various neural networks to modify the
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convergence performance. and [18], [19] focus on anomaly
detection at the macro level (i.e., change points). In fact, in
the process of network evolution, it is highly possible that
multiple types of abnormalities have occurred. And there is
a correlation between anomalies at different levels, and
anomaly detection at one level is also helpful for anomaly
detection at other levels. Take anomaly detection in the
financial market as an example. In a financial transaction
network, nodes are accounts, and edges are transactions
between accounts. Then the abnormal events at the micro
level can be nodes that frequently trade with different com-
munities. In real life, this account may be a normal account,
but it may also be an account used for fraud. An abnormal
event at the mesoscopic level can be a group of accounts
that frequently trade with each other before suddenly split-
ting into two or more groups. This group of accounts, in
real life, maybe all belonging to a large company, then the
split event may indicate that this company has been reor-
ganized. The abnormal event at the macro level is that the
entire market has experienced great fluctuation, which is
reflected in the financial market network as a point of net-
work change. Furthermore, the accumulation of abnormal
accounts can cause drastic changes in account groups, and
the big events of the whole market may affect all the account
groups and accounts(such as the financial crisis). As shown
in Fig. 1, the state of node v7 in the network is constantly
changing with time, so it can be regarded as an abnormal
point in the evolution of the entire network. In other words,
its anomaly causes the entire network anomaly. However,
the anomaly of v7 can also be seen as the result of an anom-
aly at the mesoscopic level (i.e., division and merger of com-
munities). This results in the coupling of micro-level
(abnormal node) and mesoscopic-level (abnormal sub-
graph) anomalies in the process of network evolution. Only
considering a single type of abnormality is not enough to
support the complete mining of the law of network evolu-
tion. That is, the abnormalities of the network at the macro,
micro, and mesoscopic levels are closely related to each
other and are driven by deeper factors. The anomaly is only
the appearance, and the essence is unknown.

Only a few heuristic methods consider the correlation
between anomalies at different levels, such as [18] and [19]
detect community structures anomaly and change points
simultaneously. However, they only consider some but not
all levels of anomalies, and some need to manually define
features. Besides, these methods do not have a unified
framework, they realize different levels of anomaly

detection step by step, which cannot model the coupling
relationship between anomalies to achieve mutual enhance-
ment. To catch the correlation between anomalies at differ-
ent levels and better detect the anomaly of node,
community, change points and the entire network, we use a
unified Generation model to analyze the dynamic network
for Exploring the Abnormal Behaviors of different Scales
(GEABS) due to the poor interpretability of anomaly detec-
tion methods based on network characteristics [20], [21],
[22]. We use the characteristic that the generative model has
good interpretability to explore the essence of this abnor-
mality in this paper. Specifically, we denote the parameters
of node popularity, community membership to generate the
dynamic network with stochastic block model (SBM), and
accurately identify network evolution abnormalities by
whether the parameter changes exceed the threshold calcu-
lated by a defined operator. In addition to detecting anoma-
lies, our model can also detect the community structure. We
optimize our method by variational inference. The main
contributions of this paper can be categorized as follows:

� We propose an anomaly detection method based on
a generative model, which takes into account the
interaction of anomalies at different levels, and cap-
tures all types of anomalies that may occur during
the evolution of the network.

� We realize the correlation analysis of network mac-
roscopic, mesoscopic, and micro-scale abnormalities
by introducing network parameters and transition
matrix based on Stochastic Block Model (SBM).

� We use variational inference to achieve efficient opti-
mization. Our model has good versatility, can be eas-
ily applied to various generative models, and has
good interpretability.

� Experimental results demonstrate that the proposed
model can significantly improve the performance of
network anomaly detection compared with the state-
of-the-art on both synthetic datasets and real-world
networks.

The rest of this paper proceeds as follows: Section 2
presents the related work on anomaly detection and net-
work anomaly detection. Section 3 formally describes our
proposed method and notations we used. Related inference
is represented in Section 4. Then we validate our approach
by analyzing extensive experiments in Section 5 and sum-
marize our paper in Section 6.

2 RELATED WORK

Anomaly detection in dynamic networks usually refers to
find nodes whose patterns significantly deviate from the
vast majority of nodes or that trigger the significant struc-
tural changes of the network at different levels. Therefore,
we roughly divide existing methods into three categories:
micro, mesoscopic and macro level in this paper.

Micro Level. It is mainly to detect abnormal vertices and
abnormal edges in the network [13], [23], [24], [25]. Hassan-
zadeh et al. [13] proposed a semi-supervised method for
detecting abnormal nodes in online social networks by
extracting features using an expectation-maximizing clus-
tering algorithm to classify vertices according to the initial

Fig. 1. A toy example to show the temporal evolution with different scale
abnormal behaviors and their relations in dynamic networks.
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abnormity score of vertices, and using fuzzy logic of mem-
bership functions to define the degree of abnormity. Heard
et al. [14] used the Bayesian discrete-time counting process
to model the number of edges between vertices, by learning
the distribution of edges between vertices, to calculate the
probability P -value of the newly observed edge, and use
this value to mark abnormal edges. Sun et al. [26] utilized a
compact matrix decomposition to compute sparse low-rank
approximations to realize the exploration of abnormal edges
in the network. Zheng et al. [23] proposed a general end-to-
end anomalous edge detection framework using an
extended temporal GCN with an attention model. Charu
et al. [24] used a structural connectivity model in order to
define outliers in graph streams and Ranshous et al. [25]
described a high-level model for outlier detection based on
global and local structural properties of a stream.

Mesoscopic Level. It is mainly to detect abnormal sub-
graphs in the network [27], [28], [29], [30], [31], [32], [33],
[34]. Mongiovi et al. [29] hypothesized that the gradual
change of subgraphs in consecutive time steps may cause
the network to shrink or grow between consecutive snap-
shots and using the edge distance as a distance metric to
determine the distance between two adjacent subgraphs.
Miller et al. [30] detected anomalously sparse (rather than
anomalously dense) subgraphs by embedding the signal
involves subtracting edges. Shin et al. [27] proposed a disk-
based dense-block detection method, which also can be run
in a distributed manner across multiple machines and pro-
posed a flexible framework for finding dense blocks in ten-
sors [28]. Eswaran et al. [31] proposed a randomized
sketching-based approach called SpotLight, which guaran-
tees that an anomalous graph is mapped ‘far’ away from
‘normal’ instances in the sketch space with a high probabil-
ity for the appropriate choice of parameters.

Since the evolution of the network is non-smooth, some
studies of abnormal points detection focus on the detection
of community evolution [35], [36], [37], [38] and regard the
changes in the community as an anomaly. Baingana et al.
[38] advocated a novel approach for jointly tracking com-
munities, while detecting such anomalous nodes in time-
varying networks. Bhat et al. [35] proposed a unified frame-
work that adapts a preliminary community structure
towards dynamic changes in social networks using a novel
density-based approach for detecting overlapping commu-
nity structures. A new method for the group evolution dis-
covery was proposed in [36]. Ma et al. [37] proposed two
evolutionary nonnegative matrix factorization frameworks
for detecting dynamic communities.

Macro Level. It is mainly to detect change points in the
network [18], [19], [24], [39], [40], [41], [42]. Peel et al. [40]
proposed the GHRG model, which uses a hierarchical ran-
dom graph to simulate the nested community structure in
the dynamic network structure. This method uses the con-
cept of a fixed-length sliding window and a generalized
likelihood ratio to evaluate whether the network structure
has changed significantly within the sliding window time.
LAD [43] calculates the Singular Value Decomposition
(SVD) of the graph Laplacian operator to obtain a low-
dimensional graph representation. It uses two sliding win-
dows to explicitly model short-term and long-term depen-
dencies to capture sudden changes and gradual changes in

the dynamic network. SCOUT [18] works by finding the set
of change points and community structures that minimizes
an objective criterion derived from the Akaike Information
Criterion or Bayesian Information Criterion [44]. Cheung
et al. [19] proposed a novel methodology to detect both com-
munity structures and change points simultaneously based
on a model selection framework, in which the Minimum
Description Length (MDL) is utilized as minimizing objec-
tive criterion.

These methods only focus on one or two-level anomalies,
most consider abnormal community detection and change
point detection simultaneously. So in this paper, we pro-
pose a unified framework to model anomalies at these three
different levels and catch their relevance.

3 THE GENERATIVE MODEL

In this section, we will introduce some preliminaries and
the detailed generative model for dynamic networks.

3.1 Preliminaries

Given a dynamic network G ¼ fGð1Þ; Gð2Þ; . . . ; GðT Þg, each
GðtÞð1 � t � T Þ is the snapshot network at t. We denote the
NðtÞ, KðtÞ and W ðtÞ as the number of nodes, communities
and the similarity matrix of snapshot network GðtÞ. Usually,
we could assume that N ðtÞ ¼ N is constant with t and W ðtÞ

and KðtÞ are varying with time. If the network is undirected

and binary, we denote W
ðtÞ
ij ¼ 1 if nodes Vi and Vj share a

link at snapshot t and W
ðtÞ
ij ¼ 0 otherwise. Here we assume

the dynamic network satisfies this type, however, it can be
easily extended to weighted or directed networks.

For the dynamic network G, we denote the community
structure as Z¼fZð1Þ; Zð2Þ; . . . ; ZðT Þg. Here ZðtÞ 2f0; 1gKt�Kt ,
and Z

ðtÞ
ik ¼ 1 means node Vi belonging community k and Kt

is the number of communities at snapshot t. In our model,

we only consider the non-overlapping community, i.e.,PKt
k¼1 Z

ðtÞ
ik ¼ 1. Furthermore, we also denote z

ðtÞ
i ¼ k instead of

Z
ðtÞ
ik ¼ 1 for convenience.

Based on the above,we are committed to discovering abnor-
mal patterns in the network.We formalize it as following.

� Macro level (network anomaly): it is usually same to
change point, i.e., we find a set t ¼ ft : jfðGðt�1ÞÞ �
fðGðtÞÞj > �g, f is a function on snapshot network
and � is a predefined threshold.

� Mesoscopic level (community anomaly): if community
structure Zðt�1Þ and Zðt�1Þ have a significant differ-
ence, it means there are community events, e.g., com-
munity growth and contraction, merge and split.

� Micro level (node anomaly): Based on the community
membership Z ¼ fZð1Þ; Zð2Þ; . . . ; ZðT Þg, if one node
changes community affiliation frequently, it should
be abnormal in the dynamic network.

Here, we call these questions an evolutionary anomaly in
a dynamic network. The first one is easy to analyze and
evaluate, however, the last two questions are difficult to
quantify. In our GEABS model, we will analyze the network
anomaly detection from the perspective of the generative
model with community detection. A list of major notations
involved in this paper is summarized in Table 1.
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3.2 The Generative Model

Here, we will present the detailed generative process of
GEABS model. For a dynamic network, it consists of two
parts, i.e., network snapshots t ¼ 1 and t � 2.

3.2.1 Generative Process on Gð1Þ

At snapshot t ¼ 1, it is usually modeled as a static network
forGð1Þ. As, in the graph model in Fig. 2a the generative pro-
cess is presented in Algorithm 1.

Algorithm 1. Generation Snapshot Network t ¼ 1

Input:Model parameters � and p

Output: Similarity matrixW ð1Þ

1: Initializing hyperparameters
2: Sample p � Dirichletð1Þ
3: Sample � � Uniformð0; 1Þ
4: Sample B � Betað1; 1Þ
5: Sample Zð1Þ and dð1Þ

6: for i ¼ 1; 2; . . . ; N do
7: Choose Z

ð1Þ
i � MultiðpÞ

8: Choose d
ð1Þ
i � Expð�Þ

9: end for
10: Generate the links of Gð1Þ

11: for i ¼ 1; 2; . . . ; N � 1; j ¼ 2; . . . ; N do

12: ChooseW
ð1Þ
ij � BernoulliðB1þd

ð1Þ
i

þd
ð1Þ
j

z
ð1Þ
i

z
ð1Þ
j

Þ
13: end for

This process is similar to the generation of stochastic block
model (SBM), p 2 ð0; 1ÞKð1Þ

is the probability vector of the
multinomial distribution and

P
k pk ¼ 1. It is also the distri-

bution of the size of communities, i.e., the probability of ran-
domly selecting a node belonging to different communities.

B 2 ð0; 1ÞKð1Þ�Kð1Þ
is the interaction probability between com-

munities, i.e., the probability of having a link between any
two nodes in their respective communities. Then, we can
sample the latent variable Z

ð1Þ
i for each node from the multi-

nomial distribution with p. Last, based on the SBM, for each
node pair i 6¼ j, theW

ð1Þ
ij is sampled from BernoulliðB

z
ð1Þ
i

z
ð1Þ
j

Þ.
However, it loses the different characteristics of each node,

i.e., it means that nodes of the same community are equiva-
lent. To model the difference of nodes in the network, we
design popular parameter d

ð1Þ
i for node Vi, we treat it as learn-

able parameters not determined value (such as the degrees)
for that it can be used for the anomaly detection in our

model, i.e., W
ð1Þ
ij � Bernoulli B

1þd
ð1Þ
i

þd
ð1Þ
j

z
ð1Þ
i

z
ð1Þ
j

 !
. In this way, it

can avoid the community of homogeneous results in the net-
work and identify the popularity of nodes in the network,
not just its degree. It has also been proven that it can capture
the power-law distribution in the network and has an advan-
tage over SBM and degree-corrected stochastic blockmodel.

3.2.2 Generative Process on GðtÞ

For snapshot t > 2, we should analyze the evolution across
the snapshots from t� 1 to t. First, the popular parameter
d
ðtÞ
i is depend on d

ðt�1Þ
i , we take the Exponential distribution

to describe the relationship, i.e., d
ðtÞ
i � Expðdt�1

i Þ. For the
community variable, we define a probability transition
matrix AðtÞ to describe the community level evolution, A

ðtÞ
kl

is denoted as the probability of one node transiting from
community k at snapshot t� 1 to community l at t andPKðtÞ

l¼1 A
ðtÞ
kl , for k ¼ 1; . . . ; Kðt�1Þ. With the latent variables for

network snapshot t, as in Fig. 2b, we can generate the
observed structure with Algorithm 2.

Here, the probability transition matrix AðtÞ represents
the community level evolution, it could reveal the differ-
ent behaviors. Considering the relationship between com-
munity behavior and anomaly, we will denote its
abnormal behavior based on AðtÞ later. With this genera-
tive process, we can model the varying of dynamic net-
works with node popularity, community structure and its
evolution under a unified framework. Then, our GEABS
model can reveal the temporal behaviors and the anomaly
on different scales.

Here, we give some supplementary remarks about the
GEABS model for details.

� The choice of these distributions, e.g., Dirichlet, Beta
and multinomial, should satisfy the conjugate distri-
bution and network properties as much as possible.

� Regarding the parameters �, p and m, we can use
general and conjugate distributions to generate them
without additional hyperparameters.

� Changing the number of nodes in the dynamic net-
work, we can add the differential nodes across the

TABLE 1
Major Notations in This Paper

Symbol Description

G, GðtÞ The dynamic network and its tth snapshot
N ðtÞ,KðtÞ The number of nodes and communities of GðtÞ
W ðtÞ,W ðtÞ

ij The similarity matrix and its element of GðtÞ
� The exponential prior parameter of d

ðtÞ
i

p The multinomial prior parameter of z
ðtÞ
i

m The Dirichlet prior parameter of AðtÞ
B The association probability matrix of community
AðtÞ The probability transition matrix from snapshots

t� 1 to t
Z, ZðtÞ The community structure of G and GðtÞ
z
ðtÞ
i The community label of nodes Vi at snapshot t
dðtÞ, dðtÞi The popularity vector and its ith element at

snapshot t

fðtÞ, fðtÞ
i The variational parameters of ZðtÞ and z

ðtÞ
i

�dðtÞ, �dðtÞ The variational parameters of dðtÞ and d
ðtÞ
i

~mðtÞ, ~mðtÞ
kl The variational parameters of AðtÞ and A

ðtÞ
kl

Fig. 2. Graphical model of our proposed generative model.
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snapshots or take the union of nodes of consecutive
snapshots for generating the observed structure.

� We only generate W
ðtÞ
ij with Bernoulli distribution,

which is only suitable for binary networks. For
weighted or real-valued networks, Poisson or expo-
nential distributions can be used instead.

Algorithm 2. Generation Snapshot Network t � 2

Input: Model parameters m, the popularity dðt�1Þ and commu-
nity structure Zðt�1Þ

Output: Similarity matrixW ðtÞ

1: Initializing hyperparameters
2: Sample m � Dirichletð1Þ
3: Sample B � Betað1; 1Þ
4: Sample AðtÞ

5: for k ¼ 1; 2; . . . ;Kðt�1Þ do
6: A

ðtÞ
k� � DirichletðmÞ

7: end for
8: Sample ZðtÞ and dðtÞ

9: for i ¼ 1; 2; . . . ; N do
10: Choose d

ðtÞ
i � Expðdðt�1Þ

i Þ
11: Choose Z

ðtÞ
i � MultiðAðtÞ

Zt�1
i

Þ
12: end for
13: Generate the links of GðtÞ

14: for i ¼ 1; 2; . . . ; N � 1; j ¼ 2; . . . ; N do

15: ChooseW
ðtÞ
ij � BernoulliðB1þd

ðtÞ
i

þd
ðtÞ
j

z
ðtÞ
i

z
ðtÞ
j

Þ
16: end for

3.3 The Joint Probability of the Model

For our GEABS model, there are two kinds of formalization,
online and offline. The former only focuses on the snapshot
t and the previous data, the latter deals with all snapshots
of the dynamic network. Here, we only give offline formal-
ization to learn the evolution of abnormal patterns.

At snapshot 1, based on the graph model and its genera-
tive process, the joint probability distribution of the observ-
able variables W ð1Þ and latent variables Zð1Þ and dðtÞ is as
follows:

O1 ¼ PrðW ð1Þ; Zð1Þ; dð1Þjp; �; BÞ
¼ PrðW ð1ÞjZð1Þ; B; dð1ÞÞPrðdð1Þj�ÞPrðZð1ÞjpÞ: (1Þ

where PrðZð1ÞjpÞ is the probability of community assign-
ment in first snapshot t� 1, and Prðdð1Þj�Þ is the probability
distribution of initial popularity. They can be calculated as

PrðZð1ÞjpÞ ¼
YN
i¼1

Prðzð1Þi jpÞ ¼
YN
i¼1

p
z
ð1Þ
i

; (2)

Prðdð1Þj�Þ ¼
YN
i¼1

Prðdð1Þi j�Þ ¼
YN
i¼1

�e��d
ð1Þ
i : (3)

Similarity, we can write it at snapshot t as follows:

Ot ¼ PrðW ðtÞ; ZðtÞ; dðtÞ; AðtÞjm; Zðt�1Þ; dðt�1Þ; BÞ
¼ PrðW ðtÞjZðtÞ; B; dðtÞÞPrðdðtÞjdðt�1ÞÞ

PrðZðtÞjZðt�1Þ; AðtÞÞPrðAðtÞjmÞ: (4Þ

In the case of the probability distribution proposed above,
the detailed formalization is as in Eqs. (5)–(7)

PrðW ðtÞjZðtÞ; B; dðtÞÞ ¼
Y
i�j

Pr W
ðtÞ
ij jzðtÞi ; z
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j
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 !
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PrðZðtÞjZðt�1Þ; AÞ ¼
YN
i¼1

PrðzðtÞi jzðt�1Þ
i ; AÞ ¼

YN
i¼1

A
z
ðt�1Þ
i

z
ðtÞ
i

; (6)

PrðdðtÞjdðt�1ÞÞ ¼
YN
i¼1

PrðdðtÞi jdðt�1Þ
i Þ ¼

YN
i¼1

d
ðt�1Þ
i e�d

ðt�1Þ
i

dðtÞ ; (7)

where PrðW ðtÞjZðtÞ; B; dðtÞÞ is the conditional probability of

W ðtÞ, PrðdðtÞjdðt�1ÞÞ is the varying probability of node popu-

larity, and PrðZðtÞjZðt�1Þ; AðtÞÞ is the transition probability

across the snapshots for t ¼ 2; . . . ; T .
We choose the exponential distribution to model the

varying of dðtÞ, i.e., dðtÞi � Expðdðt�1Þ
i Þ, it is easy to know that

EðdðtÞi Þ ¼ 1

d
ðt�1Þ
i

. With this, if the node popularity has not

changed significantly, d
ðtÞ
i 	 1. However, if it has a signifi-

cant change and fits the network snapshot well, this means
it may be a change point. Besides, with the Dirichlet distri-
bution for the probability transition matrix AðtÞ, the joint
probability distribution of the model is given as

O ¼ PrðW;Z; d; Ajp; �;m; BÞ ¼ Q1

YT
t¼2

Ot

¼
YT
t¼1

Y
w
ðtÞ
ij

¼1

b
1þd

ðtÞ
i

þd
ðtÞ
j

z
ðtÞ
i

z
ðtÞ
j

Y
w
ðtÞ
ij

¼0

1� b
1þd

ðtÞ
i

þd
ðtÞ
j

z
ðtÞ
i

z
ðtÞ
j

 !2
64

3
75

YT
t¼2

Yn
i¼1

A
z
ðt�1Þ
i

z
ðtÞ
i

YT
t¼2
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kl
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i
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p
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�e��d
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i : (8Þ

3.4 Evolutionary Anomaly Detection

With our GEABS model, if we have learned the variable
parameters d, Z and A, which can characterize the node
level activity and popularity, community structure and its
evolutionary activity, respectively. To capture the different
levels of anomaly, we further define the three levels of
anomaly detection.

At the network level, it also is called a change point in
dynamic networks, its essence is to calculate the difference
between two snapshots. By combining the node level popu-
larity d and the community level transition parameter A and
community structure Z, the network level anomaly value at
snapshot t is defined as follows:

E
ðtÞ
nl ¼

X
i;k

e
At

z
ðtÞ
i

k
ð1�IðzðtÞ

i
;z
ðt�1Þ
i

ÞÞ
kdðtÞi � d

ðt�1Þ
i k22; (9)

where the node popularity, community structure and tran-
sition probability are integrated across the snapshots. If the
node Vi belongs to the same community, the anomaly value
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only depends on the varying of node popularity, otherwise,
this value is corrected by the transition probability in AðtÞ.
Furthermore, for the set t ¼ ft : jfðGðt�1ÞÞ � fðGðtÞÞj > �g,
where the function f ¼ E

ðtÞ
nl . Besides, the choice of � is usu-

ally replaced by the Top-K values.
At the community level, if community structure Zðt�1Þ and

ZðtÞ have a significant difference, it means there are commu-
nity events, e.g., community growth and contraction, merge
and split. In this paper, we analyze the anomaly behaviors
based on the transition probability matrix AðtÞ. Considering
that community detection is an unsupervised problem,
matching communities on different snapshots is also an
interesting issue, with basic mapping way, some important
community behaviors, such as merge and split, growth and
contraction can be captured with our AðtÞ.

At the node level, based on the community membership
Z ¼ fZð1Þ; Zð2Þ; . . . ; ZðT Þg, if one node changes community
affiliation frequently, it should be abnormal in the dynamic
network. So we denote the anomaly value of nodes based
on the community structure and as Eq. (10)

EclðiÞ ¼
PT

t d
ðtÞ
i

T
HðZð1Þ:ðT Þ

i Þ; (10)

where HðZð1Þ:ðT Þ
i Þ is the Entropy measure, while Z

ð1Þ:ðT Þ
i is

the total community memberships node i belonging to from
t ¼ 1 to t ¼ T . Therefore, Z

ð1Þ:ðT Þ
i is a vector representing the

whole community membership of node Vi.

4 MODEL INFERENCE

To optimize the joint distribution of Eq. (8), it is required to
compute the posterior function given the observed variables
and hyper-parameters, which can be written as follows:

PrðZ; d; A;p; �; BjW;mÞ ¼ PrðW;Z; d; A;p; �;m; BÞ
PrðW;mÞ : (11)

However, it is impossible to calculate Eq. (11) directly, so
with the variational inference, a novel variational distribu-
tion q is applied to approximate the posterior, which can be
defined as follows:

qðf;�d; ~mÞ ¼
Y
t

�Y
i

q
�
f
ðtÞ
i

�Y
i

q
�
�d
ðtÞ
i

�Y
k

Y
l

q
�
~m
ðtÞ
kl

��
; (12)

where f, �d, and ~m are the variational parameters of Z, d, and
A in the joint distribution of Eq. (8). In detailed, it means

that zti � MultiðfðtÞ
i Þ, dðtÞi � 1ð �

d
ðtÞ
i Þ and A

ðtÞ
kl � Dirichletð~mðtÞ

kl Þ.
qðfðtÞ

i Þ, qðdðtÞi Þ and ~m
ðtÞ
kl are the approximate posterior distri-

butions of z
ðtÞ
i , d

ðtÞ
i and A

ðtÞ
kl , respectively.

4.1 Variational Inference E-Step

With the variational inference and the definition in Eq. (12),
the log likelihood using Jensen’s inequality is bounded as
Eq. (13) and it also satisfies logPrðWÞ ¼ KLðqkpÞ þL ðqÞ

logPrðWÞ � EqðlogPrðW;Z; d; AÞÞ þHðqÞ; (13)

where we ignore the parameters in the log likelihood, and
HðqÞ denotes the Entropy. q and p are the approximate and
expected posterior distributions, L ðqÞ is the ELBO of the

variational inference. Then, minimizing KLðqkpÞ can be
translated into maximizingL ðqÞ. The log likelihood of com-
plete data and ELBO can be denoted as Eqs. (14) and (15).
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In the GEABS model, the latent variables snapshot 1 is
depend on that in snapshot 2, variables of snapshot T is
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limited by T � 1, for snapshots t ¼ 2; . . . ; T � 1, its inference
is affected by the combination of the two snapshots before
and after it. Here, we only show the general inference pro-
cess at t ¼ 2; . . . ; T � 1. The ELBO on one snapshot t 2
½2; T � 1
 is as Eq. (16).

Then, our task is to maximize the L t to learn the varia-
tional parameters of the latent variables ZðtÞ, dðtÞ and ~mðtÞ.
We take the derivatives ofL t with respect to the variational
parameters and set these derivatives to zeros as follows:

rL t ¼ @L t

@f
ðtÞ
ik

;
@L t

@�d
ðtÞ
i

;
@L t

@~m
ðtÞ
kl

( )
¼ 0; (17)

where f
ðtÞ
ik and ~m

ðtÞ
kl are the approximate posterior distribu-

tions for community membership and community transi-
tion probability. They meet the constraints in Eq. (18)

XKðtÞ

k¼1

f
ðtÞ
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XKðtÞ

l¼1

~m
ðtÞ
kl ¼ 1: (18)

Then, it is easy to get the update rules as Eqs. (19) and (20)
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~mt
kl ¼

X
i

f
ðt�1Þ
il f

ðtÞ
ik þ mkl: (20)

However, there is a small challenge in deriving �d
ðtÞ
i for it

has no closed solution. So we take a fast gradient descent
method to update it and the gradient is as Eq. (21)
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4.2 Variational Inference M-Step

In the E-step, we have updated the variational parameters
ZðtÞ, dðtÞ, and ~mðtÞ, which could increase the ELBO on the
dynamic network. Here, we need to update the model
parameters to maximize the log likelihood. Similar to the
inference process in the E-step, we are easy to get the update
rules for the parameters

pk /
X
i

f
ð1Þ
ik ; � ¼ 1
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X
i
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ð1Þ
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where a is the learning rate and the gradient for Bkl is calcu-
lated by
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Considering the computational efficiency in gradient
descent, here we simplify the calculation of association
probability matrix of community Bwith Eq. (24)

Bkl ¼
PT

t¼1

P
i�jðfðtÞ

ik f
ðtÞ
jl þ f

ðtÞ
il f

ðtÞ
jk ÞW ðtÞ

ijPT
t¼1

P
i�jðfðtÞ

ik f
ðtÞ
jl þ f

ðtÞ
il f

ðtÞ
jk Þ

: (24)

In fact, we ignore the influence of node popularity on the
B to speed up computing. In addition, if the number of com-
munities are varying of snapshots, we could take BðtÞ 2
ð0; 1ÞKðtÞ�KðtÞ

for each snapshot instead of a common B.
With variational and model parameters are updated itera-
tively. After convergence, we can get the last results,
besides, the community label zðtÞ and transition probability
AðtÞ are calculated by Eq. (25)

z
ðtÞ
i ¼ argmax

k
f
ðtÞ
ik ; A

ðtÞ
kl / arg ~m

ðtÞ
kl ; (25)

besides, qðdtiÞ is a degenerated distribution with the parame-
ter �dti, so the parameter dti ¼ �dti.

4.3 The Algorithm

With the inference process, we propose the procedure for
maximizing the ELBO L ðqÞ and the algorithm is summa-
rized as shown in Algorithm 3.

Algorithm 3. Optimization Process of L
Input: The similarity matrix W ðtÞ, the number of communities
KðtÞ for each snapshot and the stop criterion ".
Output: �dðtÞ;p; B;AðtÞ; � and ZðtÞ

1: Initialization model parameters p; B; �;m
2: Sample variational parameters fðtÞ;�dðtÞ and ~m
3: repeat
4: for each snapshot t do
5: variational E-step
6: Update f

ðtÞ
ik via Eq. (19)

7: Update ~m via Eq. (20)
8: Update �d

ðtÞ
i by coordinate gradient ascend and gradient

via Eq. (21)
9: variational M-step
10: Update p via Eq. (22)
11: Update B via Eq. (24)
12: Compute variational likelihood Lnew with updated

parameters by Eq. (15)
13: end for
14: until jL new �L oldj < "
15: for every time t do
16: Get the community label z

ðtÞ
i of each node and calculate

the community transition parameter At
kl in each com-

munity via Eq. (25) and return d
ðtÞ
i .

17: end for
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4.4 Complexity Analysis

The complexity of GEABS depends on the steps of updating
f, i.e., OðTK2N2Þ, where T is the number of snapshots, n is
the number of nodes in the network, and K is the average
number of communities. In theory, the complexity is not
greater than DSBM, which is OðN2Þ. Since most real-world
networks are sparse, we can also improve the efficiency of
GEABS by using negative sampling and parallelism in
operations.

5 EXPERIMENT AND ANALYSIS

In this section, we verify the proposed method on both the
and synthetic and real-world dynamic networks, including
detecting abnormal behaviors caused by changes in the
macroscopic, mesoscopic, and micro-scale levels of the net-
work. We compare our results with some baselines on the
different tasks (community detection, anomaly detection on
network level, community level, and node level). Besides,
we also show a case study to verify the effectiveness of the
proposed model.

5.1 Datasets

The experimental part involves one synthetic network and
three real-world networks, namely, Kit-email network,
Enron email network, and World trade network. Their
details are as follows:

� Synthetic Data [45]: For this dataset, several commu-
nity-level events are introduced to make it more sim-
ilar to real-world networks. We use this dataset to
evaluate the effectiveness of the community-level
anomaly parameter A. To achieve this goal, we gen-
erate a dynamic network with merge and split events
in consecutive snapshots. This network contains 10
snapshots, 250 nodes, and a fixed community num-
ber of 22.

� Kit-email network [46]: This email network is com-
posed of 1,097 email IDs (the number of nodes) and
27,887 messages. We use it to construct a temporal
network with time intervals of 6 months, and the
number of snapshots of this temporal network is 8.
The number of communities is 27. Nodes in this net-
work represent senders and recipients and the edges
denote the relationships.

� Enron email network [47]: The Enron network is
constructed by email communications between
151 senior managers of Enron Energy, which filed
for bankruptcy in 2001 after it was found to be
fraudulent. We extracted a dynamic social net-
work with 12 time snapshots by month, which
containing 151 nodes. Each time snapshot includes
monthly communications of senior management,
the edges linking the senders and receivers of
emails. In addition, according to the company’s
development timeline, we identified 7 incidents,
which largely affected the structure of the Enron
mail network.

� World trade network [48]: World trade network data
records the total annual import and export trade vol-
ume of 196 countries from the year 1948 to 2000. We

sorted the data into a dynamic network, which
included 196 nodes, 5,735 edges, and 53 time slices.
The edge of each time slice is the total annual trade
volume between the two countries.

5.2 Community Detection

For community detection, we compare our method GEABS
with 4 popular baseline methods, which contains:

� ECD [49]: It combines the proposed new genetic
operator and classic genetic operators to exploit
inter and intra connections between nodes. This
approach improves the discovery of evolving
community structures and finds the best balance
between clustering accuracy and temporal
smoothness.

� DECS [50]: It is a novel algorithm based on genome
representation, employing Population Generation
via Label Propagation (PGLP) for population initiali-
zation and decomposition framework for multi-
objective optimization.

� PisCES [51]: From the perspective of spectral opti-
mization, this is a global method that can infer the
evolution by combining a series of networks, eigen-
vector smoothing, and degree correction.

� DSBM [52]: It is the most successful generative
model for dynamic community detection and evolu-
tion analysis based on SBM.

We evaluate the community detection performance of
our model and baselines within three performance met-
rics in both synthetic dataset and real-world dataset kit-
email.

5.2.1 Evaluation Metrics on Community Detection

Accuracy (AC) or error rate [53] is usually denoted as the
distance between the ground truth and community mem-
bership of one method, which is defined as

AC ¼ kZZT � Z0Z0TkF ; (26)

where Z and Z0 are the community membership of ground
truth, respectively. k � kF is the Frobenius norm, the smaller
the AC value on each snapshot, the better the community
results.

As most temporal community detection work [54] does,
we also use Normalized Mutual Information (NMI) as one
of our performance metrics to evaluate the proposed model
and baselines for community detection in dynamic net-
works. Because NMI is specifically designed for static net-
works, we calculate it for different methods at each
snapshot of the dynamic network. NMI is used when there
exists ground truth, which measures the similarity between
a given community partition and the true community struc-
ture. Let Z ¼ fZ1; . . . ; ZKg and Z0 ¼ fZ0

1; . . . ; Z
0
Kg represent

the true community partition and the community partition
to be evaluated, respectively, where Zk or Z

0
k is the node set

of community k. For Z and Z0, we usually have Zk \ Zl ¼
;; k 6¼ l and

S
Zk is the node set of dynamic networks. The

NMI is denoted as
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NMIðZ;Z0Þ ¼
P

Z;Z0 pðZ;Z0Þlog pðZ;Z0Þ
pðZÞpðZ0Þ

maxðHðZÞ; HðZ0ÞÞ ; (27)

whereHðZÞ andHðZ0Þ are the entropy of community Z and
Z0, respectively. The value of NMI is between 0 and 1. A
higher value of NMI indicates better community detection
performance.

Adjusted Rand index is another metric for clustering and
community detection performance, which is defined as

ARI ¼ RI � E½RI

maxðRIÞ � E½RI
 ; (28)

where RI ¼ aþb
n
2ð Þ is the Rand Index (RI) value of a commu-

nity, a and b are the number of pairs of nodes placed in the

same cluster and in different clusters, respectively. E is the

expectation operator. A larger ARI value indicates better

performance on community detection.

5.2.2 Community Detection Result

The community detection results of our model and base-
lines in the Synthetic dataset and kit-email dataset are
shown in Figs. 3 and 4, respectively. Our method achieves
the best performance in both synthetic and real-world

datasets due to the well-defined generative mechanism. It is
worth mentioning that our method achieves better AC,
NMI and ARI results in the real-world network compared
to the synthetic network. Although the synthetic network is
generated by a mechanism of imitating the real world, its
network structure is still very regular compared to the real-
world network.

5.3 Network-Level Anomaly

We use our method to detect change points of the two
empirical temporal networks, the Enron email network, and
the World Trade Network. The structure of the network is
very likely to be affected by some known external events
(Table 2), which are used as the truth of the change points,
i.e., the network level anomaly point. To verify our results,
we choose six approaches that represent the most advanced
in change point detection of dynamical networks as baseline
methods, including:

� SCOUT [18]: This method realizes synchronous
detection of change points and communities. It uses
the existing search strategy to find the change point
in the time series network, performs consensus clus-
tering on the network in the same segment, and

Fig. 3. Community detection result in kit-email data. Fig. 4. Community detection result in synthetic data.

TABLE 2
The Social Events in Related Datasets

Datasets Date Event (change point)

Enron 2001-02 TomWhite resigns from EES1

2001-04 Quarterly Conference Call
2001-06 FERC finally institutes price caps across the western states. The California energy crisis ends.
2001-07 Skilling announces desire to resign.
2001-08 Skilling resigns as CEO
2001-09 Skilling sells stock
2001-11 Stock prices plummet

World Trade 1950 Third Gatt round held in Torquay, England, where countries exchanged some 8,700 tariff
concessions, cutting the 1948 tariff levels by 25%

1955 The next trade round completed in May 1956, resulting in $2.5bn in tariff reductions.
1960 European Free Trade Association (FEAT) established
1964 The Kennedy Round, named in honor of the late US president, achieves tariff cuts worth $40

billion of World Trade.
1967 Founding of the European Community
1968 Two important ISO (International Organization for Standardization) recommendations

standardized containerization globally [55]
1971 The Ranger Committee is formed
1973 Oil shock
1983 The resumption of trade across the Sino–Central Asian border in 1983 accompanied a gradual

thaw in relations between China and the Soviet Union [56]
1991 Collapse of the Soviet Union [57]
1999 The birth of the euro affected the trade balance of the eurozone
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finally uses the constraint function to find the change
point and community.

� CICPD [41]: It is a novel change point detection
method based on community detection. It uses the
PageRank algorithm to learn the network representa-
tion of each time slice, and calculates the distance
between them, and generates a new network. Per-
form spectral clustering on the new network to
detect change points.

� GHRG [40]: It is the first to use the online probabilis-
tic learning framework to solve the problem of
change points, and use a hierarchical random graph
to generate a network with a Bayesian hypothesis
test to quantify the occurrence of change points.

� LAD [43]: It detects the change points and events of
the dynamic network at the same time, which is a
spectral-based method. The core idea of LAD is to
summarize entire graph snapshots into low dimen-
sional embeddings through the singular values of
the graph Laplacian, and to explicitly model the
short-term and long-term behavior of dynamic net-
work evolution.

� NetWalk [39]: This method uses learning network
representation to detect dynamic network change
points, which can be dynamically updated with
the development of the network. It encodes the
vertices of the dynamic network into a vector
representation through group embedding, which
together minimizes the pairwise distance of each
wandering vertex derived from the dynamic net-
work, and realizes the detection of the dynamic
network change point through clustering-based
technology.

5.3.1 Evaluation Metrics on Change Point

Change point detection can be used as a binary classification
problem, so we can calculate the scores of Precision, Recall
and F1 to evaluate the performance of our model, which are
separately defined as

Precision ¼ TP

TP þ FP
; (29)

where Precision quantifies the number of positive class pre-
dictions that actually belong to the positive class

Recall ¼ TP

TP þ FN
; (30)

where Recall quantifies the number of positive class predic-
tions made out of all positive examples in the dataset

F1 ¼ 2TP

2TP þ FP þ FN
; (31)

where the comprehensive measurement F1 provides a sin-
gle score that balances both the concerns of precision and
recall in one number.

These values are in the range of 0 to 1. A score of 1 indi-
cates a perfection spotting of change points, while a score of
0 implies that no change points being detected at the other

extreme. The change point in our model is calculated by
extracting the local maximum value of E

ðtÞ
nl .

5.3.2 Network-Level Anomaly Results

As shown in Table 3, our method GEABS has the best per-
formance among all baseline methods. The Precision of
GEABS in Enron data is 1, which indicates that all the
anomaly points we find are true. GEABS has about 0.91
recall rate in World Trade, which means that our method
finds almost all the anomaly points in this data. It is worth
mentioning that, just as shown in Fig. 6, we calculate the
hit rate of the top k network-level anomaly value to the
anomaly events in the Enron dataset and world trade data-
set of GEABS, NetWalk and LAD. Due to the complexity of
World trade dataset, NetWalk and LAD do not perform
well. But in Enron dataset, NetWalk has a good hit rate.
But the top 10 hit rates of both NetWalk and LAD are not
better than GEABS. As for GEABS, the hit rate of top 5 net-
work anomaly values in the Enron dataset is 100%, while
in the world trade dataset, the hit rate of top 3 network
anomaly values is 100%, which proves the effectiveness of
our network-level anomaly detection scheme and the cor-
rectness of our method.

5.4 Community-Level Anomaly

We use the synthetic network to measure the ability to
capture the transition tendency of communities of our
model parameter A. We compare the transition tendency
matrix A of our model and the true transition behavior in
this dataset, and the transition behavior of baseline
method PisCES, which has the best community detection
performance. The result is shown in Fig. 5. Our method
can capture the community-level transition tendency of a
network, while PisCES cannot. So our model can handle
community events such as community merge, split,
expand and shrink and so on. This is because the transi-
tion matrix A can accurately capture the future behavior
of nodes within the community.

Furthermore, as mentioned above, GEABS can handle
different community numbers in dynamic networks. More
specifically, the ground truth of community membership
is unknown in a real-world network. Communities may
merge, split and even die, and all community events may
lead to changes in the number of communities. So we test
our method in Enron dataset with different community
numbers at different snapshots. The community number

TABLE 3
Precision, Recall and F1 of Our Method and the Baseline

Methods

Method Enron World Trade

Precision Recall F1 Precision Recall F1

SCOUT 1.0000 0.1818 0.3077 0.4000 0.1818 0.2500
CICPD 0.5714 0.5714 0.5714 0.3333 0.4545 0.3846
GHRG 0.4284 0.1667 0.2400 0.3500 0.6364 0.4516
LAD 0.6667 0.5714 0.6154 0.2222 0.3636 0.2758
NetWalk 0.8333 0.7143 0.7692 0.7333 0.8181 0.7734
GEABS 1.0000 0.7143 0.8333 0.7143 0.9091 0.8000
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is initialized by the static community detection method.
As shown in Fig. 9, the community membership transition
of nodes in Enron data is violent, and the community
number changes at t ¼ 5; 6; 7; 8; 9. As shown in Table 2,
compared to the event of Enron data, we can find that
there are change points at t ¼ 6; 7; 8; 9, indicating that the
design of GEABS can handle the ever-changing number of
communities, which is essential for network anomaly
detection.

5.5 Node Anomaly Analysis

It is hard to judge the node anomaly behavior due to the
lack of reasonable evaluation metrics and datasets. To
evaluate the effectiveness of the node anomaly index,
EclðiÞ, we defined based on our model parameter d, we
draw a scatter chart of node anomaly index in interna-
tional trade network to heuristically verify the validity of
our parameters EclðiÞ through world-historical informa-
tion. Just as shown in Fig. 7, after World War II, America
(USA) is the most stable country in the world and the
leader of Western countries. Therefore, the abnormal
value of its node reaches the lowest. Japan (JPN) also
has a lower anomaly value than most of the other coun-
tries, this is also a case in point for our node anomaly

index EclðiÞ. Because up to 2,000, Japan has the second
most GDP in the world.

In addition, small countries like Haiti, Saint Lucia, and
Dominica always have the highest node anomaly value.
This is because these countries do not have competitive
goods, which makes their trade always fluctuate.

5.6 Case Study

To further prove the anomaly detection ability of our model,
we visualize the dynamic evolution detected from our
model of the international trade dataset in macro-, micro-
and mesoscopic simultaneously. As shown in Fig. 8, differ-
ent network-level anomaly indexes may be caused by differ-
ent factors. Such as in 1950, the third Gatt round held in
England, which makes several International trade group
combines in that year. Besides, at the node level, we notice
that China (CHN) has a very high d value. By our investiga-
tion, the People’s Republic of China was founded in 1949,
therefore, the most frequent period of international trade
growth of China is 1950.

Fig. 6. The hit rate of the top k network-level anomaly value to the anom-
aly events of GEABS compared to LAD and NetWalk.

Fig. 5. Visualization of community transition matrix in synthetic Data. Each row in the graph represents the transfer tendency of the node in the
corresponding community in the current snapshot. The darker the color, the more transfer tendency is.

Fig. 7. Node anomaly parameters in international trade data. The red
dots represent the countries with the largest 5 node anomaly values,
while the green dots represent the major countries we select (America,
Canada, Germany, Russia, China and Japan).
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The oil shock in 1973 makes the d value of Russia rise
sharply. Since the main export in Russia is oil, the oil shock
has a great influence on Russia, while it has little impact on
other main countries since these countries have multiple
types of trade imports and exports. Furthermore, the Disin-
tegration of the Soviet Union even did not affect Russia’s
exports and imports, but this event makes several country
groups split.

In addition, we find that every important event always
makes small countries have the highest d values. This

indicates that small countries are always more difficult to
survive than large countries during worldwide events.
Moreover, anomalies at the community level and the net-
work level are closely connected. Most of the change points
in Fig. 8 contain major changes in the community, such as
1949; 1955; 1983. However, node-level anomalies are always
affected by community or network events, such as the small
countries we mentioned above. This phenomenon can
reveal the relationship between different levels of networks
and is worthy of further study.

Fig. 9. Transition matrix of GEABS on Enron data with changing number of communitiesK at different snapshot t.

Fig. 8. A case study of anomaly detection in world trade data. The red dots in the node-level scatter charts represent the countries with the largest
5 node anomaly values, while the green dots represent the major countries we select (America, Germany, Russia, China, and Japan). And the com-
munity-level Sankey chart is a community evolution visualization based on the transition matrix A and the community membership Z. Finally, The net-
work-level line chart is the visualization of network-level anomaly value E

ðtÞ
nl , the local peak in this plot is the anomaly point detected from our model,

which is a change point in the dynamic network.
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6 CONCLUSION

Anomalies in dynamic networks are very complex. We
divided these anomalies into three levels: macro level,
mesoscopic level, and micro level, as well as formalized the
description of the specific tasks in each level. This paper
proposed an anomaly detection framework GEABS in
dynamic networks, which can detect anomalies at different
levels and realize the discovery of structural changes in the
evolution of communities. By assuming that the network
follows an SBM, node popularity and community transition
matrix are generated to measure node and community
anomalies through a defined operator. We can also detect
the network evolution anomaly by combining the node level
popularity and the community level transition parameter A
and community structure Z. The experimental results show
that our model has indeed achieved superior results com-
pared with existing methods.

The anomalies in dynamic networks could benefit many
pieces of research in the future [58], e.g., Blockchain [59],
which mainly deals with a large amount and variety of
data, can be used to capture anomalies in dynamic networks
and provide early warnings for unsafe data. In addition, this
research can also help to better apply 5G technology [60] by
detecting abnormal devices in high-density communication
devices. Thus, our research also could be combined with
various studies related to data security. Since our model is
based on a probabilistic graphical model and variational
inference, some improvements can be made in terms of
complexity. Furthermore, in our future work, we consider
improving the anomaly detection performance in dynamic
networks from the following aspects: 1) Use graph neural
networks to build generative models to capture different
levels of anomalies; 2) Consider using incremental or stream
computing to speed up the calculations on the network; 3)
Consider fusing text information or performing anomaly
detection in heterogeneous networks to achieve more com-
plex dynamic network anomaly detection.
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