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Green Parallel Online Offloading for DSCI-Type
Tasks in loT-Edge Systems

Jungi Chen, Huaming Wu
and Pengfei Jiao

Abstraci—In order to meet people’s demands for intel-
ligent and user-friendly Internet of Things (loT) services,
the amount of computation is increasing rapidly and the
requirements of task delay are becoming increasingly more
stringent. However, the constrained battery capacity of loT
devices greatly limits the user experience. Energy harvest-
ing technologies enable green energy to provide contin-
uous energy support for devices in the loT environment.
Together with the maturity of the mobile edge computing
technology and the development of parallel computing, it
provides a strong guarantee for the normal operation of
resource-constrained loT devices. In this article, we de-
sign a parallel offloading strategy based on Lyapunov opti-
mization, which is conducive to efficiently finding the op-
timal decision for delay-sensitive and compute-intensive
tasks. We establish a stochastic optimization problem on
a discrete-time slot system and propose a green parallel
online offloading algorithm (GPOOA). By decoupling the
target problem three times, the joint optimization of green
energy, task division factor, CPU frequency, and transmis-
sion power is realized. Experimental results demonstrate
that under the constraints of strict task deadlines and lim-
ited server computing resources, GPOOA performs well in
terms of system cost and task drop ratio, far superior to
several existing offloading algorithms.

Index Terms—Energy harvesting (EH), Internet of Things
(loT), mobile edge computing (MEC), perturbed Lyapunov
optimization, task offloading.

NOMENCLATURE
A(L, 1) Unit task.
To Slot length of the system.
7 Temporary time variable.
I f b fe I f 4 Task division factors.
Tt Delay to process a unit task locally.

by

Manuscript received 13 December 2021; revised 20 March 2022;
accepted 5 April 2022. Date of publication 19 April 2022; date of current
version 9 September 2022. This work was supported in part by the Na-
tional Natural Science Foundation of China under Grant 62071327 and
Grant 61902278 and in part by JSPS KAKENHI under Grant 19H04105.
Paper no. Tll-21-5530. (Corresponding author: Huaming Wu.)

Jungi Chen and Huaming Wu are with the Center for Applied
Mathematics, Tianjin University, Tianjin 300072, China (e-mail: jun-
gichen@tju.edu.cn; whming@tju.edu.cn).

Ruidong Li is with the Institute of Science and Engineering, Kanazawa
University, Kanazawa 920-1192, Japan (e-mail: liruidong@ieee.org).

Pengfei Jiao is with the School of Cyberspace, Hangzhou Dianzi
University, Hangzhou 310018, China (e-mail: pjiao@tju.edu.cn).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/T11.2022.3167668.

Digital Object Identifier 10.1109/T11.2022.3167668

, Senior Member, IEEE, Ruidong Li

, Senior Member, IEEE,
, Member, IEEE

T! Delay to offload a unit task.

Energy consumption to process a unit task
locally.
Energy consumption to offload a unit task.

Maximum CPU-cycle frequency of local

devices.

K Number of CPU cycles required for a unit task.

B Maximum energy can grab from the outside.

Emax Maximum discharge energy of the battery.

pm Maximum transmission power allowed by the
device.

bt Battery level of the 7th device in the time slot £.

Xt Task drop indicator.

! Task generation indicator.

P Penalty weight (the system cost of dropping the
task).

D! Delay of the 7th device in the time slot ¢.

el Green energy level collected through the energy
harvester in the time slot ¢.

el Total energy consumption of the ith device in

the time slot ¢.
Q Maximum number of devices that the edge
server can connect to in a time slot.

[. INTRODUCTION

IFTH-GENERATION (5G) mobile communication has

paved the way for the rapid proliferation of the Internet
of Things (IoT) [1]. With the increasingly diversified and user-
friendly functions of IoT devices, various compute-intensive
(CD) and delay-sensitive (DS) applications have emerged, e.g.,
augmented reality, virtual reality, speech recognition, video
analysis [2], and smart homes. The underlying IoT tasks gener-
ated by these applications usually require high computational
demands and short delays [3], which are referred to as DS
and CI (DSCI) tasks [4]. In most cases, the limited computing
resources and battery capacity of the device itself are difficult to
support DSCI-type tasks. This can easily lead to tasks not being
executed smoothly due to battery depletion or long response
times. Regardless of transmission latency, itis ideal to offload the
workload to a cloud server with abundant computing resources
for processing. However, it is unrealistic to offload all tasks to
remote clouds. On the one hand, large-scale and long-distance
transmission of tasks will consume a lot of energy. On the other
hand, frequent communication with the cloud may also cause
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greater communication delays [5]. As a result, not only has
today’s already congested network become worse [6], [7], but
the entire IoT system has also become unstable.

The emergence of mobile edge computing (MEC) has made
up for the deficiencies of cloud computing and can support the
needs of mission-critical computing for low latency, intensive
computing, and mass storage [8], [9]. However, there exist
several bottlenecks restricting the further development of the IoT
technology. For instance, battery life has become one of the main
factors affecting user experience. Limited battery life increases
the maintenance cost of IoT devices, and the cost of replacing
batteries is often higher than the cost of IoT devices themselves.
For instance, in an industrial environment with only 10 000
sensors, the battery needs to be replaced nearly 3333 times each
year [10]. Not to mention how to deal with today’s huge IoT
system where everything is interconnected. Fortunately, energy
harvesting (EH), a promising technology that obtains harvested
green energy from the external environment (e.g., solar and wind
energy) and converts the captured renewable energy into elec-
trical energy through an EH device, provides a new opportunity
for powering loT-edge systems [11]. The working range of most
IoT devices and sensors is between 0.1 W and 1 W, which can
be easily handled by EH devices [12]. While EH extends the life
cycle of the equipment, it also eliminates the limitation of fixed
rechargeable batteries as energy sources. Despite the obvious
advantages of using green energy for power supply, the energy
collection process is highly intermittent and random, which
poses a huge challenge for making full use of green energy. In
addition, although the edge server has more abundant computing
resources than the device itself, e.g., faster CPU frequency and
higher parallel computing power [13]. However, most MEC
servers in the real world have limited computing capacities and
cannot match cloud computing, especially in a multidevice [oT
environment.

To address the abovementioned challenges, several Lya-
punov optimization-based solutions, e.g., DBWA [14] and
EEDTO [15], have been proposed to minimize system energy
consumption by optimizing the workload distribution based on
the IoT-edge-cloud computing architecture. Chen et al. [16]
transformed the energy minimization problem into a knapsack
problem and proposed an energy-efficient dynamic offloading
algorithm (DOA), which can approximate the minimum trans-
mission energy consumption while ensuring the stability of
the system. Although the aforementioned approaches strive for
energy-efficient algorithms, they do not take into account green
EH techniques or the mobility of the devices. Using execution
delays and task failures as execution costs, Mao et al. [17] devel-
oped a low-complexity Lyapunov optimization-based dynamic
computation offloading (LODCO) algorithm for models from a
single device to a single edge. Zhao et al. [13] inherited the
advantages of the LODCO algorithm and migrated it to the
multidevice multiserver scenario, which is more in line with the
real world. Inspired by the abovementioned practices, we try to
apply the Lyapunov optimization technique combined with the
mobility of the device in the multidevice multiserver model.

Regarding how to reduce latency to meet the needs of different
types of tasks, Yousefpour er al. [18] utilized the concept of

load sharing to reduce service latency by sharing load among
fog nodes. Mukherjee et al. [19] used quadratic constrained
quadratic programming to solve the DS task offloading prob-
lem when considering local execution delay and transmission
delay. Liu er al. [20] developed an efficient 1-D search al-
gorithm to solve the power-constrained delay minimization
problem under different time scales. Instead, in this article,
we use parallel offloading for DSCI-type tasks to achieve this
goal.

Green computing and communication have become the new
darlings of researchers. Taking advantage of EH and device-
to-device communication, Zhou [21] proposed GreenEdge, a
novel framework for sustainable edge computing, and verified
its feasibility. Deng et al. [22] designed a green sustainable MEC
framework for dynamic and parallel computing offloading and
energy management algorithms. However, this work was carried
out under the ideal state of MEC server computing resources,
ignoring the mobility of IoT devices. We consider more sce-
narios where the edge server has limited computing resources
and the devices can move freely. Hu et al. [23] proposed an on-
line mobile-aware offloading and resource allocation algorithm,
which combined Lyapunov optimization and semidefinite pro-
gramming methods. Although the task drop rate and migration
cost are considered, the main optimization is the total energy
consumption. Inspired by the above, we attempt to apply the
EH technology to deal with system energy consumption, while
placing more emphasis on the optimization of latency.

In this article, we design a green parallel online offloading
algorithm (GPOOA) for DSCI-type tasks. GPOOA is based
on the Lyapunov optimization framework to offload tasks in
a parallel manner in multidevice and multiserver scenarios, and
combines the EH technology to power the devices. Our goal
is to optimize the user experience and system robustness by
reducing system costs. The main contributions of this article are
summarized as follows.

1) We establish a multidevice and multiserver MEC sys-
tem model for DSCI-type tasks, and formally define the
stochastic optimization problem on a discrete-time slot
system, taking the mobility of the device into account.

2) To meet the delay requirements of DSCI-type tasks,
we propose a parallel offloading strategy with the close
collaboration between IoT devices and edge servers. To
ensure the robustness of task processing, we take the drop
ratio into consideration to motivate the system to perform
tasks as many as possible.

3) We apply the EH technology to IoT devices to
make full use of the advantages of green energy,
and further propose a Lyapunov-guided solution to
maintain the continuity of energy supply in IoT-
edge systems. Meanwhile, we decoupled the optimiza-
tion problem three times and designed the GPOOA
algorithm.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first introduce the system model, com-
putation offloading, and EH models, and then formulate
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Fig. 1. System model with the EH technology.

the online decision problem for task offloading in MEC
environments.

A. System Model

As shown in Fig. 1, we consider a 5G-based MEC envi-
ronment with multiple IoT devices and multiple MEC servers,
where IoT devices M = {1,2,..., M} can move freely in the
environment, while MEC servers NV = {1,2,..., N} are stati-
cally deployed. According to the EH technology, each device in
the scenario is equipped with an energy harvester. The energy
harvester will collect green energy (e.g., solar and wind) from the
environment and convert it into electricity to power the device
itself. According to the divisible load theory [24], we assume
that the unit task A(L,7) generated by the device is divisible
and of DSCI type, where L (in bit) is the task size and 7 (in ms)
is the deadline of the task. Divisible here means that the task
A(L, ) can be divided into two parts arbitrarily. And, we adopt
the cooperation of local devices and edge servers to process tasks
in parallel.

We perform parallel offloading on a discrete-time slot system,
where the time slot setis 7 = {0, 1,...,T — 1} with the slot
length 7. Tasks are randomly generated with the Bernoulli
distribution in the time slots, and the task arrival rate is defined
as p (0 < p < 1). Let ¢! denote a task generation indicator and
¢! = 1 means that the ith IoT device has a task generated in the
time slot ¢. And, ¢! = 0 indicates that no task is generated. In
addition, we define the task division factors of 7th device in time
slot ¢ as follows:

Iit’l + I,ie + Iit}d = (1)

If I, € [0,1], I} 4 € {0,1} 2)
where I, and I; ! . indicate the ratio of the task processed locally
and ofﬂoaded to the edge server, respectively. The value of I},
is either 1 or 0, indicating that the task is either completely dlS-

carded or executed. The symbols and their definitions commonly
used in this article are summarized in nomenclature.

B. Computation Offloading and EH Models

1) Local Execution Model: The dynamic voltage and fre-
quency scaling (DVFES) technology [25] can adjust execution

time and energy consumption by controlling the CPU cycle
frequency to achieve low power consumption. Using DVFS,
the local execution delay of the ith device in time slot ¢ can
be obtained by

K
=Y (ff) VteT YieM 3)

k=1

where K = LW is the number of CPU cycles required for a
unit task A(L,7), W is the number of CPU cycles required
to perform one bit locally, and ft i 1 the frequency allocated
by the ith device to the kth CPU cycle in the time slot ¢. The
corresponding local execution energy consumption is

K
B =03 (ffh)" VteT, VieM )

where 6 is the capacitance constant [17] that depends on
the chip architecture. Here, fit’ < i Ve ed{l,2,...,K},
where fii&% (in cycle/s) represents the maximum CPU-cycle
frequency of local devices.

2) MEC Offloading Model: The Shannon—Hartley formula
shows that the channel transmission rate is determined by the
channel gain h! ; and the transmission power p! of the device.
So, the transmlsswn rate vl’ ; from the ith device to the jth MEC

server can be expressed as [26]

hi ;p;
5J ) (5)
o

=t 90 ( ddt—“)a represents the channel gain from the
: s

vfd (htj,pl) = wlog, (l +

t
where h; ;

ith device to the jth MEC server, va ; is the small-scale fading
channel power gain, d represents the reference distance, dﬁ j
is the distance from the device 7 to the MEC server j, gy is the
pass-loss constant, « is the pass-loss exponent, the bandwidth
of the channel is denoted as w, and o is the noise power at the
MEC server.

Typically, the downlink transmission rate is much higher than
the uplink rate. And, the size of the output result is usually much
smaller than the input, so our model ignores the return time of
the result. Inspired by [13], [17], and [22], our model inherits the
delay assumptions in these works. That is, we do not consider
the execution delay of the MEC server for simplicity. If a unit
task generated by the ith device is processed by the jth MEC
server, the corresponding offloading delay is calculated by

L
,'rltqesz VtéT,ZEM (6)
,J

And, the corresponding energy consumed by the ith device
of offloading tasks is
vteT, Vie M. (7

Elt tTt
3) EH Model: We adopt the EH technology to make full use
of green energy to provide energy support for IoT devices. The
energy harvester converts green energy, such as solar and wind,
and mechanical energy obtained from the outside into electrical

energy and stores it in the battery to ensure the normal operation
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of the device. However, the process of obtaining green energy
in the real world is stochastic.

Assuming that the green energy arrives at the ¢th device in
the time slot ¢ with F} H, which is independent and identically
distributed, and Ef ; < EF™, were, Ef* is the maximum
energy that the device can grab from the outside world. Define
the green energy level collected through the energy harvester of
the ith device in the time slot ¢ as e!, and the captured energy e
cannot exceed the randomly arrived green energy level:

0<e; <Efy. ®)

In our model, the generated tasks are either executed in
parallel or dropped [satisfy (1)]. Dropping tasks will not generate
energy consumption. Therefore, the total energy consumption of
the ith device in the time slot ¢, consists of two parts: a) local
part I}, B} and b) edge part I}  E} , is

’Le’

i = LB+ 1 B ©)
In order to prolong the service life of the battery and prevent
the battery from overdischarging, the battery output energy of

each time slot should not exceed E™*

0<el < pm (10)

where E™# is the maximum discharge energy of the battery in
each time slot.

Define the battery level of the ith device in the time slot ¢ as
bt. It needs to be emphasized that the energy consumed in each
time slot cannot exceed the current battery level, which satisfies

an

In other words, if the energy consumed by the processing task
exceeds the current battery level, the system will drop the task
due to insufficient energy supply. In summary, the battery level
of device ¢ in time slot ¢ 4 1 is updated according to

Ef§b§<oo.

bt =l

P el tel. (12)

C. Problem Formulation

Our goal is to optimize user experience (reduce delay) and
improve system stability (reduce task drop ratio) by reducing the
total system cost. For DSCI-type tasks, we use a parallel offload
strategy to cope with DS features, and we use EH techniques to
power devices for CI features. Before deﬁning the system cost,
we first define a task drop indicator as: x} = ¢} ; (if the ith
device has a task to generate in time slot ¢ while it is dropped).

Based on the characteristics of the parallel computing frame-
work, the delay of the ith device in time slot ¢ is larger than that
of the delays between the local side I}, T}, and the offload to

the edge server side I] T},

= ¢ max {I], T}, I} T} .} . (13)

The cost of the ith device in time slot ¢ is defined as the

weighted sum of the delay D! and the task drop indicator X!
cost, = D! + ¢y} (14)

where ¢ (in s) is the penalty weight, i.e., the system cost of
dropping the task. Therefore, the total cost of the system in time

slot ¢ is

M
costl . = Z cost!. (15)

i=1

Considering that there are many random factors in the system,

such as the arrival of tasks, the location of devices, the state of the
channel, and the EH situation. First, we formulate the problem
as a random optimization problem. And, we want to minimize
the response time and task drop ratio in the sense of time average
through resource allocation and parallel offloading. So, we first
get optimization problem P

T—1
P1: min hm — lz Costtoml]

t=0
s.t.: (1), (2), (8), (10), and(11
Mgf (16)
L+ L. <¢ (17)
0< fl < fix WteT YieM  (18)
0<pl <p™ VteT VieM (19)

where (1) and (2) are the task division factor constraints. Equa-
tions (8), (10), and (11) are the energy consumption constraints
(the task will be dropped if the energy consumed to perform the
task exceeds the current battery level). Equation (16) indicates
that the response time constraints (the task will be dropped if
it is not executed before the deadline). Equation (17) indicates
that the parallel offloading can only occur when there are tasks
generated. Equations (18) and (19) are the constraints of the
device’s CPU frequency and transmission power, respectively,
where p™® represents the maximum transmission power allowed
by the device.

D. Modified System Cost Minimization Problem

It is worth noting that the energy constraint in (11) makes
the system coupled between different time slots when making
decisions, which is challenging to directly apply the traditional
Lyapunov method. In order to eliminate this coupling effect,
similar to [17], we introduce a nonzero energy consumption
E™n as the minimum discharge energy of the battery in each
time slot to tighten the constraints of the problem P, so that an
improved stochastic optimization problem can be obtained by

T-1
cost!
total

t=0

: in lim —E
Pri min fin 7

s.t.: (1), (2), (8), (11), and (16)—(19)

el € {0} U [E™", E™] (20)

where the constraints of P, are much stricter than that of P;. By
forcing E™in to tend to zero, the optimal solution of P, will tend
to that of P;. The relationship between the optimal solutions
of the two problems is as shown in Lemma 1. According to
Lemma 1, we transform how to solve problem P; into how to
solve problem P;.
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Lemma 1: Let the optimal value corresponding to the
optimal solution of the problem P, and the problem P,
be SP] and 8732, respectively, then we have SP7 <
SP; <SP} + o[ (¥ — 7)1 gwin, jymin 1, Where 700 =
mlHT{aI‘g{Emm j— Eml[l} a,I,g{EIﬂlH - Emm}}’ Il'llIl

7,l,m T,e,m T.eom
2o and B, = 2
Proof Since the constraint condition of P, is more stringent
than that of Py, it is easy to draw SP] < SP5. The other side of
the inequality can be obtained by constructing a feasible solution
of P, according to the problem P;. Let {Q~ (¢)) be the optimal
solution of the mth IoT device in the value space SPj, the
following is to construct an optimal solution in the value space
SP, for each ToT device. We have, when £(QF1 (t)) € {0} U
[Emin pmax] et <QP‘( )) = (QE:(t)). Next, we will discuss
the situation when (QZ%' (¢)) € (0, E™™). For the optimization
problem P,, the energy consumption at this time is not within
its constraint range, and the tasks in this state will be dropped,
i.e., the corresponding optimization value SP, = .
Let the minimum energy consumption of the mth IoT de-

H H min min min
vice meet the task deadline 7 as ET, = ETT ETem,

m,l

2w

where Emin  — TUT

T,e,M

consumption required for the task to be executed on the de-

OK3I!
vice side and EM" = ——™! represents the minimum en-
ergy consumption required for the task to be executed on the

MEC side. If E™" > E™n the newly constructed task drop

T,m?>
cost is set to ¢ and the corresponding cost of P; is at least

Thin " where 7Min = minT{arg{Eﬁnl“m = Emn} arg{EMr =

Emm}} Thus, the optimal values of these two problems may
differ by 1) — 7™ at most. If E™" < E;“‘,',‘l, the generated task
will also be dropped for P;. In summary, there is no difference
between the optimal values of the two problems in a discrete-

time slot system.

represents the minimum energy

[ll. PERTURBED LYAPUNOV OPTIMIZATION-BASED APPROACH
A. Lyapunov Optimization Framework

Because Lyapunov optimization does not require many a
priori parameters, it can realize real-time control in dynamic
systems with relatively low algorithm complexity, which is in
line with the characteristics of task generation and the char-
acteristics of capturing green energy. In our model, Lyapunov
optimization is combined with parallel offloading and EH, this
method does not directly calculate the optimal value, but uses
an upper bound to guarantee the stability of the system.

The energy flow is constructed as an energy queue to provide
continuous and stable energy support for the normal operation
of devices. Each energy queue corresponds to a virtual queue,
defined as

bi=0b—p VteT VYieM (21)
where the virtual queue vector formed by all IoT devices is Bt
(0%, 0%, ..., b%,]. The disturbance parameter 3 of IoT devices

with the EH technology is a bounded constant that satisfies
Vi

Jymin

where Fomax min{max;{e!}, E™} = min{max{SK
(fmax)2 pmaxrel, EM1 s the upper bound of the available
energy and V is the nonnegative weight control parameter.

Then, define the Lyapunov function of the virtual energy
queue as

£ =33 (5) = 32 06— 5)°

i=1 =1

B> E™ 4 (22)

VteT. (23)

Next, we introduce a one-step conditional Lyapunov drift
function to push the quadratic Lyapunov function to a bounded
level to form a stable virtual queue, which is formulated as

A(t) =E [C(t +1) -

E(t)|Bt} Ve T. (24

Finally, by combining the queue stability with the system cost
required to execute the task, we obtain a Lyapunov drift plus
penalty function

Av(t) = A(t) + VE [costfoml | Bt] VieT. (25

The parameter V" here is consistent with (22), which shows the
tradeoff relationship between the energy queue backlog and the
system cost. Use the classic Lyapunov technique [27] to scale
the upper bound of (25), we have

M
Av() s B3 (B (e -e)) | 5| +C
i=1
M
+VE Z (D! +vx!) | B (26)

where C = M w The detailed proof of (26) is
shown as follows.

Proof: We first introduce a statement. Let A, B, and C' be the
nonnegative real numbers and W = A — B + C, then W? <
A% + B? + 0% +2A(C — B). Recall the definition of battery
level in (12), we have

(5) < (3) + () +

< (Bt)" 4 2Bt (et~ <t) + (B

(ef)® + 20 (b — &)

~ N2
_|_ (Emdx) .

Reorganizing the abovementioned formula, we can obtain
(o) -
Summing all devices over time slot ¢, it holds
b7 <2 Z B(et —&t)

+ M [(Eg™)? +

(5)" < 2Bt (el — &) + gy + ()

M

> |6y -

i=1

(Emax)2:| _
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Fig. 2. Decoupling process of the problem.

By dividing both sides of the abovementioned inequality by
2, it gives

~ 2
(E}nlax)z + (Emax>
2

M
A < Bt — <) + M
1=1

Finally, by taking the expectation on the abovementioned
inequality and adding the item VE[costt,,; | B, it further yields
(26).

By scaling (25) with Lyapunov optimization, we embed the
constraint on the stability of the energy queue into (26). Solving
problem P, is transformed into how to solve problem P;

M M
Pysmin Y (B (el —<h) ) + VY (Dl +uxt) +C
i=1 i=1

st (1)=(3), (8), (11), and (16)~(20).

Doing so not only minimizes the total system cost in a time-
averaged sense, but also stabilizes the battery charge of each
device.

B. Decoupling and Problem Solving

The problem P; contains four variables to be determined: 1)
green energy; 2) task division factor; 3) CPU frequency; and
4) transmission power. It is challenging to solve by traditional
convex optimization algorithms. Our main idea is to decompose
the problem P; into a series of suboptimization problems at
each time slot. In this part, we give the decoupling process of
the problem theoretically and summarize it into Fig. 2.

1) First Decoupling of the Problem: We can find that the
problem P; can be decomposed into two subproblems: a) Penergy;
and 2) Pofioad- The former is to optimize the EH decision,
that is, how to determine eﬁ, while the latter is to optimize
parallel decision-making S}  [I;, If ], the CPU frequency

f)k, and the transmission power p§ for resource allocation. We
will give the optimal solution to the problem in each slot. Before
discussing the problem further, we need to give a Lemma 2 [17]
as follows.

Lemma 2: If the task is executed on the device side (locally)
in the time slot ¢ (¢ € T), the allocation of the CPU frequency
will be optimal when K CPU cycles are equal, i.e., flt e = f,
ite M, kE=1,2,... K.

According to Lemma 2, we will use T}, = K(f{)"' and
E!, =0K(f})? t € T,i€ M to optimize the objective prob-
lem. For the energy optimization problem Pepergy, it is easy to
obtain the optimal amount of EH e*! by solving the following
linear programming (LP) problem:

M
. Tt ot
mlng bie;
i=1

st.: 0<el<EY

Penergy :

e+ b <A;

where

27

ot {min{Ai — bt EL}, Bf <0

i 0, bi>0"

Considering the remaining terms except for e! in the problem
P53, we can get the problem Pygoaq as follows:

M M
Poifioad 1 min—»_blel + V> (D} +vxi) + C
1=1

s.t.: (1)=(3), (11), and (16)—(20)

which includes three phases of operations in each time slot:
1) scheduling of CPU cycle frequency ff, > 2) distribution of
transmission power p!; and 3) determination of parallel offload-
ing decision S!. Since there are both continuous and discrete
variables in the constraints, and the coupling between different
variables is very high, it is still difficult to solve them directly.
So, we try to decouple the problem a second time.

2) Second Decoupling of the Problem: Similar to [22], we
convert Pogioaq into three equivalent subproblems in each time
slot for the second decoupling. Taking the task division factor
as the starting point, when the generated tasks are dropped, i.e.,
If ;= land I}, = I} , = 0, the device neither needs to process
the task nor send it to the edge server. Thus, we have f{ r = Oand
pf = 0. Next, we consider the case that the task is not dropped,
and the following three equivalent subproblems can be obtained.

a) Parallel Offloading Problem SS: When the transmission

power and CPU frequency are given, i.e., pi = p§ and
ff = f&,respectively, we can get the optimal solution S**.

SS . min *Bf (If]Efl + IfeEfP)
Sf ) ) & "™

+ V -max {If’lTYit,la Iz!t,eTf,e}
s.t.: (1), (2), (16),and (20).

b) Transmission Power Problem SP: When parallel offload-
ing decision and CPU frequency are given, i.e., S! = S
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and ft f&, respectively, the optimal solution p*! can be If L <ILTH <1
obtained. v (ht ., pt) o
3,704
SP : min —Z;f IltlEltl + Ife L ‘| Iz{t,eEf,e € [max {07 Emin - IztlEf,l} 7Emax - If,lEf,l}
t. ’ ’ ’ ’L pl
" wlog, (1 + ) where 7/ = I? T}, in this case, and
t ot ot L bt >0
+V -max< I, T, I; «t _ ) PU,
04,0 tie hf ‘;Df i t (28)
wlog, (1+—; ) pr, bl <0’
t.: (16)and (19) b) Subproblem SP, for case I, T, < Tt w
Il E! 0, E™r — 1, B! Y B 1 B
i,e7i,e € [max{ ) il z,l}7 il z,l] SP, : min _l;t It Et N It pﬁL
¢) CPU Frequency Problem SF: When parallel offloading 2 v ¢RI He (hf - pﬁ)
decision and transmission power are given, i.e., S} = S} 7
and ].91 = p}, respectively, the optimal solution f *! can be YV, e
obtained. “u (hi’j,pi)
— it t t\2 t ot
S min =T (011 (11)* + It L) il + -,
(ht ;. ph)
+V~max{ ft’IfPTth’} 0<pl<p™
t t min t t max t t
t.: (16)and(18) I B € [max {0, E™" — I} B}, }, E™ — I | E ]
I' B!, € [max {0, E™" — 1! Bt} E™ ! E!]. where 7/ = 7 in this case, and
NE=ZH 5 i,elie S i,ei,e = =
3) Third Decoupling of the Problem: We found that the way, ” Pu, lf; > 0orb; <0&po > pu
in which tasks are offloaded in parallel makes D! [in (13)] P i =y Po l?}'f< 0&pr <po<pu (29)
difficult to solve on the three subproblems. Here, we take D;? pr, b <0&py<pr
as the starting point to decouple the abovementioned series of .
problems for the third time and give the expression of the optimal Let  gi(pf, b, bt) = v(h J,p ) + u(h‘ S we take

solution.

The parallel offloading problem SS is a convex optimization
problem about the variable Sf, which consists of several convex
functions added together and can be further transformed into
subproblems SS; and §8,.

a) Subproblem SS, for case I} T} > I} T} .

1,e1,e’

88y : min-b! (I} B!, + IL EL,) + VI, T},

st

st.: (1), (2), (16), and (20).

b) Subproblem S8, for case If T}, < I T} .:
882 : min _Bf (If,lEf,l + Izte i, ) + VIzteT‘zte

st

st.: (1), (2), (16), and (20).

We can use LP tools to obtain the optimal solution for each
problem easily, and apply the contradiction method to verify
whether the result meets the assumptions, so as to obtain the
optimal offloading decision S*!.

The transmission power problem SP can be further reduced
to subproblems SP; and SP, as follows.

a) Subproblem SP, for case It I, >

L,v(h} Jp)
zl—It Twht

whf]
tL

SP; : min ItlEfl—i—Ife%i

Pl i (h J7pz)

t:ngESpm‘“

+ VI T}

. dgi(pt,ht bt
the first-order partial derivative of g;: M =

dp}
- nt pt ht -
—bt logy (14 —2L-1)— (Hh;; sz (V-pibh) . '
R and py is the solution of
wlogz(lJr “] 1)
Etl h‘z jp1 ht t1E\ ..
i log, (1 + ) + Cava Ltz (V = pibf) = 0.Inaddition,

we define py, and puU as follows

. Eyp > E™n — It B!
b= { . T i E(30)
max {pr,, ppmn }, Eo < E™" — I} E}
0 Ey > E™*X — IztlEzl
= 31
pu {mln {p™™ pgmx } , By < E™* — IfJEZtJ 31
here E — ZHelm2 o B 0(2—%3671) < the sol
where 0 — W and pr, - = T 1S the solu-

tion, when T}, — 7' Besides, pgm» and ppms are the so-
lutions of I} E!, = E™" and I} E! = E™>, respectively.
That is, pgmnlf L = v(h} ;,pgmn YE™ and pemIf L =
v(ht ],pEmax)Ema"
Furthermore, the CPU frequency allocation problem SF can
be further reduced to subproblems S]—' 1 and SF5.

a) Subproblem SF for case I llft >If T
s gt |7t t)2 t ot ¢ K
SF1 : min ! 140K (F1) + 1L B + VI
K
t.: I’Lt,li <rT

t —
i
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0< f < fom 5
t ot i t ot t ot = et R K
min max i 4 Y
I} \Ef, € [max {0,E™ — I} E; } E™ — I Ej | % L)
where 7/ = 7 in this case, and e /é;%
bt >0orbt <0, fy > S J
st fU’ ~; - v ’ fO fU Iit,« E;, j-th MEC server
=1 fo, bE<0,fL<fo<fu (32) . ..................................
fo, b <0, fo<fo A(L,7) 9.7 .
LT N '
topty gt )2 K bladil '
Let g (f},bf) = —blOK(f})" + Ve, we take the o o g E
. . dega (f1,5%) W A Jparaitel \ i Pignr Jim —_— .
first-order ~partial ~derivative of gy: L = : 5o oo HE .
~ K . ~p i = Jparalle (Si.J’pi‘jV f 1.]) i-th device
—2000Kf} =V and fo is the solution of
topt ; _ Vv : — ) R
gs(fi, b)), de.  fo=¢ 05t Besides,  fL = Fig.3. Task division process for the DSCI-type tasks.
KTt Emin_Tt _E!
max{ —, ax {O, W}} and fy =
T number of devices that the edge server can connect to in a time
min { Jocal’ (N o } slot. Fig. 3 shows the DSCI-type task division process.
b) Subproblem SF, for case I' | & < It Tt :
r f BLfE T Thetie IV. PERFORMANCE EVALUATION

et i,e

§F» : min ! (140K (F1)° + 1L BL) + VILT!

ietie —

K
t:IfJF<I-t T, <T

0< f < fioca

ocal
It,\El, € [max {0, E™" —I! _E! } E™ —I! E! ]

where 7/ = It T?

i,ei,e

f*t* fUa @20
- fL; b§<0

(3

in this case, and

(33)

C. Green Parallel Online Offloading Algorithm

As we mentioned earlier, the computing resources of edge
servers in the real world are usually limited. We assume that
MEC servers in the IoT-Edge system have limited computing

.. . 7 fmax )
resources, that is, in each time slot, at most Q) = [—7=°] devices

are allowed to connect to one MEC server at the same time.
According to the optimal solution given in Section III, we design
the GPOOA algorithm for DSCI-type tasks.

GPOOA adopts the principle of minimum target value
(Jéara”e,) first offloading, and seeks for parallel decision-making
and resource allocation scheme to minimize the system cost. Itis
known that when given any two variables, the P turns into how
to optimize SF, SP, or SS. First, we get a random task division
factor S} ; by initializing f; ; (0 and P j(0)»and getarandom i
by 87 ; and f} ;). We use the obtained S} ; and p ; as the given
two variables to optimize the problem SF. Meanwhile, if the
optimal offload object of task A generated by the device i is the
MEC server j and the number of devices connected to server j
is less than (), then task A will be completed by the device 7 and
the server j together. If the server j has connected () devices,
then task A can only choose the suboptimal offload object. The
details of the algorithmic process are described in Algorithm 1,
where J!, . = —blel + V(D! + ¥x!) and Q is the maximum

In this section, we verify the effectiveness of GPOOA through
MATLAB simulation with the adoption of the controlled vari-
able method.

A. Simulation Setup

The parameter setting of this article mainly refers to works
in [13] and[17]. There are three MEC servers and eight [oT
devices placed in an area of 100 x 100 m, where IoT devices
can move arbitrarily in the area without affecting each other. Let
E} ;; be auniform distribution on [0, ] with the average EH
power py = E'W** /27 (the range is between 7.5 and 10 mW).
The unit task A(L,7) with L =1 kbits and 7 =2 ms. The
channel power gains are exponential distribution with mean
go(%)o‘, where the pass-loss exponent o = 4, the path-loss

constant go = —40 dB, and dy = 1. The small-scale fading
channel power gains follow an exponential distribution, i.e.,
¢ ~ Exp(1). Inaddition, § = 1028, fir& — 1.5 GHz, p™* =
1.8 W, w = 10° Hz, and ¢ = 10~ '3, Penalty weight for dropping
tasks cost ¢ =2 ms, E™" = 0.04 mJ, fm% = 1.5 GHz, and
W = 737.5 cycle/bit. We verify the effectiveness of GPOOA
through MATLAB simulation on 3000 time slots with the slot

length 79p = 2 ms.

B. Performance Analysis

As depicted in Fig. 4, given the arrival rate p = 0.5, as V' goes
from 0 to 7 x 107>, the time-averaged system cost drops from
1.57 to 0.97 ms and the average energy queue backlog increases
from 1.48 to 2.70 mJ. It can be found that the average battery
queue length increases linearly as V' increases. Meanwhile,
the system cost is inversely proportional to V' and eventually
converges to the optimal value of P; as V increases. Thus, by
adjusting V/, the tradeoff between the minimization of the system
cost and the stability of the battery queue can be achieved.

From Fig. 5, the system cost decreases rapidly at the begin-
ning, then tends to decrease slowly, and finally stays within

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on September 20,2022 at 07:23:53 UTC from IEEE Xplore. Restrictions apply.



CHEN et al.: GREEN PARALLEL ONLINE OFFLOADING FOR DSCI-TYPE TASKS IN IOT-EDGE SYSTEMS

7963

Algorithm 1: GPOOA algorithm.
1: fortimeslotst € T do
for i = 1to M do
Acquire ¢!, b! and El,
Solve the problem Pepergy as (27) to get the e*ﬁ
for j =1to N do
Initialize ff’j(o) and pf’j(o)
Solve the problem SS to get the S ;;
Solve the problem SP as Egs.(28) and (29) to
get the p‘;, 5
9: Solve the problem S.F as Eqs.(32) and (33) to
get the ff ;;
10: Record optimal value Jf, (St . pt 5, f1));
11: If the battery energy level is insufficient for the ¢
IoT device and the 5 MEC server to parallel
offloading, set Jy, et (Sf ;, 1% ;, ff ;) as inf;
12: Choose the optimal S*, P*! and f*! by
selecting the minimum J¢ et (Sf 5, 0% 5, £ ),
denote as Ji,.e (S}, P}, ff) and record j.
13: end for

14: Insert key-val