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Abstract—Cloud computing is an emerging choice among
businesses all over the world since it provides flexible and
world wide Web computer capabilities as a customizable service.
Because of the dispersed nature of cloud services, security is
a major problem. Since it is extremely accessible to intruders
for any kind of assault, privacy and security are major hurdles
to the on-demand service’s success. A massive increase in
network traffic has opened the path for increasingly diffi-
cult and broad security vulnerabilities. The use of traditional
Intrusion Detection Systems (IDS) to prevent these attempts
has proven ineffective. Therefore, this paper proposes a novel
Network Intrusion Detection System (NIDS) based on a Machine
Learning (ML) model known as the Support Vector Machine
(SVM) and eXtreme Gradient Boosting (XGBoost) techniques.
Furthermore, the hyperparameter optimization technique based
on the Crow Search Algorithm is being utilized to optimize the
NIDS’ performance. Besides, the XGBoost-based feature selection
technique is used to improve the classification accuracy of NIDS’s
method. Finally, the performance of the proposed system is
evaluated using the NSL-KDD and UNR-IDD datasets, and the
experiment results show that it performs better than baselines
and has the potential to be used in modern NIDS.

Index Terms—Cloud computing, machine learning, network
intrusion detection, performance optimization.

I. INTRODUCTION

IN VIEW of the rising prevalence of the Internet in modern
society, there has been a greater need for items that can

connect to networks, and as a result, the issue of privacy
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and security has gained more prominence [1], [2]. The trust
issue in shared virtualization technology deployed in the
cloud network is the main obstacle in developing secured
decentralized applications [3]. The majority of reported intru-
sion cases have recently risen, exposing severe threats to
organizations, businesses, and people [4]. Distributed Denial
of Service (DDoS) and ransomware are some of the malicious
cyber-attacks that affect cloud-based networks [5], [6]. The
sophistication and complexity of networks are increased by
these attacks [7]. Due to this, data confidentiality, availability
and integrity are compromised. It is crucial to be able to
detect and respond to these kinds of threats that implement
essential mitigation as well as restrict any harm that affects
the cloud network [8]. Traditional approaches for network
security such as antivirus, firewall and access control are
insufficient to recognize new intrusions. So it is important
to adopt the next stage of protection. Thus, an Intrusion
Detection System (IDS) is known as the promising solution
to detect both known attacks as well as unknown threats [9].
It is developed to ensure system protection and can identify
abnormalities quickly. Moreover, it can also increase device
stability and protection by reacting and detecting a variety of
malicious behaviors [10], [11]. The IDS may be categorized
as Hybrid systems, Host-based or Network-based. Host-based
IDS (HIDS) examines and tracks internal device data for
unauthorized behavior, such as key system files, program
logs, and operating system audit reports [12]. Network-based
IDS (NIDS) tracks the network traffic for doubtful activities
and is deployed at multiple points or strategic points in the
network [13]. In the hybrid approach, the IDS can identify the
attacks from network or host sources [14]. Even if anomaly
detection systems are more effective at identifying unknown
attacks, they often generate a high-level false positive rate.

A misuse detection system can address this limitation,
which depends on particular attack patterns to differentiate
malicious activities from normal activities [15]. However, the
detection rules influence these systems directly. Therefore, the
learning speed of IDS and improving the detection accuracy
is a difficult task [16]. To overcome this, a Support Vector
Machine (SVM) based Network Intrusion Detection System
(NIDS) is proposed to detect malicious threats with high
accuracy, F-Score, Precision and Recall. Compared to other
learning methods such as Artificial Neural Networks (ANN),
Multi-Layer Perception and Naive Bayes, SVM is an efficient
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classification approach [17]. It is based on statistical learning
theory, which is commonly used to solve classification, pattern
and voice recognition problems. SVM can overcome the chal-
lenges of high dimensionality, nonlinearity and small samples
better than other classification approaches [18]. Hyperplanes
are used by the SVM classifier to distinguish various class
labels. SVM with kernel functions is used to solve the
nonlinear classification problems [19].

Unidentified network traffic information can be gathered
from various network sources, and machine learning tech-
niques can be employed to produce a high-quality description
of features from datasets. These characteristics can be utilized
for classification on a small, labeled traffic dataset that includes
both regular and abnormal traffic records. The traffic data for
the dataset with labels can be gathered within a restricted,
segregated, and secure network environment. Present methods
cannot be depended upon to maintain the required levels
of accuracy. Thus, it is necessary to have higher levels of
specificity, thoroughness, and comprehension in order to have
a more holistic and precise perspective. However, this carries
a range of financial, computational, and time-based expenses.

To achieve high accuracy, the intrusion detection approach
can be hybrid with nature-inspired algorithms such as harmony
search algorithm (HSA), simulated annealing (SA), particle
swarm optimization (PSO), Artificial Bee Colony algorithm
(ABC), Spider Monkey Optimization (SMO), etc. Because
these algorithms have the capability to decrease execution time
and improve prediction accuracy. Therefore, to optimize the
SVM parameters, the Crow Search Algorithm (CSA) is used
in the proposed approach called CSA-SVM.

The following are major contributions of this research work:
• Determine the best set of features in the NSL-KDD and

UNR-IDD dataset, which consists of both normal data
and the most recent and frequent attacks. The purpose
of this study is to utilise the XGBoost algorithm and
identify a specific set of features that would enhance the
performance of the detection mechanism.

• Optimize the Kernel parameters of the SVM classifier by
employing the Crow Search Algorithm to maximise the
rate of detecting intrusions.

• Evaluate the performance to test the proposed approach
using two network datasets named NSL-KDD and
UNR-IDD. The experimental results are employed to
determine its effectiveness as compared to state-of-the-art
approaches.

The remainder of the paper is organized as follows: In
Section II, the details of earlier approaches are illustrated and
deal with a problem statement. In Section III, the complete
details of the proposed model are illustrated. In Section IV,
the experimental setup is explained in detail. Section V deals
with the analysis of the results. Finally, Section VI concludes
the paper.

II. RELATED WORK

IDS is among the cloud security industry’s most challenging
areas. Viruses, worms, password cracking, denial of service,
scanning, and malware code insertion are all becoming more

widespread in the cloud. If not identified promptly, these
assaults endanger the company’s image and result in financial
damage. Many scholars have presented numerous approaches
to identify an attack in cloud environments in the past.
The Oppositional Crow Search Algorithm (OCSA) based
attack detection was conducted by [20]. To detect a DoS
attack, Opposition Based Learning (OBL) and Crow Search
Algorithm (CSA) were integrated. This approach includes
two sections. In Section I, OCSA-based feature selection
was conducted. In the second stage, the classification pro-
cess was accompanied by the use of a Recurrent Neural
Network (RNN) classifier. The authors used a benchmark
dataset to validate the suggested technique. To detect DoS
attacks, [21] suggested a rule-based classification system in
cloud networks. The ranking and scoring algorithms were
used for feature selection. Then rule-based classification algo-
rithm was implemented as a classifier which is based on
expert knowledge. For performance evaluation, 5000 attack
instances were selected and they are split into 5 datasets.
The existing algorithms named Naive Bayes, Multilayer per-
ceptron, SVM, and Decision tree were used for performance
comparison. The combination of various machine learning
approaches was suggested by [22] to develop the hybrid
IDS. Initially, the normalization and transformation were exe-
cuted. Then, the classification with different machine learning
approaches was conducted. The performance evaluation was
carried out based on the Matthews Correlation Coefficient
(MCC), False Positive Rate, True Positive Rate, F-measure
and accuracy. For intrusion detection, two approaches were
combined by [23]. It dealt with the packet scrutinization
algorithm and Normalized K-means clustering algorithm with
RNN (NK-RNN) approach. To examine the packets, a packet
scrutinization algorithm was used while the NK-RNN was
used for Classification. Moreover, for the benefit of cloud
users who need to access cloud data a one-time signature
approach was suggested to protect themselves from hackers.
A combination of SVM with a fuzzy c means clustering
(FCM) was presented by [24] for all types of attacks. For
performance assessment, the NSL-KDD dataset and some
state-of-art techniques were used with the performance metrics
named F1-score, Recall, Precision, True Positive (TP) rate,
False Negative (FN) rate, Incorrect Classification rate and
Accuracy. Taj et al. [25] developed an IDS that integrates
machine learning and data mining techniques. Initially, they
conducted the data preparation and pre-processing. Then J48
Classifier, OneR Classifier, Naïve Bayes and Hoeffding Tree
were used as the classifiers. To classify data, a Pre-classified
dataset was used. Finally, the author concluded that, the J48
classifier has outperformed better efficiency than the other
classifiers. Devan and Khare [26] have presented a DNN-based
classification approach for IDS. Initially, they performed nor-
malization and then the XGBoost technique was implemented
for feature selection. For the classification process, Deep
Neural Network (DNN) was employed. During the training
process of DNN, the Adam optimizer is used to maximize the
learning rate. For performance assessment, some state-of-the-
art techniques were utilized. To detect intrusion, Hajimirzaei
and Navimipour [27] suggested a technique based on Artificial
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Bee Colony (ABC), Fuzzy clustering algorithms, and Multi-
Layer Perceptron (MLP) network. To create training subsets, a
fuzzy clustering approach was used. ABC algorithm was used
for network training. It optimizes the bias and linkage weights
of the MLP. Finally, the attacks were classified by the MLP
network. For performance evaluation, Mean absolute error
(MAE), kappa statistic, and root mean square error (RMSE)
were utilized. Tummalapalli and Chakravarthy [28] presented
the Gravitational Group Search-based Support Vector Neural
Network (GG-SVNN) classifier for attack detection. For
clustering the nodes, the Bayesian fuzzy clustering tech-
nique was utilized. For classification, the authors combine
the Gravitational Search Algorithm (GSA) and the group
search optimizer (GSO). They used the KDD cup dataset to
evaluate the suggested approach. For performance comparison,
K-means clustering with Neural Networks (NN), Support
Vector Neural Networks (SVNN) with Fuzzy c-means (FCM)
and Fuzzy Clustering-based Neural Networks were imple-
mented. A Machine Learning (ML)-based system has been
developed in [29] to monitor DDoS attacks in a cloud comput-
ing environment. To design the system Vulnerability Enhanced
Learning Machine (VELM) was used as a classifier. The same
training data set was used for all Extreme Learning Machines
(ELMs) in the VELM for training. The output is calculated and
it is applied to the sample of each ELM during the detection
of attack. At last, the majority voting was taken by using
the samples. Two benchmark datasets were used to evaluate
the performance. A Hybrid Kernel Extreme Learning Machine
(HKELM) model based on the hybrid kernel function was
presented [30] to detect various attacks accurately. To enhance
the parameters of HKELM, the combination of the Differential
Evolution (DE) algorithm and GSA was applied that improve
the global optimization during prediction attacks. For feature
extraction and dimensionality reduction, the Kernel Principal
Component Analysis was implemented. Thus, a combination
of Kernel Principal Component Analysis (KPCA), HKELM
and DE-GSA was obtained for anomaly detection. Shyla and
Sujatha [31] have presented a gravitational search algorithm-
based Fuzzy Inference System (FIS) for detecting the attacks.
To enhance the parameters of Fuzzy, GSA was introduced.
The received packets were pre-processed and clustered by
Possibilistic FCM (PFCM) which monitors the noise of FCM.
The clustered packets were provided to the tuneable fuzzy
inference framework after the clustering step. The fuzzy score
monitors the usual and anomalous packets. GSA performs the
training by improving the whole fuzzy framework. As a result,
four kinds of abnormal data are identified: DoS, Remote to
Local (R2L), User to Root (U2R) and Probe. The process
of data pre-processing Probability Mass Function (PMF) and
Min-Max methods was implemented for simplification in
Deep Belief Networks (DBNs) [32]. Additionally, non-mean
Gaussian distribution and Kullback-Leibler (KL) divergence,
based on a combined sparsity penalty, were implemented
into the learning phase function of the model. - During
this implementation, the sparse constraint is obtained from
sparse distribution, which induced the sparse layer of the
hidden layer neurons. This will avoid feature homogeneity and
network overfitting. On comparing with other IDS techniques

the performance of false positive rate and accuracy performs
better results. Quantum-Behaved Particle Swarm Optimization
and SVM (QPSO-SVM) model was introduced in [33] for
intrusion detection to enhance the parameters of SVM. It
enhanced the outcomes of their framework. In linear and
nonlinear classification problems, this method changes the
parameter values to obtain the best-separating hyperplane.
From the analysis of the literature review, it is observed that
the previously proposed models have their own disadvantages
and advantages which are listed below in Table I.

Classification methods in machine learning models take a
long time because of high-dimensional features. Since the
dataset used in this study has a large number of dimensions, an
efficient dimensionality reduction mechanism was required to
reduce the classifier’s workload. Furthermore, a features selec-
tion mechanism will assist the classifier to choose the most
important attributes and remove those that have a negative
effect on the efficiency of the classifier. This prompted us to
generate a framework capable of selecting the most appropriate
attributes from the IDS dataset. In addition to that, an excessive
volume of data leads to an increase in false alarm reports of
intrusion and reduces the accuracy of detection. This is one of
the major issues when the system encounters unknown attacks.
We have used machine learning algorithms like XGBoost and
SVM to meet the aforementioned challenges. The proposed
model’s efficiency is then analyzed by comparing it with other
techniques.

III. METHODOLOGY

Cloud computing is a platform that allows users to share
resources, services, and information. It gives companies a
flexible framework that makes computing more efficient. The
adoption of cloud computing environments by a wide range
of organizations has brought with it a slew of issues and
challenges. They use servers as a service on the Internet, so
issues like user privacy, data leakage, and authentication are
still major concerns in the cloud environment [27]. The cloud
environment is a collection of resources for providing cloud
users with on-demand administrations. The Web provides
access to the cloud environment, making data stored on the
cloud more accessible to both intrinsic and extrinsic attackers.
Since every typical client works in the cloud, there’s a high
possibility that an attack will occur. To identify data that has
been compromised, several IDS have been designed [34].

The IDS is critical to the network’s security. IDS, in
general, collects incoming data across the network. These
data are transferred to a pre-processing system, which filters
out noise and substitutes attributes that are unnecessary or
misconstrued [35], [36]. The data that is pre-processed are
analyzed and classified according to severity. If it is a normal
record, no additional adjustments are necessary; if not, it is
directed to reporting generation, which generates an alert. The
complexity of the issue is used to trigger alerts. False negative,
false positive, true negative and true positive detection reports
are provided by the IDS system. True positive outcomes occur
when an actual threat is detected and the IDS responds by
generating a warning. When no attack occurs and the IDS
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TABLE I
COMPARISON OF EXISTING APPROACHES

does not generate the alert, this is referred to as a true
negative [37]. False positive, also known as false alarm, is a
major flaw in the system that happens when an IDS detects
no attack. When an IDS misses a prospective or true attack,
it is called a false negative. It leads to false-negative rates
or low detection rates, if these technologies don’t achieve the
expected results [38], [39]. This issue can be solved through
an effective attack detection system for cloud infrastructure,
which is the focus of our research.

Our proposed system consists of three modules, namely,
(i) pre-processing (ii) XGBoost for feature selection and
(iii) intrusion detection using SVM classifier. Initially, we
pre-process the features for further processing. After pre-
processing, the normalization method is used to convert
the values of numeric columns in a dataset to a similar
scale without distorting variations in value ranges. Then we
select the important features using the XGBoost algorithm
to increase in accuracy of classification. The whole process
is split into two stages, such as testing and training. Later,
selected features are classified by a multi-class SVM classifier.
Adding to this, optimization of classifier parameters is done
by the Crow Search Algorithm. Fig. 1 displays the overall idea
of the proposed framework. Pre-processing, Feature Selection
and Classifier are the three steps to be followed.

Here, we use the NSL-KDD (Network Security Laboratory
- Knowledge Discovery in Databases) and UNR-IDD
(University of Neveda-Reno Intrusion Detection) datasets.
From the NSL-KDD dataset, 41 features are classified as
normal or specific attack types and are categorized into four
groups, namely, host-based traffic features, time-based traffic
features, content features and basic features. Feature values
in the dataset can be in the form of Symbolic, Discrete and

Fig. 1. Proposed System Architecture for Intrusion Detection.

Continuous values. The UNR-IDD dataset has 29 features. The
characteristics of the datasets can be categorized as follows,

• Without inspecting the packet, basic features may be
derived from a TCP/IP channel.

• The features in the same Host Traffic are evaluated in a
2-second window, and only when the current connection
is the same as that of the host.

• In the Same Service Traffic Features, they are evaluated
in a 2-second window, and only those connections with
the same service are considered.

• Content features are used to trace the suspicious activity.
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A. Data Pre-Processing

The dataset has undergone two operations such as trans-
formation and normalization. This process is used to
remove redundant data and produces better output results.
So that a more optimized dataset is extracted in this
case.

B. Transformation

In the dataset, the symbolic attributes are transformed into
numerical ones. These attributes in the form of Service, flag
and protocol in the dataset are converted. Thus the dataset is
completely composed of numerical and is further processed for
classification operations. Protocols (udp changed to 1, icmp to
2 and tcp to 3) flag and service attributes have been converted
to numerical values.

C. Normalization

Normalization of datasets is an essential pre-processing
technique. It is used for dataset training and testing. Min-
Max and Gaussian are the most widely known Normalization
methods. In this case, we have used the Min-Max nor-
malization approach. The minimum and maximum values
in a group are used in this process. Additional data are
normalized to these values. The main goal of this is to
set the data with a minimum value of 0 and a maximum
value of 1. The formula for calculating the new value is as
follows:

D′ = D − Dmin

Dmax − Dmin
X[newmin − newmax] + newmin. (1)

D. Feature Selection Using XGBoost Model

The main intention of the selection of features is to find
the best features in the data set. Data can be classified by
machine learning algorithms into a collection of class features
and goals. To overcome the problem of reducing irrelevant
and unnecessary variables, various techniques have been
developed. Feature selection (variable elimination) reduces
computing needs, reduces dimensional curse effects, helps
understand the data and improves the performance.

This paper focuses on the XGBoost technique for feature
selection. The enhancing technique Xtreme gradient boosting
(XGBoost) is a part of the ensemble-based method. The
XGBoost algorithm has been known as a useful method
for optimizing the gradient boosting algorithm by avoiding
overfitting issues and eliminating missing values by paral-
lel processing. Because of its performance and scalability,
XGBoost is getting popular. Using gradient-boosted decision
trees, it was designed specifically for speed and reliability.
The technique is very effective in terms of computing time
and memory use. It can handle missing values or be Sparse
Aware, enhances parallel tree construction, and has the unique
ability to boost data that has already been added to the
trained model (Continued Training). XGBoost model has
been widely known for its performance in various machine
learning and data mining challenges. Thus, the XGBoost

feature importance score technique is employed for selecting
features. The prediction is done by the set of decision trees,

y′
i =

m∑

m=1

fk(xi), (2)

where prediction from a decision tree as y′
i, feature vector

x at the ith data point is denoted as fk, and the number of
decision trees is denoted as m. For training the model, a loss
function needs to be optimized. For binary classification, the
loss function is as follows,

L = − 1

N

N∑

i

[
yi log pi + (1 − yi) log(1 − pi)

]
. (3)

Regularization is a significant component of the XGBoost
framework and is formulated as:

� = γ T + 1

2
λ

T∑

j=1

wj2 , (4)

where the score of jth leaf is denoted by wj2 and the number
of leaves is denoted by T . The object of the model is specified
as follows,

obj = L + �. (5)

To optimize the objective function in XGBoost, the gradient
descent order employs the variance and mean, which is
expressed as:

obj(t) =
n∑

i=1

[
gift(xi) + 1

2
hif

2
t (xi)

]
+ �(ft). (6)

To test the accuracy of the XGBoost Algorithm, feature
selection is important. For this purpose future important score
is used experimented by multiple thresholds. The function
importance score basically permits evaluating every subset of
importance features for each input variable. The test begins
with the entire features and ends up with a subset of the
most relevant ones. The selected features are further trained
by the SVM Algorithm. The basic structure of the XGBoost
algorithm is shown in Fig. 2.

E. SVM Classification Mechanism

The SVM framework can be simplified as a method for
determining the best hyperplane which is used as the two-class
separator. In SVM, discrimination borders or the additional
line may be reduced to two class members, +1 and 1.
A margin is specified as the shortest distance between the
hyperplane and the nearest pattern of each class. The closest
pattern is used to generate the support vector. Thus, the
identification of the best hyperplane position is said to be at
the core of the SVM algorithm. They’re common in security
software like network anomaly detection. Every data point
in n-dimensional space is plotted in this algorithm. After
determining the value of a specific coordinate, classification
is carried out by locating the hyperplane that best separates
the classes. Two parameters, Cost and Gamma, are essential in
classification. Gamma is a parameter that controls the impact

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on January 04,2025 at 05:03:54 UTC from IEEE Xplore.  Restrictions apply. 



7454 IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, VOL. 70, NO. 4, NOVEMBER 2024

Fig. 2. Structure of XGBoost.

Algorithm 1 Feature Selection
Require: Input: dataset.

1: Pre-processing.
2: Normalization using the min-max method in Eq. (1).
3: For selecting features, the XGBoost feature importance

score is implemented.
4: Design Support Vector classifier using the feature set with

XGBoost chosen in Step 3.
5: Dataset Training and Testing.
6: Design SVM Model: SVMClassification =

Train_SVM(Normalized_data, Feature_Set).

of training examples on the newly created model. Moreover,
the Cost parameter determines the cost of misclassification on
training examples.

The aim of ε-SVM classification is to find a function f (t)
from the attained yi target for the entire training data that has
at most ε deviation. The ε-insensitive loss function is:

we choose

{
Normal, if f (x) ≥ 0,

Anomaly, otherwise.
(7)

e(f (t) − y) =
{

0, if |f (t) − y| ≤ ε,

|f (t) − y| − ε, otherwise.
(8)

Simply by mapping the training data φ : t ∈ Rn → F into
feature space F of high dimension, Nonlinear SVM regression
is obtained. The following expression for f (t) is

f (t) = w · t = b. (9)

In feature space F, the best fitting function is estimated as
follows:

f (t) = w′ · φ(t) + b. (10)

The term “flatness” refers to the ability to seek out. The issue
is formalized by convex optimization issue by the following
equation:

min
1

2
||w||2 + C

P∑

i=1

(
ξi + ξ∗

i

)
, (11)

s.t. yi − (
w′φ(ti) + b

) ≤ ε − ξi, (12)(
w′φ(ti) + b

) − yi ≤ ε − ξi, (13)

ξi, ξ
∗
i ≥ 0, i = 1, 2, . . . , p; C > 0, (14)

where the penalty factor C is regularization consistent, ξ∗
i and

ξi denotes slack factors, ε indicates the tube size of SVM. User
assesses ε and C based on observation. The trade-off between
the flatness function and the number of deviations greater than
ε endured is determined by C. The sorted capacity has the
following format during the optimal solution,

min −1

2

P∑

i,j=1

(
αi − α∗

i

)(
αj − α∗

j

)(
xi.xj

)

+
P∑

i=1

yi
(
αi − α∗

i

) − ε

P∑

i=1

(
αi + α∗

i

)
, (15)

s.t.
P∑

i=1

(
αi − α∗

i

) = 0, (16)

0 ≤ αi, α
∗
i ≤ C, (17)

f (t) = sgn
P∑

i,j=1

(
αi − α∗

i

)
K

(
ti, tj

) + b, (18)

where Lagrange multiplier coefficients are denoted by αi and
α∗

i , which are determined by solving the dual optimization
problem in support vector learning. The training set, corre-
sponding to αi = α∗

i , is associated with the support vectors,
where K(ti, tj) denotes a kernel function. The optimization
process is initiated using the Karush-Kuhn-Tucker (KKT)
conditions. In this study, the Radial Basis Function (RBF)
kernel function is implemented and expressed as:

K(t, ti) = φ(t)Tφ(ti) = exp

[
−(||t − ti||)2

σ 2

]
, σ.ε.R. (19)

To achieve enhanced performance, many SVM parameters,
including the regularization parameter C must be selected, the
kernel parameter γ and Tube Size ε. In this research, CSA is
proposed to optimize these three parameters.

F. Crow Search Algorithm

Crows are known to be the cleverest among birds as they
have the widest brains in contrast to their body size. Based
on the brain-to-body ratio, a crow’s brain is slightly less.
There are numerous examples of crows’ brilliance. They can
recognize each other’s faces and alert each other when an
intruder approaches. Moreover, they can connect in powerful
ways and remember where their food was hidden for months.
They keep an eye on various birds and follow them secretly to
find where they store the food. They steal the food when the
birds leave their location. When a crow performs stealing, it
may take precautions, like shifting the hiding places to avoid
becoming a suspect in the future. They use their intelligence
of being such a thief to predict thief activity and determine
the safest way to protect their food from being looted. The
following are the principles of Crow Search Algorithm,

• They live in groups.
• They can recall the position of their hiding spots.
• They swam one up to another to steal.
• They guard their hideouts against theft by probability.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on January 04,2025 at 05:03:54 UTC from IEEE Xplore.  Restrictions apply. 



SAMRIYA et al.: MACHINE LEARNING-BASED NETWORK INTRUSION DETECTION OPTIMIZATION 7455

G. Mathematical Model for Crow Search Algorithm

Consider that there is an N-dimensional environment with
several crows. C denotes the group size and the crow’s position
i (iteration) at the time, iter in the environment is expressed
as:

Nm,iter+1 = (p = 1, 2, . . . , C; iter = 1, 2, . . . , itermax), (20)

where Nm,iter = 	Nm,iter
1 , Nm,iter

2 , . . . , Nm,iter
C 
, itermax, consid-

ered as maximum count of iterations. The location of their
hideouts was recorded in the memory of every crow. The
position of the crow’s secret place is defined as Suat iteration.
This is considered to be the best position that Crow u has
achieved. In each crow’s memory, the better location that it
achieved will be recorded. Till that it will look for a better
position in the search space. During iteration t, let’s assume
crow j needs to go to its secret location. In the meantime, crow
u tracks the secret location of crow v by following it. There
are two possible events in this case:

Scenario 1: Crow v is unaware that he is being tracked by
Crow u. As a matter of fact, crow u will reach the crow vs
hiding food location, and the Crow u‘s new location is updated
as:

Nm,iter+1 = Nm,iter + KjXfllm,iterX
(
Sn,iter − Vm,iter), (21)

where randomization kj has a uniform distribution between
0 and 1. During iteration flight length of crow u is denoted
as fllu,iter. It leads to local search when the value is less and
results in global search when the value is high

Scenario 2: In this, Crow v is aware that Crow u is
attempting to track it down. Thus, Crow v can trick Crow u
by switching to a better random position in the environment.
As a whole, scenarios 1 and 2 can be written in the following
form:

Nm,iter =
⎧
⎨

⎩

Nm,iter + KjXflln,iterX
(
Sn,iter − Vm,iter

)
,

if Kj ≥ AWPn,iter

a random location, otherwise
(22)

where AWPv,iter denotes crow v’s awareness probability during
iteration.

Step 1 (Parameter Initialization): The decision variables,
problem optimization and constraints are mentioned. Size of
flock (N), flight length (fl), awareness probability (AP) and
the maximum number of iterations (itermax) are the adjustable
parameters of CSA and are then evaluated.

Step 2 (Initialization of Crow’s Memory and Location):
As flock members, N crows are randomly placed in a
d-dimensional environment. Each crow denotes a feasible
solution, and dv stands for decision variables count.

Crows =

⎡

⎢⎢⎢⎣

n1
1 n1

2 · · · n1
dv

n2
1 n2

2 · · · n2
dv

...
...

...
...

nc
1 nc

2 · · · nc
dv

⎤

⎥⎥⎥⎦. (23)

Initialization of memory is done in every single Crow.
Since the crows have no knowledge in the first iteration, it is

considered that they have stored their foods in their original
state.

Crows =

⎡

⎢⎢⎢⎣

m1
1 m1

2 · · · m1
dv

m2
1 m2

2 · · · m2
dv

...
...

...
...

mc
1 mc

2 · · · mc
dv

⎤

⎥⎥⎥⎦ (24)

Step 3 (Examine the Fitness Function): The accuracy of
the position of each crow is calculated by integrating the
decision variable values into the fitness function. Ri represents
the position of crow i in a population of N crows. δm and
δn indicate the highest and lowest points of the AWPv,iter,
respectively.

AWPv,iter = δmin + (
δmax − δmin)Ri

N
. (25)

Step 4 (Create New Position): As shown below, every crow
creates a new place in the search space. Assume a Crow
(say, u) wants to create a new location. For that, one crow (say,
crow v) is randomly selected among the group and monitored
to locate the hidden place of the food that the crow (Sv) has
guarded. The Crow u‘s new location is expressed. Each crow
follows the same procedure.

Step 5 (Examine the Feasibility of New Locations): Examine
all possibilities for every crow to find a novel position. If a
crow’s new location is achievable, then it updates the location.
If not, they remain within their current location and will not
switch to the newly achieved position.

Step 6 (Evaluate New Locations for Fitness Function):
The fitness function’s value for each crow’s novel location is
assessed.

Step 7 (Memory Update of Crow): The updated crow’s
memory is evaluated as follows:

Su,iter =
{

Vu,iter, if f
(
Vu,iter+1

) ≥ f
(
Su,iter

)
,

Su,iter, otherwise.
(26)

where f () denotes the value of the fitness function. It updates
the memory of a new place when the value of the fitness
function of a new place is better than the fitness function’s
value of the memorized location.

Step 8 (Check the criteria for termination): Steps 4-7
are iteratively executed until the maximum iteration (itermax)

is reached. The process continues until the best memory
location, determined by the fitness function, is identified as
the optimized solution.

IV. EXPERIMENTAL SETUP

To evaluate the performance of the proposed approach, we
employed an Intel (R) Xeon (R) system with the Processor
E5-2640 (2.50 GHz) and 16 GB of primary memory for the
experimental simulation. By using MATLAB Simulink tool1

the performance is evaluated using the dataset named NSL-
KDD2 and UNR-IDD.3 Our proposed work is compared with
other Algorithms such as ANN, RNN and DNN. Fig. 3 shows
our proposed method based on SVM-CSA.

1https://in.mathworks.com/products/simulink.html?s_tid=hp_ff_p_simulink
2https://www.kaggle.com/datasets/hassan06/nslkdd
3https://www.tapadhirdas.com/unr-idd-dataset
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Algorithm 2 Proposed CSA-SVM Method
Require: Inputs for SVM: Normalised DataSet; for CRO:

Initialize the value for group size (C), itermax, fll and AWP
1: Determine the Solution’s fitness values.
2: Set iteration iter
3: Set best search value
4: while iter < itermax do
5: Update each data point and search the position using

levy flight
6: for u = 1 : C (each crow of the group) do
7: Pick any one crow to track (say,v)
8: Set a probability of Awareness
9: if Kj ≥ AWPn,iter then

Vm,iter = Vm,iter + KjXflln,iterX(Sn,iter − Vn,iter)

10: else
11: Nm,iter = a random position of search space
12: end if
13: Check the feasibility of new places, the new

location of the crows
14: if new position > current position then
15: Upgrade the memory of crows
16: end if
17: Assess the classifier’s parameters.
18: Proceed with step 6 when the recent objec-

tive value does not satisfy the termination condition.
Otherwise, continue the process.
Steps 6-15 are continued until finding the optimal solution

19: Obtain the SVM model’s optimal parameters C, ε

and σ .
20: This optimized SVM model is used as the intrusion

detection process
21: end for
22: end while

A. Dataset Description

The proposed model is used to classify the threats in the
network. The NSL-KDD and UNR-IDD datasets are used
to carry out the tests. As stated, the NSL-KDD has a high
dimensionality (41 features) that is used by the classifier, but
it does not provide a better result since it causes the model
to over-learn. In order to extract the optimum features, we
use XGBoost. The range was reduced from 41 to 15. Selected
features: 2, 3, 4, 5, 6, 8, 14, 23, 26, 29, 30, 35, 36, 37, 38.
Selected features from the UNR-IDD dataset are 4, 10, 14,
19, 23, 26 and 28. A complete description of both datasets is
shown in Table II.

B. Data Preprocessing

The CSA-SVM approach is employed in Data Preprocessing
to enhance classification results and minimise computing
time. The SVM is a widely used technology for dimension
reduction. While SVM enhances in extraction of highly effi-
cient features for representation, they are not effective for
discrimination purposes. The CSA-SVM algorithm utilises
an ideal projection matrix to transform a higher-dimensional
feature space into a lower-dimensional feature space. This

Fig. 3. The proposed SVM-CSA for Intrusion Detection.

TABLE II
NSL-KDD AND UNR-IDD FEATURES DESCRIPTION

transformation retains important information necessary for
data categorization. Initially, the process of data conversion
is undertaken to transform the complete data collection into
a standardised format. In the data filtering phase, Identify
and eliminate samples or variables with high corruption risks.
We usually define a threshold for missing data and eliminate
subjects or variables with inaccurate data. Log processing for
categorical and multi-valued discrete features involves con-
verting and processing numeric values. This function converts
symbolic and string values to numeric indexes. Index values
can be donated sequentially as 0, 1, etc. Normalising data
involves remapping all variables from one range to a single
range. It also addresses concerns like fluctuating distribution,
as certain algorithms compensate for range and distribution.
However, obstacles like out-of-range values can hinder the
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normalisation process. Consider removing such items from the
complete set if possible.

C. Feature Selection

NSL-KDD and UNR-IDD datasets contain 41 and 29
features respectively. Each feature contains a subset. To obtain
low false alarms and high detection rate with high accuracy
we are using these subsets. It is important to eliminate a
large number of features and to examine the efficacy of the
proposed approach. So, the selection of features is done. It may
select the samples to form a training and testing set. The class
distribution for the training set is as follows: normal - 10342,
DoS - 6223, Probe - 1479, R2L - 749. The distribution of test
results is as follows: the normal category has a count of 9711,
DoS has a count of 7458, Probe has a count of 4421, and
R2L has a count of 1094. This paper is based on the XGBoost
algorithm for the selection of features.

D. Classifier Training and Testing

By using, the XGBoost algorithm the feature selection
process is carried out and the set of features is trained by the
SVM classifier. This classifier will identify the normal and
attack classes. A testing set is then used to analyze the trained
model.

E. Multiclass SVM Classifier

To detect various threats in the network, Multi-SVM classi-
fiers are used. In this classification, the widely used techniques
are “one-against-one”, “one-against-all”, and “Binary tree”.

• The SVM classification algorithm of One-against-one
requires k(k − 1)/2 two-class SVM classifiers using all
the binary pair-wise combinations of the N classes. Each
classifier is trained on data from two classes.

• SVM classification Algorithm of One-against-all requires
k two-class SVM classifier. Here the samples are trained
with every classifier.

• Binary Tree classification it requires only k −1 two-class
SVM classifiers for a case of k classes.

Undoubtedly, using fewer two-class classifiers improves the
training and identification process. To design an intrusion
detection model, a ‘Binary tree’ Classification is adopted.

The present research used an SVM due to the machine’s
inherent benefits. SVMs have great efficacy in high-
dimensional domains, as exemplified in the scenario we
examined. Despite the disparity between the number of dimen-
sions and the number of samples, SVM nonetheless yields
successful outcomes. SVMs exhibit memory efficiency by
utilising a selected group of training points in the selection
function. SVMs exhibit versatility as the selection function can
be explicitly defined using various kernel features. Three SVM
classifiers are created to classify the four states depending on
the features of various intrusion detection styles. Actual state
and the three anomaly states such as Probe, DoS and R2L.
By using all samples that are trained in four states, SVM 1 is
trained to differentiate between the usual and abnormal states.
If the input sample of SVM 1 represents the usual state, then
fix the output value of SVM 1 as +1. If the input sample of

Fig. 4. Intrusion detection system using Multiclass SVM Approach.

SVM 2 denotes a Dos attack, then fix the output value of SVM
2 as +1 or else −1. DoS is classified from R2L and Probing
by training SVM 2. If the input sample of SVM 2 denotes
the DoS attack, then fix the output value for SVM 2 as +1 or
else −1. Probing and R2L are classified by training the SVM
3. If the input sample of SVM 3 denotes Probing, then fix
the output value for SVM 3 as +1 or else −1. As a result, a
Multi-type SVM classifier is constructed. These three Support
Vector Machines implement N-RBF as a Kernel function.
Their parameters C, σ and ε are improved by the Crow
Search Algorithm (CSA). The most fitting parameters are
those that have been adjusted to have the highest classification
accuracy. Figure 4, illustrates the working process of Multi
SVM classification.

F. Performance Metrics

The SVM approach optimizes performance metrics such
as False Alarm Rate, F-Measure, Precision, Detection Rate,
and Accuracy. Below is a detailed explanation of these
performance metrics.

1) Accuracy: It is the ratio of correctly predicted observa-
tion to the total observation. The accuracy ratio of 0 specifies
random guess and 1 specifies absolute accuracy.

A = TP + TN

TP + TN + FP + FN
, (27)

where TN denotes True Negative, FN denotes False Negative,
TP denotes True Positive and FP denotes False Positive.

2) Precision: It is the ratio of expected positive data
occurrences that are really positive and may be represented as:

P = TP

TP + FP
. (28)

3) F-Measure: The harmonic mean of recalls and precision
metrics is determined as F-Measure and can be expressed as:

F = 2PR

P + R
. (29)

4) Recall: It is the ratio of properly anticipated attack cases
to the attack class’s actual size, as determined by:

R = TP

TP + FN
. (30)

V. PERFORMANCE EVALUATION AND ANALYSIS

The key intentions of this section are as follows:
(i) Efficiency of the research by evaluating Accuracy, Recall,
Precision and F Score. (ii) The proposed technique is com-
pared with other existing Algorithms. Implementation is done
in MATLAB. We used the NSS-KDD and UNR-IDD datasets.
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Fig. 5. DoS attack detection performance analysis.

Fig. 6. PROBE attack detection performance analysis.

Fig. 7. R2L attack detection performance analysis.

A. Implementation of the Proposed Method With Different
Classifiers

The efficiency of various outcome parameters should be
assessed to evaluate the SVM-CSA technique, and it was
compared to other existing techniques such as DNN, RNN
and ANN. The performance evaluations are discussed in the
following order: DoS, Probe, and R2L attacks in Fig. 5,
Fig. 6 and Fig. 7, respectively, based on various classification
techniques. Table III, Table IV and Table V compare the
performance of the proposed model’s metrics to that of the
other classification model. In addition, Fig. 8 examines various
threats such as R2L, DoS and Probe detection accuracy. The
proposed model’s efficiency in detecting attacks is evaluated
for each classification of attack, such as DoS, R2L, and
Probe. In terms of parameters such as Accuracy, Precision,
F-Score and Recall, the proposed framework detects all attacks
better. For NSL-KDD and UNR-IDD datasets, the performance

TABLE III
PERFORMANCE COMPARISON OF PRECISION VALUES

TABLE IV
PERFORMANCE COMPARISON OF RECALL VALUES

TABLE V
PERFORMANCE COMPARISON OF F-SCORE VALUES

comparison of precision, recall, and f-score for different
models with 3 attack classes are shown in Table III, Table IV
and Table V, respectively. In recent times, DoS attacks have
been the most difficult attacks to manage in network security
domains in various fields.

The most important metrics used to assess the performance
of ML algorithms are recall, accuracy, F-Score and Precision.
Fig. 5 shows the analysis of a DoS attack utilising several
parameters such as precision, recall, and F-score. The values
obtained for the presented SVM-CSA model on the NSL-KDD
dataset are 98.01%, 98.56% and 97.68%; whereas the values
obtained utilizing the UNR-IDD dataset are 97.70%, 97.20%
and 98.01%. Fig. 6 shows the statistical graph that compares
the efficiency of the SVM-CSA classifier-based methodology
using the same metrics. In the case of Precision metric from
Table III, the classical SVM-CSA approach is revealed to be
slightly high on detecting for various classes such as DoS
(98.01% and 97.70%), Probe (77.03% and 89.67%) and R2L
(97.49% and 98.42%) when compared to other models. The
efficiency of the SVM-CSA classifiers in detecting various
attacks is shown in Figs. 3 and 4. Fig. 7 shows the analysis of
R2L attack detection, incorporating several characteristics such
as precision, recall, and F-score. The corresponding values for
these parameters are 97.49%, 43.03% and 56.83% utilizing the
NSL-KDD dataset; and 98.42%, 97.99% and 97.49% using
the UNR-IDD dataset for the SVM-CSA approach. Finally, it
is evident from the graph that the application of our proposed
method yields better performance than ANN, RNN and DNN.
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TABLE VI
PERFORMANCE COMPARISON OF ACCURACY

Fig. 8. Accuracy result of different classifiers.

Table IV shows how well the proposed model executed in
each attack class. Existing techniques were compared to the
proposed technique. When compared to RNN (87.62% and
95.65%), the proposed methods recall was far superior to
ANN (95.18% and 96.50%) and DNN (97.25% and 96.95%)
for DoS attack. When comparing for Probe class efficiency
performed is close to each but the highest is outperformed by
the proposed method (99.03%, 87.43%). When coming to R2L
related to Probe (43.03% and 97.99%), it is far less than the
detection of the other two attacks.

In the case of F-Score, as shown in Table V, it is observed
that all the attacks using CSA-SVM show higher values than
the ANN (Dos: 92.14%, Probe: 81.14% and R2L: 53.67%),
RNN (DoS: 93.48%, Probe: 47.66% and R2L: 33.90%) and
DNN (DoS: 96.87%, Probe: 71.87% and R2L: 47.96%) for the
NSL-KDD dataset. Using the UNR-IDD dataset the proposed
method shows the higher values from ANN (DoS: 97.35%,
Probe: 78.66% and R2L: 88.75%), RNN (DoS-96.85%, Probe:
70.33% and R2L: 87.45%) and DNN (DoS: 96.52%, Probe:
74.45% and R2L: 95.48%).

According to the information presented in Table VI, the
proposed method has an accuracy level of 99.58% for
NSL-KDD dataset and 99.79% accuracy level for UNR-IDD
dataset, while the other three procedures being examined
had accuracy levels of 79.45%, 74.28%, 82.16% for NSL-
KDD dataset and 90.96%, 73.30%, 77.75% for UNR-IDD
dataset. Based on the accuracy graph, it is evident that the
proposed technique, as presented in Fig. 8, shows an ongoing
pattern of improvement in accuracy. As compared to other
approaches, the experiments conducted using the Real-Time
Deep Extreme Learning Machine (RTS-DELM) technique [40]
is proving to be highly effective and obtaining 93.58% and
6.42% accuracy and miss rate collectively. The combination of
SVM and Aquila Optimizer is employed for intrusion detec-
tion. Comparative investigation demonstrates that the detection

accuracy in the wireless network is 98.76% [41]. Another
significant investigation in the field of intrusion detection util-
ising Genetic Algorithms (GA) is recorded in [42]. This study
developed a Genetic Programming-Support Vector Machine
(GPSVM) by effectively combining genetic programming and
SVM. The observed detection rates exhibited variability based
on the characteristics of the attacks. The GPSVM system
achieved a detection rate of 89.28%, demonstrating excep-
tional proficiency in identifying U2R attacks. By contrast, a
recent study described in [43] focused on the use of a real-
time sequential deep extreme learning system for intrusion
detection. The machine demonstrated its exceptional ability by
obtaining a peak accuracy rate of 93.58% during testing on
a combined dataset consisting of both NSL-KDD and KDD
CUP 99. This study highlights the importance of taking into
account various approaches and datasets while seeking effi-
cient intrusion detection algorithms. Among the latest studies
on intrusion detection with an accuracy of 93.58%, [44] stands
out as a valuable addition to the existing study landscape.
The detailed methods and findings of this work necessitate
a thorough analysis to extract valuable insights and prospec-
tive breakthroughs in the field. The extension of previous
work [45], an optimization technique using the Gravitational
Search Algorithm (GSA) to improve the Fuzzy Inference
System (FIS) for attack detection. Pre-processes packets,
clusters them through Possibilistic Fuzzy C-Means (PFCM),
and feeds them into an adaptable fuzzy inference framework.
The GSA enhances the fuzzy framework to detect DoS, R2L,
U2R, and Probe anomalous data. Applies Probability Mass
Function (PMF) and Min-Max data pre-processing approaches
in Deep Belief Networks (DBNs) to minimize the training
process function and prevent feature homogeneity and network
overloading. According to the previous related work, we can
say that our proposed work detects DoS, Probe, and R2L
attacks better than ANN, RNN, and DNN. The proposed
method outperforms other classifiers with 99.58% and 99.70%
accuracy for both NSL-KDD and UNR-IDD datasets. SVM-
CSA outperforms other approaches in precision, recall, and
F-score for DoS, Probe, and R2L attack classes. Thus, the
SVM-CSA model outperforms the previous research and
methods in accuracy, precision, recall, and F-score.

VI. CONCLUSION AND FUTURE WORK

In cloud computing, system security has become one of
the primary concerns due to the variety of cyberattacks on
networks. As a matter of fact, intrusion detection has become
a vital part of system security. In this paper, we proposed
XGBoost and SVM-CSA optimization techniques to detect
the threats in the cloud. XGBoost Algorithm is used for the
selection of features from the dataset followed by Support
Vector Machine for intrusion classification by using the NSL-
KDD and UNR-IDD datasets. Besides, SVM employs the
Crow Search Algorithm to optimize the Kernel Parameter
in order to maximize classification performance. The results
are evaluated by comparing our proposed technique with the
other existing algorithms such as RNN, DNN and ANN. This
analysis concludes that SVM achieves the highest percentage
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in Accuracy, Precision, Recall and F-Score. In the future
study, we intend to develop different classification algorithms
combined with optimization methods for reducing false alarm
rates while detecting attacks.
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