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strategies to reduce power system pressures and residen-
tial electricity bills. However, it is challenging to design
such strategies due to the random nature of electricity
pricing, appliance demand, and user behavior. This arti-
cle presents a novel reward shaping (RS)-based actor—
critic deep reinforcement learning (ACDRL) algorithm to
manage the residential energy consumption profile with
limited information about the uncertain factors. Specifi-
cally, the interaction between the energy management cen-
ter and various residential loads is modeled as a Markov
decision process that provides a fundamental mathemat-
ical framework to represent the decision-making in sit-
uations where outcomes are partially random and par-
tially influenced by the decision-maker control signals, in
which the key elements containing the agent, environment,
state, action, and reward are carefully designed, and the
electricity price is considered as a stochastic variable.
An RS-ACDRL algorithm is then developed, incorporat-
ing both the actor and critic network and an RS mech-
anism, to learn the optimal energy consumption sched-
ules. Several case studies involving real-world data are
conducted to evaluate the performance of the proposed
algorithm. Numerical results demonstrate that the pro-
posed algorithm outperforms state-of-the-art RL methods
in terms of learning speed, solution optimality, and cost
reduction.

Index Terms—Deep deterministic policy gradient, deep
reinforcement learning, demand response, residential en-
ergy management, reward shaping (RS).

[. INTRODUCTION

ITH growing populations, ever-increasing living stan-

dards, and more appliances now being used in homes,
the energy demand of the residential sector has grown con-
siderably in these days, and is expected to increase even fur-
ther [1]. Thus, an energy management program is required to
allow residential users to make informed changes concerning
their energy consumption and help the power grid reshape load
patterns and reduce peak demand, thereby eliminating potential
electricity supply disruptions and the need for backup power
plants [2]. A residential energy management center (REMC) in
a home can use autonomous load scheduling plans offered by
energy management programs with real-time electricity pricing
to manage the load energy consumption, reduce user electricity
costs, and enhance power grid reliability [3].
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To date, extensive efforts have been conducted to the op-
timal residential energy management. For example, Pal and
Kumar [4] presented a demand response program for house-
hold energy management to reduce daily payments, in which
the optimization problem was formulated as a mixed-integer
linear programming model. Zhang et al. [5] developed an event-
triggered multistage secondary control approach for microgrid
management to overcome the power-sharing error and frequency
deviation problems. Mahdavi and Braslavsky [6] proposed a
model predictive control method to schedule air conditioners in
the residential electricity network, aiming to shave peak demand
and firm photovoltaic generation capacity. Zhang er al. [7]
created a delay-tolerant predictive power compensation control
strategy for voltage regulation in a high-penetration level of
photovoltaic energy systems. Most recently, a predictive voltage
hierarchical controller is adopted in [8] to enhance the voltage
and energy sharing of distributed generations for microgrids.
However, designing an efficient energy management program
in a residential environment involves two challenges [9]. First,
affected by the user commuting behavior and living activity, the
REMC has uncertainties in the operational interval and time slots
of residential appliances, which makes it difficult for an REMC
to produce energy management schedules efficiently in response
to varying electricity prices. Second, to effectively control res-
idential appliances, precise appliance parameters and models
would be predetermined by relevant experts to estimate their
operational dynamics and energy demand characteristics. Nev-
ertheless, expert experience is not always available in homes.

Driven by the fast evolution of artificial intelligence, rein-
forcement learning (RL)-based approaches that avoid the neces-
sity of an accurate mathematical model have recently induced
increasing interest in the power grid domain for creating optimal
energy dispatch schedules [10]. To be specific, RL comprises a
smart agent that gradually learns the optimal control policy via
utilizing Markov decision process (MDP) experiences obtained
from repeated interactions with the stochastic environment,
without prior system knowledge [11]. This provides the agent
with powerful capacities to learn the optimal performance be-
havior when it is difficult or costly to model the system explicitly
and accurately. Furthermore, once the learning procedure of RL
is accomplished, the acquired policy can be directly deployed
for end-to-end real-time decision-making to produce optimal
actions instantly for the given system states.

The great success of RL has inspired the development of
RL-based approaches for residential energy management. For
example, Wen et al. [12] proposed a device-based RL ap-
proach for various loads energy management in residential and
small commercial building sectors. Ruelens et al. [13] created
a day-ahead energy consumption schedule of thermostatically
controlled loads using a batch RL. method. Lu et al. [14] designed
an RL-based real-time demand response scheme for residential
customers to equilibrize energy demand and supply. Ahrarinouri
et al. [15] developed a multiagent RL structure for building
energy management to minimize electricity costs and the in-
duced user dissatisfaction. However, these works employing
RL in energy management problems all utilized the traditional
Q-learning algorithm and its variants. This kind of RL algorithm

calculates the action-value functions for all possible state—action
pairs based on a look-up table; thus, both state spaces and
action spaces are discretized, which is not appropriate for most
applications with massive states and actions in the real world,
given that the Q-table becomes greatly large.

To address such dimensionality challenges, a new promising
approach, referred to as deep Q-network (DQN), which incor-
porates RL with deep neural network (DNN) to exploit its pow-
erful function approximation capabilities, has been witnessed
recently. A DQN is an extension of Q-learning that employs a
DNN to approximate the Q-value so as to handle the continuous
multidimensional state-space problems. For example, Mocanu
et al. [16] explored the benefits of utilizing DQN to accomplish
online strategies optimization in residential energy management
systems based on highly dimensional observed data. Chung
et al. [17] adopted a distributed DQN to manage household
energy consumption profiles, considering the randomness in
electricity price and appliance demand. Mathew et al. [18]
developed a DQN model that shifts residential load from peak
to off-peak slots, with the aim of minimizing user electricity
costs and reducing grid peak load synchronously. Lee and Choi
[19] proposed a federated DQN for multiple homes energy
management, taking into account the dynamically varying oper-
ation conditions of appliances. Although the abovementioned
works have demonstrated high-quality DQN performance in
continuous state spaces energy management problems, the DNN
employed is commonly learned to generate discrete Q-value
estimates instead of continuous actions, which severely prevents
its advantages from dealing with multidimensional continuous
action space energy management issues.

To resolve this problem, another RL algorithm of the de-
terministic deep policy gradient (DDPG) approach is further
proposed. Rather than approximating the action-value function
in DQN, it calculates the possibility of choosing an action at
a particular state directly to deal with the continuous action
space situations. Yu et al. [20] presented a commercial building
load control method based on DDPG to minimize electricity
costs and thermal discomfort without information about the
building thermal dynamic model. Ye ef al. [21] combined the
DDPG with prioritized experience replay strategy for residential
multienergy systems to schedule different devices for reducing
energy costs, considering the uncertainties in both demand and
supply sides. Bahrami et al. [22] employed a DPPG and feder-
ated learning to incentivize residential users to reduce electricity
demand during peak time slots while accounting for the inde-
terminacy in privacy concerns and power flow constraints. Qin
et al. [23] proposed a privacy-preserving residential microgrids
load scheduling algorithm using a DDPG, without knowing prior
information about customer behavior or model dynamics. De-
spite the great promise of utilizing RL approaches to solve highly
complex energy management problems in dynamic residential
environments, challenges remain to be solved. One such pitfall is
that discovering the state-action space in stochastic and uncertain
environments is really time-consuming to converge, due to the
sparse and delayed rewards. To accelerate the training process
of RL approaches in a continuous action environment, many
efforts have been dedicated to find efficient ways to speed up
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TABLE |
RESEARCH GAP OF THE PROPOSED ALGORITHM WITH OTHER LITERATURES

References Optimization approach | State space | Action space Approximate method
[4]-[8] Model based - - -
[12]-[15] Learning based Discrete Discrete DNN
[16]-[19] Learning based Continuous Discrete DNN
[20]-[23] Learning based Continuous Continuous DNN
This work Learning based Continuous Continuous DNN + LSTM + RS

the convergence rate [24]. Reward shaping (RS) is a kind of
general principled method to improve the learning procedure by
providing an additional reward term that would be initialized
to the value function [25]. This shaping reward is indeed not
come from the environment, but is incorporated by the system
designer and estimated on the basis of some prior problem
knowledge [26]. The work of [27] proposed a potential-based
RS method to improve the RL agent performance, wherein the
difference of some potential function is designed over a source
and a destination state. It also proved that the RS defined with
this way can lead to substantial reductions in learning time for
obtaining optimal actions while the optimality of the original
optimal policy is unchanged.

In this article, a novel RS-based actor—critic DRL (ACDRL)
algorithm for real-time autonomous residential energy manage-
mentis proposed, with the aim of minimizing electricity bills and
sustaining user comfort. Specifically, the proposed RS-ACDRL
algorithm featuring an actor—critic architecture combines a DPG
with a DQN and an RS mechanism to boost its performance.
In this configuration, the actor—critic is realized by two DNN5s
used for function approximation, in which the actor learns via
the Q-value estimated from the critic. More detailed, the actor
is represented by a policy network that can learn policies in a
high-dimensional continuous state and action spaces, and the
critic is represented by a Q-network to exploit the success of the
target Q-value and the experience replay to stabilize learning.
In addition, an effective RS mechanism is also introduced in
episodic ACDRL, attempting to add information about state—
action pairs closer to terminal states and thereby increasing the
convergence speed of the ACDRL. The effectiveness of the pro-
posed RS-ACDRL algorithm for residential energy management
is verified via numerous numerical simulations with real-world
data considering uncertainties arising from electricity price and
appliance demand. Case studies demonstrate the performance of
the proposed algorithm by comparing it against the case without
scheduling, and another two state-of-the-art RL methods of
DQN and DDPG, in terms of cost reduction, solution optimality,
and learning speed.

To emphasize the major research gap of the proposed algo-
rithm in light of the related methods in the literature, a compar-
ative analysis is carried out in terms of four aspects, as given
in Table I, including the optimization approach, the state space,
the action space, and the approximate method. In summary, this
work contributes in fourfold.

A residential energy management problem is investigated,
considering uncertainties in electricity price, and appliance
demand to reflect realistic scenarios, in which the scheduling
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Fig. 1. System model.

procedure is formulated to an MDP without known the transition
probability.

A novel RS-ACDRL algorithm blended an actor and critic
network with an RS mechanism, that does not require system
model information in a multidimensional continuous state and
action spaces, is proposed to obtain the real-time autonomous
optimal energy management policies.

Numerical results based on real-world data demonstrate that
the proposed algorithm achieves better performance than the
other two baselines, and appears a more beneficial computational
property because of its utilization of the RS mechanism.

Case studies verify that the RS-ACDRL algorithm gains ap-
proximately 38.57% lower electricity costs than that of the case
without scheduling, and further promotes nearly 600 reductions
in training episodes when compared with the DDPG.

The rest of this article is organized as follows. Section II
introduces the problem formulation. Section III describes the
proposed RS-ACDRL algorithm in detail. Section IV provides
simulation results demonstrating the effectiveness of the pro-
posed algorithm. Finally, Section V concludes this article.

[I. PROBLEM FORMULATION

As illustrated in Fig. 1, we consider a smart home equipped
with one REMC and diversified residential loads. The REMC,
as a coordinator of user load scheduling, is connected to the
utility company via a two-way communication network that
receives real-time pricing termly from the utility company and
then regulates the various load’s energy consumption, with
the goal of minimizing electricity bills while satisfying comfort
requirement. Due to the control actions of the REMC being taken
sequentially to the different loads, MDP affords a logical struc-
ture to build the interactions between the REMC and the loads.
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The following sections present the formulations of residential
loads and MDP.

A. Residential Loads

Loads in a household are usually divided into two categories
according to their priorities and characteristics: 1) nonschedula-
ble and 2) schedulable. The energy demands of nonschedulable
loads must be satisfied completely in their operation time as
needed and do not respond to price variations (e.g., alarm sys-
tems). In contrast, schedulable loads can be stopped, shifted, or
adjusted to freely change their working time and energy demand,
abiding by some functional constraints (e.g., dishwashers). For
each load n € {1,..., N}, its control variable is represented
by ¢!, € {0, 1} denoting the operating status, i.e., ¢!, = 1 if the
load n operates with a task at time ¢ or ¢!, = 0 if otherwise.
[Tini Tend] indicates the scheduling window corresponding to
a working period that includes the initial time 7™ and the end
time 7" for the task; and E! represents the required energy
consumption to function the task.

1) Nonschedulable Load: A nonschedulable load has tight
energy demand requirements that have to be satisfied with no
intervention. As soon as it begins running, it should be worked
consecutively and will not be regulated. Therefore, the energy
consumption of nonschedulable load n, non is equivalent to its
energy demand

t t
En,non = €n,non * Cp, non (D
ini d
Ct — 17 le [Trlzn,]nonv Trez?non] (2)
T,non 0, otherwise

where e, non 18 the energy demand and cfl’mn is the control

variable at time ¢ of the nonschedulable load n, non.

2) Schedulable Load: Schedulable loads include all loads
whose working time can be shifted or those requiring energy
that can be regulated throughout the day in response to price
variations and can also be broken into two technology groups:
1) shiftable and 2) controllable.

Shiftable loads can be regulated from on-peak to off-peak
hours, effectively reducing not only the peak energy demand, but
also the electricity bill for the user. Assume that a shiftable load
n, sh requires continuous manipulation of T,‘;f;f time periods to
accomplish a task. The starting time of the task is denoted by
Ty, Then, the energy consumption of the shiftable load 7, sh
is

t t
En,sh = €n,sh " Cp sh 3)
sta sta need
Ct _ 17 te [Tn,sh7 Tn,sh + Tn,sh] (4)
msh 0, otherwise
ini sta end need
n,sh S Tn,sh S Tn,sh — 4n,ssh (5)

where (4) restricts the control variable cf, , to operate contin-
uously because the shiftable load n,sh cannot be interrupted
during its operation horizon, and (5) limits the load n,sh to
complete the task within the deadline.

In contrast, the energy demand of the controllable load is
continuously adjustable in response to prices. Thus, the energy
consumption of a controllable load n,con at time slot ¢ is

2665
given by
t ___min max min t
En,con - en,con + (en,con - en,con) ' Cn,con (6)
¢ ini d
ot _ In,con ' 1’ le [T;zn,lcom Tg?conjl 7
mcon 0, otherwise
where I}, ., is acontinuously varying decimal indicating that the

controllable load n, con can be regulated between the minimum
energy demand e)'! and maximum energy demand e)'%%

n,con n,con?

respectively, with an elastic energy consumption.

B. MDP Formulation

In the smart household under consideration, the residential
load energy consumption level at the next time slot relies on
the current energy demand level and the control variable in the
current time slot according to (1), (3), (6), which is independent
of foregoing actions and states, so the residential loads energy
consumption scheduling is formulated as an MDP. In the MDP,
the sequential decision-making process is represented by a four-
tuple (S, A, R, S"), where S and S’ are the state sets, A is the
action sets, and R(s, a, s) is the reward function. The following
sections present the key elements of the MDP, containing the
agent, environment, state, action, and reward.

1) Agent: The decision-maker (i.e., REMC) denotes the
agent that learns how to accelerate its control policies gradually
to maximize rewards via experiences obtained by repeatedly
interacting with the environment. Depending on the presented
smart home system, the agent is used to realize the switching or
adjustment of the residential loads.

2) Environment: The other objects outside the agent (i.e.,
nonschedulable and schedulable loads) to be controlled repre-
sent the environment, as depicted in Fig. 1.

3) State: The state s? at time slot ¢ is regarded as a feedback
of the REMC agent, which reflects its control action effect on the
residential load status. It consists of three types of information
E! B!

n,shy ~n con’

st = (1, B!

m,non’

pt-23 pt-22 .,Ptq’Pt)
(®)
where ¢t denotes the time step identifier given that the
energy demand of residential loads and electricity prices
from a utility company are repetitive with a daily pattern;
B} o B g, and EY, ., represent the energy consumption of
the endogenous physical state features of residential loads that
are managed and can be influenced by the agent actions; and
pt=2 pt=22_ P! P! indicate the electricity prices over
the past 24 time slots, which are accessed through the utility
company and can be considered as exogenous information state
features that are needed to make a control decision and calculate
the reward. These features are characterized by the intrinsic
variability and uncertainty of the system and are independent
of the agent actions.
4) Action: Given the system state s* at time slot ¢, the action
a® of the agent is to ideally determine the energy consumption
amount of the various residential loads, defined as

t

t t t
a = (Cn,nom cn,sha Cn,con) (9)
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where ¢!, . is the constant control variable of the nonschedu- Agent
lable loads, and ¢/, , and ¢/, ., are the binary and continuous Residental E"";%'E’:\"A"gageme“‘ S

control variables of the schedulable loads, respectively.

5) Reward: The goal of the agent is to schedule the elastic
loads to minimize user electricity cost, i.e., regulating energy
demand from high electricity price time periods to low electricity
price time periods. However, the scheduled energy consumption
can lead to user dissatisfaction, as it may deviate from a user-
preferred working time or required energy demand. Thus, from
a user perspective, the corresponding reward 7! includes three
parts

t_ .t t t
T = Teom = Twait — Tele (10)
al 2
t t i
Tcom = Z Qn,con (En,con - efr?,lcl(lm) (1)
=1
N
t sta ini
T'wait = Z Bn,sh ! (Tn,sh - ;,,;h) (12)
=1
N
t t t t t
Tele = Z Pt (En,non + En,sh + En,con) (13)
n=I

where ! denotes the user comfort index, which is defined by a
quadratic function form. a, con 18 a controllable load-dependent
parameter measuring the user sensitivity toward the energy
consumption reduction, i.e., a load with a smaller o, con prefers
to consume more energy to enhance its comfort level and vice
versa. r, . indicates the waiting penalty for a shiftable load to
begin its task, which is calculated based on the deviation from
its initial working time. For example, a dishwasher commonly
functions during a specific working period [ T‘Lmsh, Tff,l:lh] (e.g.,
6 pm—10 pm), which can be shifted from on-peak time slots
to off-peak time slots. For example, if the dishwasher starts to
function at T, (i.e., 9 pm), then the waiting time would be
T34, — Ty, (ie., 3 h). S, g is a weighting factor that reflects
the linear relationship slope of the waiting inconvenience; a
larger f3,, sn Will result in a bigger penalty. rf, represents the
electricity cost for loads energy consumption, and P? is the

dynamic real-time electricity price.

C. Objective

For each time slot ¢, the REMC agent makes control de-
cisions about residential load energy consumption schedul-
ing according to a set of available information and forms
a MDP sequences of environmental states, actions, and re-
wards: s',al,rl; 2 a% r?% st at et 8T aT, rT. The
return R =Y/_ ! is the sum of the discounted reward
from the initial learning step thereafter, where v € [0, 1] is
a discounted factor that represents the relative importance of
long-term (future) rewards and short-term (immediate) reward.
The aim of the REMC agent is to find an optimal policy p* (a
policy 1 maps the possibility of choosing an available action
to the corresponding state) that maximizes the cumulative dis-
counted reward over all feasible policies, as represented by the
optimal Q-value function Q*(s,a) = E[R|s' = s,a' = a; u*],
which constitutes an estimation of the discounted, accumulative,

TD error

Actor Critic

Actor-Critic Deep Reinforcement Learning
A

State (s')

Smart Home
(non-schedulable alarms and
schedulable appliances)

Action (a') Reward (r')

Environment

Fig. 2. Actor—critic deep RL framework.

and expected reward, considering an action a' at state s?, and
following the policy p* from the succeeding states onward.

To analytically determine the optimal Q*(s, a), the transition
probability from s? to s*! is needed to indicate the uncertainty.
This requires a precise mathematical model, but in the problem
under consideration, the state transition from s* to st*! is
influenced not only by the agent control actions a® but also by
the stochastic exogenous features, including the price pattern
P! and energy demand ¢!,. It is very challenging to identify
an explicit joint probability distribution model to exactly reflect
such indeterminacy, which is affected by many factors, including
the utility company, weather conditions, and user behavior.

To address this issue, an RS-ACDRL algorithm is proposed
to allow the agent to overcome the uncertainties within in real-
world dataset and implicitly learn the state transition probability
via machine learning techniques. Fig. 2 presents a diagram of the
interaction between the agent and the environment in the MDP
of the proposed RS-ACDRL algorithm. The agent behaves in a
dynamic environment by acting sequentially over a sequence of
time slots. Ateach time slot ¢, the agent observes the environment
state st and utilizes the RS-ACDRL algorithm to refresh its con-
trol actions a’ (expressed by a’ = p(s?)). The environment then
executes action a’, moves to the next state s'*! and generates
a reward 7. This is finally returned to the agent to determine
the next time slot control action a'*!. It should be pointed out
that the agent does not have any prior knowledge about how the
reward and next state are associated with each action. Instead,
the agent learns this linking via constantly interacting with the
stochastic environment to minimize the electricity cost while
meeting the satisfaction index of the user.

[Il. RS-BASED ACDRL ALGORITHM
A. Overall Scheme

This section presents an RS-ACDRL algorithm to perform
optimal residential energy management. The algorithm con-
structs an actor—critic structure and utilizes two DNNs that
learn approximations for both the value function and policy
function, wherein the detailed workflow is depicted in Fig. 3.
The actor network (represented by DPG), parameterized by 6*
(light yellow color), generates the executable action a® given the
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Fig. 3. Overall workflow of RS-ACDRL.

current state s?, while the critic network (represented by DQN),
parameterized by ¢® (light red color), estimates the Q-value
function Q(s*, a|¢?) for the state—action pair (s?, a?, rt, s'*!).
Because the critic just requires to generate an estimated Q-value
for the action carried out by the actor, the proposed RS-ACDRL
algorithm can operate on continuous action spaces [28]. Through
controlling continuous actions, the proposed algorithm explores
the action spaces more thoroughly and avoids the discretization
computational cost, and also produces a smooth action control
strategy to schedule the residential loads.

Specifically, the proposed RS-ACDRL algorithm first em-
ploys long short-term memory (LSTM) neural network to extract
identifiable price data features, which is a critical process for
improving the DNN approximation quality (mark (1) in Fig. 3).
Given that the electricity price varies in a near-periodic manner
and has a physical chronological order, it is rational to extrap-
olate future electricity price tendency from former electricity
prices [29]. The LSTM networks are very familiar for their
capability to capture the time-series data dependencies, so the
electricity price tendency in this article is modeled by an LSTM
network, in which the input is the previous 24-h prices and
the output is the extracted price pattern. After that, the output
of the LSTM network concatenated with the time slot and
energy consumption information, is inputted into both DNNSs to
approximate the optimal function. The actor first extracts feature
states from the multidimensional state s?, including the time slot,
energy consumption, and extracted price pattern information and
outputs an action a’ derived by policy p(s'|6*) (marks (2) and
(3 inFig. 3). Then, the same feature state s’ plus the action a’ are
inputted to the critic, whose output is a scalar estimated Q-value
function for that corresponding state—action pair with the aid
of an RS mechanism and employs the reward value received

Deep neural network

from the stochastic environment to regulate the precision of
the estimated Q-value function Q(s?,a’|¢%) by changing its
parameter ¢? (marks (4) and () in Fig. 3). Finally, the actor
network updates its parameter 6* based on the Q-value function
of the critic network to improve the policy and the action taken
on each state (mark (6) in Fig. 3).

More specifically, the critic network criticizes the policy by
providing an approximation of the Q-value function via mini-
mizing the following loss function:

2
L (¢Q) = Es,a,r,s’~D [yt -Q (St’at|¢Q)] lat=p(st|OH) 14
= (st,at) +ymaxQ (St+17ﬂ (st“|0“) |¢Q7)

(15)
which leads to the following gradient:
V¢QL (¢Q)
BQ St7 at ¢Q
= Buaronn |4~ @ (s a'99)) 221
(16)

Then, the gradient of the actor network can be written as

VouJ (0") = VaQ(s',a'|¢?) Voup (s'[0") .
a7
However, the DQN tends to exhibit unstable when using a
DNN to approximate the Q-value function. First, the online
Q-network Q(st, a’|¢?) being updated in (14) is also utilized
to compute the target value y* in (15); thus, the update of the
Q-value is apt to diverge. A valid way to address this oscillation
is to bring in a target network for the critic and actor, respectively,
represented by (s*|0#~) and Q(s*, at|¢?~), and use them to
compute the target values. The parameters of these two target

laf=p(st|6+)
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networks are then updated by periodically tracking the online
networks y(s|0%) and Q(st, a*|#%). The principle behind this
soft change is to enforce the target values to vary slowly and
thereby stabilize the learning process. Second, at each iteration,
state transition samples are collected as the agent interacts
with the stochastic environment sequentially, which means that
these transitions are highly correlated. Learning from these
consecutive tuples may result in a divergence in the training.
To overcome this problem, an experience reply buffer D, which
stores collected past experiences (an experience is a transition
tuples (s, at,rt, s'*1)) and samples uniformly a minibatch (of
size K) of experiences, is employed to update the actor and
critic at each time step. Sampling in the experience replay buffer
destroys the temporal correlations between the selected tuples,
thus stabilizing the training. Besides, the experience replay
buffer allows the experiences to be reused, thereby enhancing
the sampling efficiency.

To further improve the convergence speed and accelerate the
learning process, an RS mechanism is utilized. The rationale
behind RS is to improve the stochastic environment reward
feedback by importing extra rewards to make progress toward
discovering high reward actions, which helps RL algorithms
reduce the required training transition number, to obtain the
optimal policy more rapidly [27]. A potential-based RS can
result in massive reductions in learning time to boost the conver-
gence process and guarantee the optimal policy learned keeps
optimality under the effect of RS [30], which is defined as

F(st,sH") =~ (s“‘l) —@(st) (18)

where ® is a to-be-defined potential function. In this article, we
carefully design the potential function as follows:

t=0

otherwise (19)

@ (s') = { (1)’ R B
Rifax ()= Ripi (1)
where Rhm is the sum of rewards in the current episode; Rrnax (t)
and R (t) are the maximum and minimum value of episode
reward until now. This shaping reward is added to each environ-
mental reward for every transition in each episode. As such, the

(15) in the presence of potential-based RS becomes
yi=r (st7at) + AF (8t7st+l)
FymaxQ (87 (s741]6%) . [69°)

where A is a tuning parameter that weights the shaped term
~vF(st, s71). RS not only enables the agent to derive its optimal
policy rapidly from each effective trial but also presents the agent
from choosing bad actions in certain states, thus improving the
learned policy quality.

The gradient decent algorithm is then used to update the
parameters of the online actor and critic networks, respectively,
by performing the following computations:

0" < 0" — Vg J (6)
¢? — ¢% —n?Vyeo L (¢9)

where 7% and ? are the corresponding learning rates. The target
actor and critic networks are updated to track the online actor

(20)

@1
(22)

Algorithm 1: Training Process of the RS-ACDRL.

Input: Electricity prices, time information, energy
consumption and other related parameters.
Output: Optimal parameters of the critic and actor
networks.
1:  Randomly initialize the online critic and actor
networks with parameters QSQ and 6#;
2: Initialize the target critic and actor networks with
parameters @~ < ¢% and "~ <« OH;

3: Initialize the replay memory buffer D.
4: for episode = 1 to M do
5: Observe the residential environment state s¢;
6: fort =1toT do
7: Select action a’ = pu(s*|6*) + x" according to the
policy network and exploration noise;
8: Execute action a!, receive the reward r?, and
observe next state s*T;
9: Store transitions (s, at, rt, s'*1) in D;
10: Sample a random minibatch of K transitions
(s, a¥ r¥ s¥+1) from D;
11: Set y¥ = r(s¥, a*) + AF(s¥, sFH1) +
v maXQ(Sk'H , /,L(Sk+l ‘9,u)7 ‘(bQ_);
12: Minimize the loss:
130 L(0?) = £ 5 Bearemnly® — Qs a¥[g9)]
14: Leading to the following gradient:
k Kk
150 VyeL(99) = [(y* — Q(s*,ab|p@)) 22 a1e)]
16: Update the critic network:
17: P9 + 99 — Vo L(¢9)
18: Calculate the sampled policy gradient:
19: VouJ(0") =
£k VaQ(s®, a"|69) Vo p(s]0%)
20: Update actor network:
21: 0" < OF — 9V g J(O)
22: Update target critic and actor networks:
23: PP 799 + (1 — 1)
24: OF 10" + (1 —7)6"
25: end for
26: _end for

and critic networks according to
OH~ — 10* + (1 — 1) 0"~
9 T + (1 — 1) 9"

(23)
(24)

where a small 7 with 7 < 1 should be selected to improve
learning stability.

B. Detailed Algorithm

The proposed RS-ACDRL algorithm for residential energy
management consists of two parts: 1) the training algorithm and
2) the execution algorithm, as illustrated by Algorithms 1 and 2
as follows.

1) Training Algorithm: Algorithm 1 corresponds to the train-
ing process of the RS-ACDRL. The inputs are the electricity
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price, time information, energy consumption, and other param-
eters defined in Section II. Its output is the optimal parameters
6" and ¢ of the actor and critic network.

First, the parameters ¢ and 6* of the online networks
Q(s,a|¢?) and p(s|6*) are randomly initialized. The target
networks Q(s, a|¢p®~) and y(s|0*~) then initialize the weights
by copying, i.e., 9@~ < ¢% and #*~ < 6. The replay memory
buffer D is also initialized to store the transition tuple.

Next, the algorithm begins running with episodic iterations.
At each time slot of each episode, the REMC first observes the
states s® of appliances, and selects actions a® = u(s?|0#) +
based on the current policy and the exploration noise (mark
(@ in Fig. 3). When selecting actions, it is essential to keep
a proper balance between exploitation and exploration. Ex-
ploitation means that the agent makes full use of the current
information to select the best actions, while exploration refers
to the agent explores more useful knowledge via attempting
different available actions in the action spaces. In this article,
an exploration policy is constituted by appending a random
noise process x' to the actor policy to help the agent explore
the environment thoroughly. The REMC then executes action
a® on the schedulable loads, and the reward r* and new state
s'*t! are returned from the residential environment.

Correspondingly, the transition sample (s’,a’,r?, s'*1) is
stored in the replay memory buffer D to train the critic
and actor networks (mark in Fig. 3). First, K transitions
(s*,ak r* s**1) are randomly sampled for training DNNs
(mark (9) in Fig. 3). As shown in Lines 11-13, Q(s*, a"|¢?)
and 3* produced by the online critic network and target critic
network are utilized to compute mean square error loss. Through
minimizing the loss function, the parameter of the critic network
is updated in Line 17. Then, the sampled policy gradient is
calculated in Line 19, which is utilized to refresh the parameter
of the actor network in Line 21. Finally, the parameters of the
target critic and actor networks are updated in Lines 23-24.

After the training procedure, the parameters ¢ and 0 will
be output for the residential energy management.

2) Execution Algorithm: Algorithm 2 presents the execution
process of the RS-ACDRL. The parameters of the critic and
actor networks trained by Algorithm 1 are loaded when the
training process is finished, and the actor network is reserved
for real-time decision-making. In the loop starting from Line 2,
the actor network is utilized to produce the residential energy
management schedules from time slot ¢ to 7. At each time
slot, the actor network calculates policy value y(s?|0) based
on the observed state features. Then, the load control action a?
is selected in Line 5 as p(s'|60*) + x'. Because only the current
state s’ is used to make decisions, the proposed RS-ACDRL con-
trol algorithm requires no prior knowledge of system uncertain
parameters or residential load dynamics.

IV. NUMERICAL RESULTS
A. Case Studies

For case studies, we consider three nonschedulable loads
[the fire (L1), smoke (L2), and earthquake (L3) alarms], and
six schedulable appliances, including four controllable loads [a
heating (L4), validation (L5), air conditioning (L6), and lighting
(L7)], and two shiftable loads [a dishwasher (L8) and a washing

Algorithm 2: Execution Process of the RS-ACDRL.

I: Load the actor network parameter 8* trained by
Algorithm 1.

2: for time step t to T do

3: Observe system st

4:  Calculate actor network p(s?|0#);

5 Select action a’ = u(st|0") + x*;

6: Execute action a’ in residential environment and
observe next state st

7: end for

machine (L9)]. Table II lists the corresponding parameters of the
loads [31] and [32]. For the proposed RS-ACDRL algorithm, two
DNNss for the actor and critic are employed to learn the optimal
residential energy management strategy. The corresponding pa-
rameters of the RS-ACDRL methodology are listed in Table III,
i.e., the hidden layers and neurons amount of actor and critic, ac-
tivation function, discounted factor, replay buffer size, maximum
training episode, optimizer, learning rate, soft updating rate, and
minibatch size are determined by some empirical guidelines in
the relevant literature survey and extensive preliminary perfor-
mance analysis [33] and [34]. Specifically, the actor has three
hidden layers with 128, 64, and 32 neurons, and the critic has two
hidden layers with 64 and 32 neurons, wherein all hidden layers
are realized by rectified nonlinearity (ReLU) as the activation
function. The output layer of the actor is a softsign layer to
bound the continuous actions. These are collected according
to common practices recommended by the machine learning
community. For the critic, the discounted factor + is set to 0.95
so that the proposed algorithm can obtain a foresighted strategy,
and L2 regularization is used in its loss function to avoid large
weights. The size of the replay buffer D is 10°, and the maximum
episode is set to 1000. Each episode contains 72 hours. The
Adam is utilized to optimize the two DNN parameters with a
learning rate n* and n% of 0.01, respectively, which are the same
as that used in [33]. The target network soft updating rate T is set
t0 0.001, and the minibatch size of K is setto 1024 in the training
process. In the LSTM network, 24 neuron units are utilized to
extract the feature from the past 24-h electricity prices. Then,
this feature PL,....q is fed into the two DNNs, concatenated
with the measured energy consumption and time information.
The algorithm code is programmed in Python with TensorFlow,
an open-source machine learning package developed by Google
Brain.

The performance of the proposed algorithm is evaluated under
areal-world scenario, wherein the hourly electricity prices [35]
from January 1 to October 31, 2020 are selected to train the
algorithm, and the prices from November 1 to December 31,
2020 are used for performance evaluation. All case studies are
conducted on a computer with an Intel Core i7-4790 CPU,
3.60 GHz, 16-GB RAM, and one Nvidia 1080 GPU.

B. Energy Management

The proposed RS-ACDRL algorithm is trained with 1000
episodes to learn the optimal residential energy management
strategy. The evolution of the cumulative rewards during the
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TABLE Il
PARAMETERS OF DIFFERENT RESIDENTIAL LOADS
Device Type Nonschedulable Schedulable -
Controllable Shiftable
Device Name L1 L2 L3 L4 L5 L6 L7 L8 L9
Energy demand (kWh) | 0.03 | 0.03 | 005 | 0-14 | 0-14 | 0-14 | 0-14 0.75 0.70
Working period 24h | 24h | 24h 24h 24h 24h 24h 6 pm—10 pm | 6 pm-10 pm
Qn,con - - - 0.013 0.014 0.015 0.016 - -
Bra.sh - - - - - - - 0.4 0.1
Tneed - - - - - - - 1h 2h
TABLE Il 8 4 40
PARAMETER VALUES OF THE RS-ACDRL METHODOLOGY STt 1 132
Z6 | h l20Z
- 25| I\ A by v {52
. Parameter description Value 54 | poe Sejenne - . "‘J o N 20 §
Hidden layers and neurons amount of the actor | 3/ 128, 64, 32 g 3 15 ;
Hidden layers and neurons amount of the critic 2/64,32 %2 10 %
fvation fnct 5 ls 8
Activation function ReLU GO AR EEAAE AR IR
Discounted factor 0.95 1 4 7 1013 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70
Replay buffer size D 106 Time (t)
Maximum training episode 1000 — 1 L2 o |3 o L4 L5 w6 o 7 o |8 w9 — o - Price
Optimizer Adam ) . . .
Learing rate 77 and 7@ 0.01 7001 Fig. 5. Aggregated energy consumption of all loads with scheduling.
Soft updating rate 7 0.001
Minibatch size K 1024 8 1 40
= —
=7 H {352
Ze L '|| h o%
25 ! 252
4 20 £
§ 3 152
52 f 1105
é 1 5 2
& » WLt s =
8 1 4 7 1013 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70
g 02 H Time (t)
[0}
§_04 — | 1 L2 o |3 e | 4 L5 w6 m—| 7 | O s | O — o -Price
2
g 06 Fig. 6. Aggregated energy consumption of all loads without
3 scheduling.
-0.8
-1
. and successfully learns a stable policy to maximize the cumula-
tive rewards. After the training procedure (Algorithm 1) of the
14 | | | | | | | ‘ ‘ . .
0 100 200 300 400 500 600 700 800 900 1000 RS-ACDRL is complete, the weights of the actor network at
Episodes convergence are loaded to determine real-time residential load
energy management decisions (Algorithm 2).
Fig. 4. Convergence process of the proposed algorithm.

training procedure is shown in Fig. 4. Specifically, the agent
obtains a very low reward in the first 100 episodes since the
parameters of DNNs are originally initialized, and the actions are
randomly selected to explore the environment. However, with
each iteration, the cumulative reward continues to increase from
100 episodes onward, due to the actions selected by the DNNs
whose parameters are optimized concurrently. Finally, the agent
converges to an optimal value after nearly 300 episodes, with
small oscillations due to the encouragement of the exploration
strategy. This process indicates that the agent gradually evolves

To better illustrate the performance of the learned control
policies of the proposed algorithm, Figs. 5 and 6 present the
obtained energy consumption profiles of nine residential loads,
with and without scheduling on three consecutive test days from
December 29 to 31, 2020, that have different electricity price
patterns. When the proposed algorithm is applied, all schedula-
ble loads consume more energy when the electricity prices are
low and reduce their demand when electricity prices are high,
such that the energy consumption of each residential load is
properly scheduled in response to the hourly dynamic electricity
prices. For the case without scheduling, the shiftable loads are
operated immediately as soon as they require to function, and
the controllable loads are operated at their maximum energy
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TABLE IV
CUMULATIVE ELECTRICITY COST

With scheduling
5.079

Without scheduling
8.268

Total cost ($)
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Episodes
Fig. 7. Performance comparison of different approaches.

demand. Clearly, the loads have no incentive to shift or reduce
their energy consumption. Table IV lists the corresponding
system cumulative electricity cost; the cost with the proposed
algorithm is reduced significantly by 38.57% compared to the
case without scheduling, validating the effectiveness of the
proposed algorithm in optimizing the real-time residential load
energy consumption.

C. Performance Comparison

To further demonstrate the superiority of the proposed RS-
ACDRL algorithm, another two methods of DQN and DDPG are
selected to compare the performance. For the DQN, it employs
a DNN to approximate the Q-value for each discrete action and
then selects the corresponding action with the highest Q-value
at a given state. To apply the DQN, the I, ., of the controllable
load is discretized into six decimal values representing 0, 0.2,
0.4,0.6,0.8, and 1.0, following a similar practice adopted in [36].
For the DDPG, the DNN takes a state vector as input and outputs
a Gaussian policy for each continuous action dimension, in
which the probability distribution of the action is represented
with a Gaussian distribution, and the DNN is utilized to estimate
its mean and variance.

Fig. 7 illustrates the performance of the three examined ap-
proaches in terms of their policy quality and learning speed. As
illustrated in the figure, the average cumulative reward is nega-
tive during the initial learning phases as the agents are gathering
experiences by casually exploring different actions. Whereas, as
the learning procedure progresses and more experiences are col-
lected, the cumulative rewards turn positive, keep increasing, and
eventually reaching the maximum for all three approaches. The
RS-ACDRL promotes its control policy in a higher accumulated
reward than the DQN, attributing to its ability to exploit more
accurate information from multidimensional continuous action

TABLE V
COST AND COMPUTATIONAL PERFORMANCE OF THE THREE METHODS

Electricity Number of Computational
Approach . )
cost convergence episodes time
DQN $6.741 100 27 s
DDPG $5.079 900 218 s
RS-ACDRL $5.079 300 52's

space and generate more efficient control strategies, which differ
from the naive discretization manner adopted in DQN. Further-
more, RS-ACDRL exhibits favorable convergence properties
compared to DDPG with regard to learning speed, given that
the RS-ACDRL incorporates the target networks and the RS
mechanism, facilitating the agent to improve its policy rapidly
and stably.

To gain insight into the effectiveness of the proposed algo-
rithm, Table V illustrates the optimal electricity cost, number of
convergence episodes, and computational time achieved by the
three approaches of RS-ACDRL, DDPG and DQN. As shown,
the total electricity cost of the residential system optimized by
the proposed algorithm, two benchmarks of DDPG and DQN
are $5.079 and $6.741, respectively. The convergence episodes
amount of the three approaches is approximately 300, 900,
and 100, respectively. Accordingly, the total computational time
required to reach convergence is 52, 218, and 27 s, respectively.
It can be concluded the optimized total electricity cost of the
proposed algorithm is reduced by 24.65% when compared to
DQN, indicating that the DQN Ilearns in discrete action space
may lead to suboptimal scheduling strategies while the proposed
RS-ACDRL preserves all relevant information concerning the
entire continuous action space, and thus is equipped to learn
more cost-efficient energy management strategies. Although the
final electricity cost of DDPG and RS-ACDRL is the same,
the number of convergence episodes in DDPG is nearly 600
bigger than that of RS-ACDRL (mainly due to the employment
of RS strategy in RS-ACDRL), thereby resulting in the longest
computational time. These results demonstrate that beyond ob-
taining a lower overall electricity cost in regard to the DQN
method, the proposed RS-ACDRL algorithm also exhibits a
more beneficial computational performance, making it the most
valid methodology to address the examined residential energy
management problem.

V. CONCLUSION

In this article, an RS-ACDRL-based energy management
algorithm for various residential loads is proposed to obtain
real-time autonomous control policies, considering the uncer-
tainty and variability of electricity price, energy demand, and
user behavior. In particular, the proposed RS-ACDRL algorithm
leverages the actor—critic architecture by combining it with an
RS mechanism. Case studies involving real-world data verify
that the RS-ACDRL algorithm gains approximately 38.57%
lower electricity costs than that of the case without scheduling,
and further promotes the learning process and enhances the
policy quality via an RS mechanism compared with the DQN and
DDPG. Future work will involve enhancing the generalization
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capability of the presented algorithm to render it more robust to
exogenous uncertainties of power grid conditions (i.e., stochastic
renewable energy generation), going beyond the problem formu-
lated in the current work. In addition, the proposed algorithm
will also be extended in a multiagent setting, aiming to provide
optimal energy management strategies for multiple smart homes,
wherein all participants have learning capabilities and they may
cooperate or compete with each other.
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