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Abstract—Identifying high-order Single Nucleotide Polymorphism (SNP) interactions of additive geneticmodel is crucial for detecting

complex disease gene-type and predicting pathogenic genes of various disorders.We present a novel framework for high-order gene

interactions detection, not directly identifying individual site, but based onDeep Learning (DL)method with Differential Privacy (DP),

termed asDeep-DPGI. Firstly, integrate loss functions including cross-entropy and focal loss function to train themodel parameters that

minimize the value of loss. Secondly, use the layer-wise relevance analysis method tomeasure relevance difference between neurons

weight and outputting results. Deep-DPGI disturbs neuronweight by adaptive noisingmechanism, protecting the safety of high-order gene

interactions and balancing the privacyand utility. Specifically, more noise is added to gradients of neurons that is less relevancewith the

outputs, less noise to gradients that more relevance. Finally, Experiments on simulated and real datasets demonstrate that Deep-DPGI not

only improve the power of high-order gene interactions detection in with marginal and withoutmarginal effect of complex diseasemodels,

but also prevent the disclosure of sensitive information effectively.

Index Terms—Deep learning, differential privacy, gene interaction detection, Genome-Wide Association Studies

Ç

1 INTRODUCTION

THE genetic basis of many complex diseases involves mul-
tiple genetic variants, such as Single Nucleotide Polymor-

phism (SNP), and complicated interactions between them [1].
Increasing evidence shows that genes do not function inde-
pendently. Rather, they crosstalk with each other, termed the
gene-gene interaction [2]. Detecting gene-gene interaction
refers to finding the combinations of multiple genes that
affect complex diseases to identify the pathogenic causes and
genetic mechanism of complex diseases in humans, which
has played an important role in Genome-Wide Association
Studies (GWAS) [3].

Methods for gene-gene interactions have been exten-
sively studied in the literature [4], [5], [6], [7], [8], [9]. Attila
et al. [4] proposed the exhaustive method, which required

scanning all possible combinations in detecting the epistatic
effects. While this method took comprehensiveness and
integrity into account, it did not balance the experimental
calculation burden and detection efficiency. Literature [5]
constructed the statistical-based approach to estimate the
gene combinations. This method could decrease the calcula-
tion burden but still could not increase the power of
detection. The swarm intelligence-based method has the
advantage of controllable time complexities, heuristic posi-
tive feedback search, and high detection power, researches
including FHSA-SED [6], IPSO [7], DECMDR [8], AntEpi-
Seeker [9] and so on. These methods based on non-
parametric did not assume specific parametric models.
Thus, they had certain advantages. However, they could
only detect gene interactions without marginal effect dis-
ease model or weak marginal effect and could not estimate
the interaction effect in most models, making result inter-
pretation challenging. Moreover, with the exponential
growth of the number of SNPs, the detection of K-order
gene interactions based on these methods, especially, when
K is greater than 3, is still unable to achieve high perfor-
mance due to the enormous computational burden.

Deep Learning (DL) has emerged from the advances
in high dimensional data by using sophisticated algo-
rithms and the power of parallel computation, solving
poor accuracy performance and overcoming the influ-
ence of computational burden [10]. However, most cur-
rent approaches based on DL do not seem suitable for
gene interaction because the objective of the K-order
gene detection process has a particularity [11]. More
importantly, the DL model training process will cause
the disclosure of private genetic information in the train-
ing data [12]. The previous study has shown that the
adversary can identify someone only by obtaining 30�80
SNP information [13]. Suppose that one adversary grabs
the 75 SNP information with the help of a repeat query
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attack from the published DL model for gene interaction.
He can predict the private and sensitive features of the
target individual based on the released model and some
background information about the target individual,
using the unknown, sensitive feature and model output.
Thus, publishing the DL model without privacy protec-
tion will increase the risk of private information leakage.

Consequently, it is urgent to develop a rigorous privacy-
preserving framework that not only resists the attack of
adversaries but also improves the accuracy of high-order
gene interactions. In this paper, we propose the high-order
gene interactions detection DL framework (Deep-DPGI)
based on Differential Privacy (DP). This framework first
identifies gene interaction combinations in the DL model
and sets multi-loss functions that are more suitable for
high-order site detection. Secondly, Deep-DPGI uses the
layer-wise relevance analysis method to measure the rele-
vant difference between neurons’ weight and outputs and
disturbs neuron weight by an adaptive noising mechanism
to protect the safety of high-order gene interactions, balanc-
ing privacy and utility. The main contributions of Deep-
DPGI are the following:

1) Analyze the particularity of the high-order gene
interaction process in the DL model, design and inte-
grate multi-loss functions to make sure that the
detecting process is more reasonable.

2) Propose the adaptive noising mechanism to pro-
tect the security of the whole identifying process
by layer-wise relevance analysis method to mea-
sure relevance difference between neurons weight
and outputting results, disturbing neuron weight.

3) According to the relevance analysis result, add more
noise to gradients of neurons that are less relevance
with the outputs, less noise to gradients that more
relevance, solving the imbalance between privacy
and utility.

The remainder of the paper is organized as follows. Sec-
tion 2 overviews the related literature and lists the prelimi-
naries of this paper, mainly including gene interaction,
deep learning, and differential privacy. In Section 3, we
introduce our proposed method in detail. The experimental
evaluations and results are discussed in Section 4. Finally,
Section 5 summarizes the paper.

2 PRELIMINARIES AND BACKGROUND

DL constructs the multi-layer structured network to learn
the internal development rules of data objects under unsu-
pervised conditions, which has improved training perfor-
mance. Based on this, this paper identifies high-order gene
interactions using DL. However, the training of DL requires
private and representative datasets, which contain sensitive
personal information probably. Ideally, this training process
will not disclose private information. In fact, one adversary
can steal sensitive information and infer the key feature by
constructing a model inversion attack, which will lead to
the disclosure of private information [14]. Therefore, inte-
grating privacy protection methods into DL methods is a
feasible approach to address privacy threats. This section
will introduce the definition of the differential privacy

theory, deep neural networks and the Layer-wise relevance
analysis algorithm in detail.

Given the dataset D ¼ fðX1; Y 1Þ; ðX2; Y 2Þ; . . . ; ðXn; Y nÞg
(X represents the SNP, and the Y is the class label of SNP
associating with disease), where Xi ¼ ðxi1; xi2; . . . ; xidÞ (xij

is the gene-type result of SNP). Our objective is to protect
the safety of D by an adaptive differential privacy mecha-
nism for deep neural network that takes Xi as input and
ensure the accuracy of output Y i to the greatest extent.
Table 1 summarizes the notations used throughout this
paper.

2.1 Deep Learning Concept

DL learns and extracts internal laws of datasets by multi-
layer networks that describe the potential relationships
between the inputs and outputs and has been one of the
most used machine learning technologies [15]. There are
multiple networks of deep learning frameworks, such as
Multi-Layer Perception (MLP) [16], Convolutional Neural
Network (CNN) [17], Recurrent Neural Network (RNN)
[18] and so on. Different networks are applied to solve dif-
ferent types of problems. Among these models, CNN is a
very common and representative model of deep learning
and is used in this paper. Specifically, CNN can share the
convolution kernel during layers, and there is no need to
select features manually on high-dimensional data process-
ing. The definition of CNN is shown as follows.

Definition 1 (Convolutional Neural Network) [17]. CNN gen-
erally consists of the input layer, convolution layer (also
called hidden layer), fully connected layer, and output
layer. CNN employs the notion of convolution that is not
matrix multiplication but a linear mathematical operation,
at least in one of the hidden layers. The contribution of con-
volution is to determine the feature maps. Given a three-
order SNP as input with a three-dimensional kernel K, the
outputting Y is expressed as follows:

TABLE 1
Summary of Notations of This Paper

Notations Description

GWAS Genome-Wide Association Studies
SNP Single Nucleotide Polymorphism
DL Deep Learning
DP Differential Privacy
CNN Convolutional Neural Network
D Input datasets
Xi The training samples
Y The output of Deep learning model
K Covolution kernal
t The epoch time of CNNmodel
M Randomized algorithm
fh1; h1; . . . ; hng Hidden layers number
e; p One neuron

Rl
eðXiÞ The relevance analysis result between

input and one neuron
Tp An affine transformation of neuron
fðpÞ The update parameter of each training layer
g Regularization parameter
u Learning rate
Zt Random Laplace noise
MAF Minor Allele Frequencies
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Y p; q; r½ � ¼ S �Kð Þ p; q; r½ �
¼
X
h

X
i

X
j

S p� h; q � i; r� j K� ½h; i; j½ � (1)

Where p; q; r represent three SNPs, respectively. The new
feature maps will be obtained by combining the input and
learned kernel. The non-linear activation function is used
for the convolved outputting.

Activation function ¼ 2

1þ e�2Y p;q;r½ � � 1 (2)

This function is the input in the pooling layer, and the acti-
vation function in the pooling layer is the SoftMax activation
function. SoftMax activation function computes the probabil-
ity for each class by interpreting its confidence value. The
total error of the output layer is calculated by using the
cross-entropy function as follows:

Error ¼ � 1

N

X
s

lnY �Y 0 þ ln 1�Yð Þ� 1�Y 0ð Þ� �
(3)

Where Y 0 is the desired output and N is the sample of
CNNmodel.

Then, the gradient optimization method is used to com-
pute the partial derivative of the cross-entropy loss function
to search the optimal parameters. The key parameters of the
CNNmodel are updated for every epoch from time t to tþ 1.

2.2. Related Work of Deep Learning in Gene
Interaction

There is no doubt that DL is a popular branch of machine
learning techniques. Research [19] extended the DL by pro-
posing the hybrid architecture DNN-RF to improve the preci-
sion to some extent. Li et al. [20] conducted the DL based on
clustering for the prediction of gene interactions detection,
termedDPEH.However, it did not validate algorithmperfor-
mance on real datasets, its actual availability is questionable,
and it was only suitable for small datasets. Although litera-
ture [21] showed the performance of its method based on a
convolution neural network in detecting two loci of hyperten-
sion data but still used the sorting method to pick out the top
20 relevant sites, which means that this method was a false
neural network intelligent method. Abdulaimma et al. [22]
proposed the framework using the DL to model the cumula-
tive effects of SNPs for the classification of Type 2 Diabetes.
After verification, the practicability and generality of this
method are poor. Wang et al. [23] studied the marginal epis-
tasis by using DL, which combines the one-dimensional
convolutional neural network and the Long-short Term
Memory. But the literature [24] concluded that the one-
dimensional CNN model was disadvantaged in predicting
complex sites. Deep learning in identifying SNP interactions
is yet to meet its potential achievements [22]. However, the
first drawback of DL methods is that they are highly special-
ized to a specific domain, and reassessment is needed to
tackle issues that do not pertain to that identical domain.
These models are unable to understand the expression of the
data that they are trained with, which is an issue while inter-
preting the results [25]. Then, these models do not really
apply to high-order gene Interactions. Finally, they do not

consider the security of input data that usually contain the
large amounts of private information of contributors during
DL training.

2.3 Differential Privacy Concept

Differential privacy is one promising strategy for data pri-
vacy protection and is usually integrated into machine
learning and DL algorithms to preserve the privacy of input
data [26], [27]. Indeed, differential privacy presents a reli-
able privacy guarantee to ensure that adversaries cannot
infer the inclusion or exclusion of records in the database,
even if they have information about all records other than
the target. The definition of it is shown as follows.
(�-Differential Privacy) [28]. Given two adjacent databases D1,
D2 2 D, the randomized algorithmM: D! R satisfies �-differ-
ential privacy, and if for any subset of output O � R, we have:

PrM D1ð Þ ¼ O½ � � e�PrM D2ð Þ ¼ O½ � (4)

Where � is privacy budget and is an important role in
affecting the privacy preserving intensity. � represents the
protection level of the randomized algorithm M can pro-
vide. In practice, the privacy budget � is always set to a
small value because the smaller the �, the stronger the pri-
vacy guarantee, and vice versa. � should be greater than 0,
however, although in �¼0 the algorithm can provide the
strongest guaranteed privacy for training data, but for any
adjacent datasets, there are two same probability distribu-
tion, and can not reflect any useful information about data.
Therefore, the research on the size design of � value has
always been a hot direction in the field of differential pri-
vacy. Actually, it is difficult to model utility and seek the
trade-off between private information and privacy.

2.4 Related Work of Differential Privacy in Deep
Learning

As literature [14], [48] demonstrated, deep neural network
model training data (especially some highly sensitive data,
such as biological or image data containing personal infor-
mation, etc.) has the risk of privacy information disclosure,
and privacy protection methods must be integrated during
the training. Differential Privacy has become one of the
most popular methods for preserving privacy for all records
due to it has strict mathematical theory. Many scholars have
carried out research on differential privacy protection for
deep learning. Xia et al. proposed the gradient-based differ-
ential privacy optimizer in [30], which simply combined
random sampling, gradient clipping, gradient based on ran-
dom perturbation and advanced privacy budget statistics
methods. Gati et al. [31] expressed the data by tensor and
disturbed the tensor matrix to ensure differential privacy-
preserving. Chang et al. [32] focused on the privacy of neu-
ral networks and proposed a scheme for solving the privacy
disclosure of centralized and distributed by analyzing the
privacy vulnerabilities of the training model. Hao et al. [33]
proposed an efficient and privacy-protection joint deep-
learning protocol by combining homomorphic encryption
with differential privacy. It assumed that third-party servers
are honest and secure, but this assumption was unreason-
able. Xu et al. [34] studied the secure framework based on
differential privacy for edge computing that injected noise
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into learned features achieving the purpose of obfuscating
sensitive information. Liu et al. [35] presented the privacy-
protected generative adversary-network model by adding
noise to the training gradient and balanced privacy and util-
ity by controlling the number of training iterations. Cheng
et al. [36] proposed a new algorithm, averaging noise sto-
chastic Gradient Descent. However, Yang et al. [37] pointed
out that the generally differential privacy SGD algorithm
(DP-SGD) added Gaussian noise of a fixed level would
cause the accuracy of the model to decrease slowly with the
increase in training times. Hoefer et al. [38] concluded that
the classification performance would decrease with the
development of the pre-training model in differential pri-
vate data classification under dynamic pre-training model,
especially when the datasets themselves were not consid-
ered. Zhang et al. [39] demonstrated that deep neural net-
work with standard differential privacy would not provide
quantifiable protection to fend off model reversal attacks by
reconstructing the training data from the existing model
reversal attack. Wang et al. [40] embed differential privacy
into specific layers and learning processes to achieve
domain adaptation privacy guarantees. Gong et al. [41]
aimed to bridge the gap between private and non-private
models and proposed the general differential private deep
neural network learning framework based on the back
propagation algorithm. Although this framework improved
data availability to some extent, it still led to excessive back
propagation gradient and algorithm time complexity.

2.5 Layer-Wise Relevance Analysis Concept

Layer-wise relevance analysis is a classical algorithm that
calculates the relevance between each input feature xij and
output FxiðOÞ by decomposing the neurons of preceding
layers. The definition and process of relevance analysis is
illustrated in the following.
(Layer-wise relevance analysis) [42]. l hidden layers h1; h2;
. . . ; hl, given RðlÞe ðxiÞ is the relevance result between input xi and
neuron e at layer l. Define the process is Rðl�1;lÞe p ðxiÞ that neuron e
send the message to p. The total relevance of neurons is:

R l�1ð Þ
e xið Þ ¼

X
p2hi

R l�1;lð Þ
e p xið Þ (5)

The decomposing of layer-wise relevance analysis is:

R l�1;lð Þ
e p xið Þ ¼

Tep

TpþuR
lð Þ
e xið Þ; T p 	 0

Tep

Tp�uR
lð Þ
e xið Þ; T p < 0

(
(6)

u( u 	 0 ) is the predefined stabilizer to resolve the issue of
the unboundedness of RðlÞe ðxiÞ. Where Tp is an affine trans-
formation of neuron e, and it can be defined as:

Tep ¼ vevep (7)

Tp ¼
X
e

T ep þ up (8)

Where ve is the value of neuron e, vep is the weight
between neuron e and p. up is the basic term.

In the last hidden layer, for the output variable o, the rel-
evance is calculated as follows:

R lð Þ
p xið Þ ¼

Tpo

Toþu fxi vð Þ; T o 	 0
Teo
To�u fxi vð Þ; TO < 0

(
(9)

3 THE PROPOSED METHOD

At present, epistatic detection studies still focus on identify-
ing 2-order gene interactions. Moreover, few researchers
have paid attention to the security of genome-wide associa-
tion studies analysis based on gene interactions. To remedy
these research gaps, this paper proposes a secure high-order
gene interactions detection framework (Deep-DPGI). This
framework provides privacy guarantee for deep neural net-
works based on relevance analysis for high-order gene
interactions, which not only preserves the private informa-
tion in the training data effectively but also keeps the utility
of the framework by adaptive disturbance mechanism to
gradients. As shown in Fig. 1, Deep-DPGI consists of five
steps, including standardizing input data, determining
output requirements, CNN training, correlation analysis,
and result output. The layer-by-layer correlation analysis
method is integrated into the output layer of the convolu-
tional neural network, and the correlation between
weighted correlation neurons and classification results is
analyzed mainly through back propagation. Small noise is
allocated to the parameters of neurons with strong correla-
tion, and large noise is allocated to those with weak correla-
tion. In addition, the size of the noise range is determined
by the Laplace distribution of the data and the results of the
correlation analysis. The purpose of this is to obtain the
trade-off between privacy and availability and avoid adding
too much noise and low data availability, and vice versa.
The definition of high-order gene interaction, specific prob-
lem definition, and method elaboration will be presented in
the following sections.

Fig. 1. Flow diagram of detecting high-order gene interaction by deep
learning in Deep-DPGI framework.
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3.1 The Definition of High-Order Gene Interaction

The scientific community generally believes that there are
almost no phenotype characteristics of an individual deter-
mined only by a single gene. Thus gene-gene (or gene-envi-
ronment interaction) to explain individual characteristics has
important theoretical and practical significance and makes
the study of gene-gene are more andmore attention. Identify-
ing gene-gene interactions consists of three steps: sequencing
of contributed gene data, standard SNP data, and association
analysis. The process of high-order gene interaction is defined
as the combinations of at least k SNPs affecting phenotype or
disease genes. We express the gene interactions process as
R ¼ fS;G;Ag, where S ¼ fS1; S2; . . . ; Sig represent SNP typ-
ing, G ¼ fG11;G12; . . . ; Gijg represent interaction between Gi

andGj corresponding genes, andA ¼ fA1; A2; . . . ; Aig repre-
sented association results. The k-order gene interaction repre-
sents the recognition of SNP interaction results of the order of
3n. Among them, when Gmn > u, Gmn is called the result
with the main effect, and when Gab < u, Gab is the result of
the edge effect.

3.2 Problem Statement

Let the set of gene variablesX ¼ fX1; X2; . . . ; Xig includes
S ¼ fS1; S2; . . . ; Sjg SNP marker for N individuals. For
high-order gene interaction detection algorithms, the tempo-
ral OðfðnÞÞ and spatial SðnÞ complexity of the algorithm
increases exponentially in 3n detection demand. Convolu-
tional neural networks reduce complexity and improve
detection efficiency by constructing multiple convolutional
and pooling layers. But there are three ways in which neural
network training data may reveal genetic privacy. Firstly, in
the data input phase, one attacker A initiates AK ¼ fAK1;
AK2; . . . ; AKngattacks, including repeated queries and so
on, obtaining about lots of SNPs information I1; I2; . . . In,
and combining background knowledge KN ¼ fKN1; KN1;
. . . ; KN1g to directly locate in the individual. Secondly, in
the data analysis stage, A launches AK ¼ fAK1; AK2; . . . ;
AKng attacks, includingmodel inversion attack and so on, to
obtain the T gradient, vweight, u learning rate and other key
parameters related to the original input data. Amay achieve
sensitive information by combining these parameters and
KN ¼ fKN1; KN1; . . . ; KN1g. Finally, in the outputting
results stage, the privacy disclosure process is like that of the
input scenario. For the training model without integrated
privacy protection methods, the output of the model is
directly related to the original data. WhenA obtains a certain
number of output results, he may locate an individual based

on the KN ¼ fKN1; KN1; . . . ; KN1g to obtain sensitive
information of the individual.

As shown in Fig. 2, this paper proposes a method to pro-
tect the safety of the CNN framework, termed Deep-DPGI.
The method determines the importance of each neuron by
analyzing the correlation between each layer of neuron and
the result during back-propagation, providing each neuron
with varying degrees of privacy protection. Next, we will
elaborate on this method.

3.3 Design Integrated Loss Functions

The loss function is an important part of unsupervised
machine learning. A good loss function is critical for the suc-
cessful training of model parameters because it is possible to
determine parameters that minimize themean value of losses
for a given training set [43]. The detection efficiency of the
current deep learning model for epistatic detection is low
due to the use of the learner for multiple repeat training
when detecting multi-order gene interactions. In this paper,
we integrate the commonly used cross-entropy and the novel
focal loss function [44], which is originally used to resolve the
text classification problem. In order to make it suitable for the
epistatic detection process, we have optimized and improved
it, and the specific definition is as follows.

Cross entropy loss also called logarithmic loss, is the
most commonly used classification loss function in neural
networks. The outputting prediction is always between 0
and 1 and is interpreted as a probability, which is the maxi-
mization of logarithmic likelihood between the training
data and the corresponding data condition. As the predicted
probability deviates from the actual label, the cross entropy
loss increases. The definition is shown in

Le
dY i; Y i

� �
¼ �

X
i

Y ilog cY i

� �
(10)

Define the fp to express the probability for the classification:

fp ¼ p if Y ¼ 1
1� p otherwise

�
(11)

To balance the classification in Equation (11), focal Loss
introduces a regulating factor ð1� fpÞb, b 	 0. In this paper,
the b in the specific DL framework can be obtained by
reversing the frequency and by the parameter cross valida-
tion process. Specifically, the focal loss function is defined
as follows:

Fig. 2. The architecture of Deep-DPGI proposed in this paper.

ZHANG ETAL.: SECURE HIGH-ORDER GENE INTERACTION DETECTION ALGORITHM BASED ON DEEP NEURAL NETWORK 623

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on August 11,2024 at 05:02:05 UTC from IEEE Xplore.  Restrictions apply. 



Le fp

� � ¼ �ð1� fpÞblog fp

� �
(12)

Deep-DPGI searches for high-order gene interaction
results under the cross-entropy and focal function. The two
classifiers first search for different epistatic genes and then
correlate epistatic combinations to find high-order interac-
tion results. The loss function of this paper is defined as
follows:

L ¼ min
xi;xj

XN
i¼1

Xv
j¼1

b2
i;jLi;j Y i;j; Ŷ i;j

� �
(13)

3.4 Distorting Neuron Weight Based on Relevance
Analysis

In centralized analysis scenarios, sensitive information
will be disclosed in the training and sharing stage of epi-
static detection research based on machine learning. Dif-
ferential privacy noise perturbation methods that are
generally integrated into machine learning include per-
turbing output result, perturbing gradient, perturbing
objective function coefficient and so on. However, these
methods ignore the actual requirement of the data and
add inappropriate noise, resulting in poor availability or
insufficient protection degree. This paper adds appropri-
ate Laplace noise to the training gradient of neurons based
on analyzing the correlation between each neuron layer
and the output layer. The core theoretical operation pro-
cess is shown in Fig. 3. Relevance analysis begins after for-
ward propagation and backward propagation finishing,
and total neuronal relevance results of one layer have been
calculated. Moreover, the average value can be obtained
between one neuron and outputting results. More impor-
tantly, relevance analysis results will adjust with the pro-
cess of forward and backward propagation and finish
until the propagation process ends.

At the beginning of the training, we define the gradient
updating objective function of the general optimization
method. In each training step, a group of random training
samples L on data set X is used, starting from the initial
point f0 and updating parameter f at t step, we have:

ftþ1 ¼ ft � ut gft þ
1

L

X
i¼1

L ft;Xið Þ
 !

(14)

Where u is the learning rate of step t and g is the regulari-
zation parameter.

In the process of backward propagation, we obtain the
total correlation value between neurons at layer j ¼ fj1; j2;
. . . ; jng and the result through

RX
j ¼

X
i¼1

RX
i j (15)

Then, the correlation analysis results of individual neu-
rons are obtained by averaging.

Rj Xið Þ ¼ 1

N

X
i¼1

Rij Xð Þ (16)

In order to better combine the correlation result with the
noise distribution mechanism, we introduce the correlation
coefficient r. Because the stronger the correlation is, the
smaller the added noise will be, and vice versa, so the r is
expressed as an inverse relationship in this paper.

Algorithm 1: DPLRP

Input: SNP datasets X, privacy budget �, Learning rate u, the
number of batches t, Loss functionLðXiÞ, relevance coefficient r.
Output: The optimal and noised gradient of each neuron ftþ1.
1: Initialize the model parameters.
2: for j 2 ½1; i� do
3: Calculate the relevance RjðXÞ of each layer in deep

neural network.
4: Get the relevance coefficient rj.
5: Allocate the adaptive privacy budget �ij ¼ rij 
 �.
6: end for
7: for t 2 T do
8: Select the dataset Li from training samples L onX.
9: Compute gradient fðXiÞ  Lðfi; XiÞ.
10: Gradient update after noised

ftþ1 ¼ ft � utðgft þ 1
L ð
P

i¼1 LðXiÞ þ ZtÞ).
11: end for

rj ¼ 1

Rj Xið Þ (17)

In addition, the adaptive privacy budget allocation is given
by:

�ij ¼ rij 
 � (18)

Where � refers to the total privacy budget value calcu-
lated from the Laplace distribution of data.

Finally, we disturb the training gradient to ensure the
security of SNPs in the training and sharing stages in the
centralized scenario. As shown in

ftþ1 ¼ ft � ut

 
gft þ

1

L

X
i¼1

L Xið Þ þ Zt

 !!
(19)

Zt is the Laplace noise. Pseudo-code of adaptive disturb
mechanism based on correlation analysis, taking SGD learner
as an example, termedDPLRP, is shown inAlgorithm 1.

Fig. 3. The process of layer-wise relevance analysis method of Deep-
DPGI based on back propagation algorithm.
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Next, we will prove that our algorithm satisfies �-differ-
ential privacy.

Proof: Given that L and L0 are two adjacent batches. The
ftþ1ðLÞ and ftþ1ðL0Þ are the parameters of L and L0. The for-
mula is expressed as follows.

ftþ1 Lð Þ ¼ ft � ut

 
gft þ

1

L

 X
i¼1

L Xið Þ
!

(20)

ftþ1 L0ð Þ ¼ ft � ut

 
gft þ

1

L

 X
i¼1

L X0ið Þ
!

(21)

Then, the inequality of two outputs difference is the
following:

Dft ¼ ut

Lj j
X
f2ft

X
Xi2ft

L Xið Þ �
X

X0i2f 0t
L X0ið Þ

������
������
1

� ut

Lj j
X
f2ft

X
Xi2ft

L Xið Þ
�����

�����
1

þ ut

Lj j
X
Xi2ft

�������� X
X0i2f 0t

L X0ið Þ
������

������
1

� 2
ut

Lj jmax
Xi2ft

X
f2ft

L Xið Þk k1 (22)

Meanwhile, from the Equation (22) and differential pri-
vacy, Dft is the sensitivity of neural network ð Dft � 2 ut

jLjÞ. To
protect the private information of neural network, we dis-
turb the gradient based on relevance analysis, the noise can
be written as:

ftþ1 ¼ ft � ut

 
gft þ

1

L

 X
i¼1

L Xið Þ þ Lap
Dft

�i

	 
!!
(23)

We have:

Pr ftþ1 Lð Þ
h i

Pr ftþ1 L0ð Þ
h i

¼

Q
f2ft

Q
i¼1nexp

�i
ut
Lj j
����P

Xi2ft L Xið Þ�
�P

Xi2ft L Xið ÞþLap Dft
�i

� ������
1

Dft

 !
Q

f2ft
Q

i¼1 nexp
�i

ut
Lj j
����P

X0i2f 0 t
L X0ið Þ�

�P
Xi2ft L Xið ÞþLap Dft

�i

� ������
1

Dft

 !

�
Y
f2ft

Y
i¼1

nexp

 
�i

ut
Lj j

Dft

���� X
Xi2ft

L Xið Þ �
X

X0i2f 0t
L X0ið Þ����

1

!

�
Y
f2ft

Y
i¼1

nexp

 
�i

ut
Lj j

Dft
2 max
Xi2ft

jjL Xið Þjj1
!

�
Y
f2ft

Y
i¼1

nexp �
2 ut

Lj j
rj

Rj Xið Þ
Dft

 !
¼ exp �ð Þ

4 EXPERIMENTS

In order to tackle the problem of privacy disclosure of the
high-order gene interaction detection and improve the
detection efficiency, this paper proposes the Deep-DPGI
framework, which integrates the DL training model based
on multiple objective functions and adaptive allocation dis-
turbing mechanism based on correlation analysis, achieving
the balance between privacy and utility. In this section, we
will verify the performance of the Deep-DPGI framework
with the results of virtual simulation experiments, including
the sources of datasets required by simulation experiments
and the experimental operating environment.

4.1 Experimental Setup

The datasets required by the experiment include simulated
and real datasets. More specifically, the simulated datasets
are generated by GAMETES 2.0 software [45], the sample
size of case and control are 4000, respectively, and the num-
ber of SNP changed within 5000, which means that the data-
sets are at least 4000000. The real datasets come from Age-
related Macular Degeneration (AMD) sequencing results.
There are a total of 8 disease models, among which Models
1-4 are the models with marginal effect, which are referred
to the literature [46]. Models 5-8 are generated according to
the penetrance table without no marginal effect. Further-
more, we adopt the Age-related Macular Degeneration
(AMD) [47] datasets to judge Deep-DPGI performance. A
64-bit Intel(R) Xeon(R) Silver 4210R CPU @ 2.40GHz proces-
sor and 32GB RAM simulation environment is used to train
the detection model. Python 3.6 is used as the main pro-
gramming language and TensorFlow 1.14 as the machine
learning framework in the Windows10 system. In addition,
since the interaction results of simulated datasets are the
last three SNPs, in order to ensure the actual effect of the
framework, the simulated datasets used in the training pro-
cess are disturbed, and the three SNPs are randomly placed
in different positions of the datasets.

4.2 Performance of Secure DL Model for High-Order
Interaction

In DL research, the classification performance of models
greatly affects the accuracy of results. Therefore, the evalua-
tion of model performance is crucial to the timely adjust-
ment of model parameters to improve practical availability.
In this experiment, True Positive Rate (TPR), False Positive
Rate (FPR), Accuracy, and other indicators are used to eval-
uate the CNN network for identifying high-order gene
interactions used in this paper. A total of 300 iterations of
training, among which the data in Figs. 4c and 4d are the
average values.

TPR and FPR results are obtained by constructing a con-
fusion matrix. TPR refers to the proportion of positive
example data correctly identified in the total positive exam-
ple data, also called recall rate. FPR stands for the percent-
age of misclassification data predicted to be correct. Ideally,
the higher the TPR, the better performance, indicating that
the model is more likely to be correctly classified. The
smaller the FPR, the better performance, which also means
that the model is less and less likely to misclassify. Fig. 4
illustrates the performance of Deep-DPGI metrics with
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respect to the accuracy, precision, loss, and classification
error for both training and validation. As can be seen from
Fig. 4a, TPR gradually increases with the number of itera-
tions until it approaches 100. It shows that the Deep-DPGI
can correctly identify positive case data. In Fig. 4b, FPR
gradually decreases with the number of iterations until it
approaches 0 and becomes flat. The results show that the
capability of the Deep-DPGI model to identify error samples
increases with the increase of iterations. Fig. 4c shows the
relationship between accuracy and loss. The smooth curve
indicates that the loss and prediction accuracy change direc-
tion is consistent, and the model performance is good. In
fact, according to the experimental results, at the beginning
of the training iteration, the model still had a high classifica-
tion loss in identifying high-order gene interaction combina-
tions. Still the model after training had a good classification
performance. Fig. 4d compares the model’s training preci-
sion and testing accuracy. It can be seen from the results
that the overall model classification accuracy changes in the
same direction, which can reduce the excessive number of
iterations and high model complexity caused by training
bias. It is worth noting that the number of training iterations
of this model is within a reasonable range [48].

4.3 Power of High-Order Gene Interaction Based on
Simulated Datasets

Simulated studies are exampled on three-locus epistatic
interaction detection. As there are few methods to study
high-order gene interaction, DECF [49] and DualWMDR

[50] are selected as the compared algorithms. Refer to the lit-
erature [50] to create disease models 1-8, which are influ-
enced by different penetrances and MAF to simulate the
real gene state. Especially, MAF varies in [0.05, 0.4] for each
epistatic model. Each dataset includes SNPs varying from
200 to 5000, 8000 samples with 4000 cases and 4000 controls.
We guess that the number of iterations might have an
impact on Power, so the average calculated by 200 iterations
was taken as the experimental result to ensure the fairness
and rationality of the experiment. In addition, Power is used
to evaluate the performance of high-order gene interaction
in the simulated experiments, and is defined as:

Power ¼ NT

ND
(24)

WhereNT is the number of datasets in which specific dis-
ease-associated epistasis can be successfully identified, and
ND is the number of generated datasets. The comparison
results are shown in Fig. 5.

The Power of these methods on eight three-locus epistatic
models is shown in Fig. 5. For all cases, Deep-DPGI fre-
quently outperforms EDCF and DualWMDR. The difference
between Deep-DPGI and other methods is that Deep-DPGI
can identify the epistatic model with marginal effect. The
obvious comparison results in Fig. 5models 1-4 show that the
Deep-DPGI is more accurate than EDCF and DualWMDR
in evaluating the interaction effect of genes, and the Power
of DualWMDR is high than EDCF. The reason is that Deep-

Fig. 4. Performance results of Deep-DPGI method in TPR, FPR, Loss and Precision.

Fig. 5. Power performance comparison results between Deep-DPGI, EDCF and DualWMDR algorithms.
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DPGI uses the DL method to seek the laws of the epistatic
model and canmeet the needs of different scenarios with and
without marginal effects under the guidance of the idea of
migration. Furthermore, DualWMDR improves Power based
on filtering and exhaustion, which is better than EDCF,which
only uses the clustering method. In models 5-8 (epistatic
model with no marginal effect) and SNP>1000 experiment,
the overall performance of DualWMDR is inferior to that of
EDCF and DeeP-DPGI. The reason is that the computational
performance of this algorithm decreases with the increase of
experimental data for high-order detection objects. The detec-
tion accuracy of EDCF is close to the Deep-DPGI method in
this paper, which can meet the requirements of large-scale
data analysis. However, after testing, it is found that this
method’s running time and space complexity is high, and it
is not suitable for large-scale practical application scenarios.

4.4 Power of High-Order Gene Interaction Based on
Real Datasets

We apply Deep-DPGI on AMD real datasets [47]. AMD is
the leading cause of blindness in middle-aged and elderly
people and is a common eye disease. We downloaded
AMD data from the official website of WTCCC, which
contained 96 case individuals and 50 control individuals
with 103611 SNPS. Through quality control, the number
of SNP is 96607. Klein et al. [51] reported two interaction
results most relevant to AMD, rs380390, and rs1329428.

After the initialization parameters, the Deep-DPGI frame-
work took these two results as the main effect SNPS to
search for the corresponding third-order gene interaction
results in AMD. The results are shown in Table 2.

Above are the results of the third-order gene interaction
test for AMD. These SNPS are located in some important
genes and perform essential functions. For example, the
CFH gene on chromosome 1 encodes a protein that plays a
vital role in the regulation of complement activation. PCDH9
gene encodes a cadherin-associated neuronal receptor, and
we assume that it involves specific neuronal connections and
signal transduction. In addition, other SNP combinations
also are found that would associate with AMD, but their bio-
logical explanation needs further research.

4.5 Privacy Protection Effect Comparison of Deep
Learning-Oriented Methods

This paper presents a DL differential perturbation method
(DPLRP) based on correlation analysis. First, the correlation
between each layer of neurons and the results is analyzed,
and then the noise is allocated adaptively according to the
characteristics of the data. We evaluate the DPLRP com-
pared with Adam, DPAdam, and Gaussian. Adam [52] has
become the most commonly used neural network gradient
optimizer because of its ability to address non-convex
problems. Literature [29] demonstrated that the gradient of
the deep neural network model may disclose private

TABLE 2
Three-Order Epistatic Detection Results of

Deep-DPGI Method in AMD Datasets

Gene SNP Location P-value

CFH, NPAT, PCDH9 rs380390, rs3781868, rs1036995 11q22, 13q21 8
10-18
NRG3 rs1458402, rs2207768, rs4901408 11p15 8
10-18
NXPH1, PTPRD rs1476623, rs6967345, rs1408120 7p22,

9p23-p24
3.2
10�24

KANK1 rs595113, rs1569651, rs2031175 9p24 4.9
10�24
CFH, NPAT rs132948, rs3781868, rs3781868 1p32,

11p22-23
6.78
10�10

NAMPT, KCNH7 rs10487833, rs10495593, rs1740752 10p13 3.24
10�18

Fig. 6. Accuracy comparison results between Adam, DPSGD, Gaussian and DPLRP methods.
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information. DPSGD [53] adds uniform Laplace noise to the
gradient to ensure the security of the sensitive information
in the training data. In addition, Gaussian [54] is also
selected for comparison, which added an equal amount of
Gaussian noise to the gradient to prevent sensitive informa-
tion leakage. All experimental results are obtained after 200
iterations. The experimental results are shown in Fig. 6.

Fig. 6a is a combination diagram of training accuracy based
on different training batches and models. First, the line chart
shows the change in accuracy of diverse learners with the
increase in iteration times. Adam is the standard reference with-
out noise disturbance. It can be seen from the line chart that
compared with other methods, the DPLRP method can greatly
improve the accuracy at the beginning of training iteration, and
its accuracy iteration speed is better than DPSGD and Gaussian.
The reason is that DPLRP can avoid the interference of exces-
sive noise by adding noise intelligently through the correlation
between neurons and results to improve training accuracy
quickly. DPSGD and Gaussian lines have the same change
trend, and the change direction of accuracy is consistent with
the improved speed. The reason is that the two methods ignore
the characteristics of data and add the same amount of noise to
the gradient, resulting in excessive noise and low initial accu-
racy of training. It can also be seen from the histogram below
(a) that DPLRP is slightly better than othermethods in detecting
high-order gene interaction. Fig. 6b is also a combination dia-
gram of training accuracy based on different training batches
and different models. The comparison algorithm includes only
the learner with an integrated gradient disturbance mechanism.
First, the line chart shows the change of accuracy of DPSGD,
Gaussian, and DPLRP with the change in privacy budget size.
As can be seen from the line chart results, the other two meth-
ods can always ensure high accuracy, while the accuracy of the
DPLRP method in this paper changes along with the privacy
budget value. In general, the smaller the privacy budget, the
more noise you add and the lower the data availability. DPLRP
changes in accordance with the standard law, while DPSGD
and Gaussian add the same amount of noise to data each time,
creating the illusion of high accuracy and ignoring the law of
data distribution and development. As can be seen from the
histogram below (b), DPLRP is slightly better than other meth-
ods in detecting high-order gene interaction.

5 CONCLUSION

In order to address the problem of privacy disclosure in the
field of epistatic detection, improve the detection performance
and reduce the detection burden of high-order gene interaction,
a secure detection framework for high-order gene interaction is
proposed in this paper. This framework provides the intelligent
protection mechanism that is an adaptive differential privacy-
preserving learning framework for deep neural networks based
on relevance analysis. Our approach adds noise to the gradient
adaptively according to the relevant results between neurons
and outputs. Specifically, more noise is added to the gradients
that are less relevant to the outputs, and on the contrary, less
noise is added to the gradients of neurons which has more rele-
vant to the outputs. In addition, we also identified network
requirements for high-order gene interactions and optimized
the convolutional neural network structure. A high-order con-
volutional neural network method based on multiple loss

functions is designed. Experimental evaluations are constructed
on simulated and real datasets to validate the accuracy of our
framework. Currently, the Deep-DPGI algorithm also has cer-
tain limitations. For example, the execution time needs to be
improved. In our experience, one possible reason is the more
algorithmic components of Deep-DPGI. Then, we should com-
pare Deep-DPGI with other state-of-the-arts in larger datasets.
After all, we will have new challenges in the Big Data era.

In the future, our work will be extended to the following
aspects. On the one hand, an intelligent gradient clipping
method is designed to accelerate the convergence of training
and improve the effectiveness of the model. On the other
hand, some other noising mechanisms based on differential
privacy need to be studied to protect the security of sensi-
tive information from multiple perspectives and ensure the
security of model training and sharing. Finally, the research
of Deep-DPGI on large-scale datasets is also our future
research direction.
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