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HGN2T: A Simple but Plug-and-Play Framework
Extending HGNNs on Heterogeneous

Temporal Graphs
Huan Liu , Pengfei Jiao , Member, IEEE, Xuan Guo , Huaming Wu , Senior Member, IEEE, Mengzhou Gao ,

and Jilin Zhang , Member, IEEE

Abstract—Heterogeneous graphs (HGs) with multiple entity and
relation types are common in real-world networks. Heterogeneous
graph neural networks (HGNNs) have shown promise for learning
HG representations. However, most HGNNs are designed for static
HGs and are not compatible with heterogeneous temporal graphs
(HTGs). A few existing works have focused on HTG representation
learning but they care more about how to capture the dynamic evo-
lutions and less about their compatibility with those well-designed
static HGNNs. They also handle graph structure and temporal
dependency learning separately, ignoring that HTG evolutions are
influenced by both nodes and relationships. To address this, we
propose HGN2T, a simple and general framework that makes
static HGNNs compatible with HTGs. HGN2T is plug-and-play,
enabling static HGNNs to leverage their graph structure learning
strengths. To capture the relationship-influenced evolutions, we
design a special mechanism coupling both the HGNN and sequen-
tial model. Finally, through joint optimization by both detection
and prediction tasks, the learned representations can fully capture
temporal dependencies from historical information. We conduct
several empirical evaluation tasks, and the results show our HGN2T
can adapt static HGNNs to HTGs and overperform existing meth-
ods for HTGs.

Index Terms—Heterogeneous temporal graph, graph represent-
ation learning, heterogeneous graph neural network.

I. INTRODUCTION

GRAPH Neural Networks (GNNs) represent and learn
graph data combined with neural networks [1], [2], [3],
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[4], has driven advances in many domains such as social network
analysis [5], [6], [7], bioinformatics [8], [9], [10], [11], and
recommender systems [12], [13]. However, real-world networks
tend to be Heterogeneous Graphs (HGs) that contain multiple
types of entities and relations [14], [15], [16]. To better capture
the complex structural and semantic information in HGs, Hetero-
geneous Graph Neural Networks (HGNNs) have been proposed
and aroused extensive research enthusiasm [17], [18], [19], [20].

In recent years, a large number of HGNNs designed for
different domains of HGs have been proposed and achieved
remarkable achievements [20], [21], [22]. Generally, the process
of HGNN representation learning can be generalized as 1) mod-
eling different aspects and then 2) aggregating and updating node
representations. For example, R-GCN [23] takes different types
of neighbors as aspects and transforms them separately using
regularized weights. Furthermore, HAN [18] treats different
meta-paths as aspects and aggregates them by the semantic-level
attention mechanism. More details about the HGNNs model
are introduced in [16], [20]. Generally, different aspects reflect
different structural and semantic information. Therefore, to im-
prove the performance of HGs in different domains, the existing
HGNN encoding architectures are carefully designed with prior
knowledge [24], [25], [26].

Although HGNNs in many domains have achieved excellent
performance in various downstream tasks, they focus only on
HGs containing static nodes and edges. However, real-world
networks are not only heterogeneous but also usually exhibit
dynamic evolution over time, such as entities and relationships
adding/disappearing [27], [28]. Therefore, such networks, which
are both heterogeneous and dynamic, are more suitable to be
modeled as Heterogeneous Temporal Graphs (HTGs) [29], [30],
[31]. When faced with HTGs, static HGNNs cannot model
temporal dependencies in dynamic evolution and thus cannot
be applied to tasks involving temporal evolution, especially link
prediction. To alleviate this issue, a few studies on Heteroge-
neous Temporal Graph Neural Networks (HTGNNs) are pro-
posed [19], [27], [32], [33]. HTGNN [27] uses hierarchical intra-
and inter-relation attention to deal with the complex topology of
HTGs, and an across-time attention to model temporal evolution.
Similarly, DyHATR [33] equips node- and edge-level attention
mechanisms to model heterogeneity and a temporal attentive
recurrent neural network to capture the temporal dependencies.
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Despite the above methods having made some progress, their
intrinsic design leads to two drawbacks: 1) they focus more
on the dynamic evolution of HTGs and less on compatibility
with those well-designed static HGNNs. As a consequence, they
cannot adequately capture effective information, and a large
number of research results of HGNNs in the community are
wasted. 2) The processes of HG modeling and temporal evolu-
tion modeling are decoupled, which ignores the influence of rela-
tionships with other nodes and results in significant performance
degradation.

In order to apply existing well-designed HGNNs to ubiquitous
HTGs and alleviate the above two drawbacks, we consider:
How do we design a framework that not only extends exist-
ing well-designed HGNNs to be temporal but also improves
the generalization of HTGNNs? However, designing such a
framework is not a trivial task. First, challenging dynamic
tasks, such as link prediction, need to capture useful content
from the large amount of historical dependencies information of
HTGs. However, HGNNs cannot model temporal information
in HTGs, and thus cannot mine useful content from historical
information. Second, the historical information existing in HTGs
changes constantly as the topology evolves over time, and static
HGNNs need to update the historical information according
to those topological changes. Although HGNNs have excellent
heterogeneity modeling capabilities, they are difficult to capture
and update historical information from the topology of multiple
snapshots of HTGs.

In this article, we propose a simple but Plug-and-Play frame-
work extending HGNNs on HTGs, named HGN2T. The HGN2T
framework mainly consists of two modules: Historical Feature
Incorporation (HFI) and Topology Evolution Update (TEU)
modules. Specifically, HGN2T first integrates the current node
attributes and the historical features derived from the previous
timestamp snapshots through the HFI module. Then, HGN2T
performs heterogeneous message-passing on the integrated node
representation through HGNN on the current topology structure
to mine valuable information. Please note that the HGNN can
be flexibly replaced according to HGs with different properties.
After being well trained, HGN2T will effectively combine his-
torical features and capture the current HG topology to complete
link detection, so the representations are called detective em-
beddings. On the other hand, to avoid the decoupling of the HG
modeling and temporal evolution modeling processes, HGN2T
introduces the neighbor structure into the update process of tem-
poral evolution modeling through the TEU module. Topology-
aware predictive node representations, i.e., predictive embed-
dings, significantly outperform existing decoupled methods in
link prediction experiments. Finally, HGN2T jointly optimizes
the detection and prediction tasks to learn representations from
HTGs that fully capture rich structural information and temporal
dependencies.

To evaluate the proposed HGN2T framework, we extend two
classical HGNNs as examples and perform three types of link
prediction tasks on three real-world datasets. The promising
results and obvious performance improvements demonstrate the
effectiveness of the proposed framework.

In summary, we make the following contributions:

� We study the problem that HGNNs cannot handle with
HTGs and current HTGNNs are difficult to flexibly com-
bine with existing HGNNs to generalize to different HTGs.
There is an urgent need to extend the existing well-designed
HGNN to be temporal.

� We design a unified temporal HGNN framework, HGN2T.
Through the HFI and TEU modules, HGN2T can easily ex-
tend existing HGNN to handle HTGs by jointly optimizing
the detection and prediction tasks.

� We exemplarily extend two classical HGNNs to be tempo-
ral and conduct thorough experiments on three real-world
datasets to evaluate the effectiveness of our framework and
outperform state-of-the-art baselines.

The remainder of this article is organized as follows. First,
we introduce the related work of this article in Section II.
Then, we provide the preliminary concepts for this article in
Section III. Then we introduced the HGN2T framework in
detail in Section IV, and conducted experimental evaluations
on the performance of the framework in Section V. Finally, we
summarize the article in Section VI.

II. RELATED WORK

A. Heterogeneous Graph Neural Networks

HGNNs aim to capture structural information and semantic
information in HGs through deep neural networks [34], [35].
According to the different properties of HGs, a large number
of well-designed HGNNs have been proposed [18], [36], [37],
[38].

To model a knowledge graph with multiple relations, R-
GCN [23] is proposed to transform different types of neigh-
bors separately using regularized weight matrices. Furthermore,
HAN [18] is used to model HGs that contain rich semantic infor-
mation in the meta-path graph. To be able to take into account the
features of those intermediate nodes, MAGNN [39] generates
node representations through intra- and inter-metapath attention.
For HGs that are difficult to design meta-paths, HGT [21]
incorporates nodes by learning attention weights for each meta
relation through node- and edge-type dependent attention mech-
anisms.

The above well-designed HGNNs carefully explored the char-
acteristics of HGs and achieved remarkable achievements. How-
ever, they do not consider temporal evolution and thus cannot
effectively model dynamic networks, which are ubiquitous in
the real world.

B. Dynamic Graph Neural Networks

Dynamic GNNs are designed to collaborate with GNN and
sequence models so can adapt and capture the topology evolution
of dynamic graphs [40], [41], [42].

For instance, VGRNN [41] combines GCN and RNN to
capture the dynamic topology and improve expression power by
modeling the uncertainty of hidden representations of nodes. To
cope with the drastically changing node sets, EvolveGCN [43]
is proposed to use RNN to model the evolution character-
istics of GCN parameters instead of node features. Besides,
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to alleviate the long-term forgetting and poor scalability of
large-scale graphs due to the RNN mechanism in the above
methods, DySAT [42] jointly models structural neighbors and
temporal dynamics by a self-attention mechanism to capture
the graph structure evolution. In addition, ROLAND [44] and
WinGNN [45] propose a dynamic GNN training framework
based on meta-learning. HGWaveNet [46] proposes to model
hierarchically structured dynamic graphs through hyperbolic
dilated causal convolution and hyperbolic GRU and shows a
relative improvement over SOTA methods.

The above model effectively models dynamic graphs with
different characteristics and achieves excellent results. However,
the above homogeneous GNN models have limitations and
perform poorly when dealing with HTG containing complex
evolutionary characteristics.

C. Heterogeneous Temporal Graph Neural Networks

Recently, a small number of HTGNNs have been proposed
to simultaneously capture temporal dependencies and semantic
heterogeneous structural [19], [27], [33], [47].

HTGNNs based on hierarchical attention mechanisms have
been widely proposed, such as HTGNN [27] models HG through
intra- and inter-relation hierarchical attention mechanisms and
then aggregates the resulting node representations by temporal
attention mechanisms. Besides, HDGAN [47] processes each
snapshot through structural- and semantic-level attention mech-
anisms, and then obtains historical influence through time-level
attention and applies it to the Hawkes process. On the other
hand, DyHATR [33] considers that node embeddings at different
times have different importance and uses a hierarchical attention
mechanism to model each HG snapshot separately, and then the
attention aggregates the hidden states of the RNN to obtain node
representations.

By modeling temporal dependencies, the above model
achieves significant performance improvements. However, these
methods cannot effectively integrate with existing domain-
oriented HGNNs, failing to generalize to diverse HTGs in dif-
ferent scenarios. Furthermore, these models ignore the influence
of neighbor nodes in the network topology when modeling
temporal dependencies, i.e., the temporal neighbors of the target
node only have themselves in different snapshots. Therefore, the
heterogeneous topology and attribute information of neighbors
in historical snapshots will not be fully captured, resulting in
performance degradation.

III. PRELIMINARY

In this section, we define some of the concepts that will be
used in this article and explain the formal representation, and
we will use these notations throughout the article. The key
representations used in this article and their explanations are
summarized in Table I.

A. Definitions

Definition III.1 (Heterogeneous Graph): A Heterogeneous
Graph is defined as a graph G = (V, E ,A,R, φ, ψ), where V

TABLE I
NOTATIONS AND EXPLANATIONS

and E denote sets of nodes and edges, and it is associated with
a node type mapping function φ : V → A and an edge type
mapping function ψ : E → R, where A and R denote sets of
object and link types, and |A|+ |R| > 2.

Given a node i ∈ V , its relation set Ri is defined as the set
of edge types connected to node i, denoted as Ri = {ψ(i, j) |
(i, j) ∈ E}; its relation-r-based neighbors N r

i is defined as the
set of first-order neighbor nodes connected to it through edge
type r, denoted as N r

i = {j | (i, j) ∈ E , ψ(i, j) = r}.
Definition III.2 (Heterogeneous Temporal Graph): A Het-

erogeneous Temporal Graph is a list of observed heteroge-
neous snapshots G = {G1, G2, . . . , GT } ordered by times-
tamps, where T is the number of timestamps and Gt =
(Vt, Et,A,R, φ, ψ) represents the tth snapshot. The node setVt

and edge set Et differs between snapshots, representing dynamic
addition and removal of nodes and edges.

Definition III.3 (Heterogeneous Temporal Graph Represen-
tation Learning): Given a heterogeneous temporal graph G,
the heterogeneous temporal graph representation learning is
to learn a non-linear mapping function that encodes node i ∈ Vt

into a d-dimensional node representation zti ∈ Rd and d� |Vt|.
The node representations can capture both spatial heterogene-
ity and temporal dependencies involved in the heterogeneous
temporal graph G.

Definition III.4 (Link Detection and Prediction): Given a
heterogeneous temporal graph G = {Gt}Tt=1 and the node rep-
resentationsZT learned from it, the link detection is the problem
of predicting the probability p = f(zti, z

t
j) of an edge (i, j) ∈ Et

between a node pair i and j at timestamp t ≤ T , which is
also known as the interpolation or completion problem, which
belongs to the transductive learning setting.

Link prediction is the problem of predicting the probability
p = g(zTi , z

T
j ) that an edge (i, j) ∈ Eτ between a node pair i and

j at timestamp τ > T , which is also known as the extrapolation
problem, which belongs to the inductive learning setting.

In this article, the node embeddings used in the link detection
problem and the link prediction problem are named detective
embedding and predictive embedding, respectively.
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B. Heterogeneous Graph Neural Networks

Unlike GNNs on homogeneous graphs, HGNNs need to
model different types of nodes and edges. Based on the exist-
ing studies of message-passing GNNs [48], [49], the forward
propagation of HGNNs can be summarized as two modules, the
message function and the update function. Formally, the lth layer
of an HGNN is defined as

m
(l)
i,r = MSGr

(
h
(l)
i ,
{
h
(l)
j , ∀j ∈ N r

i

})
, (1)

h
(l+1)
i = UPDATE

(
h
(l)
i ,
{
m

(l)
i,r, ∀r ∈ Ri

})
, (2)

where m(l)
i,r is the message vector of target node i under relation

type r. After obtaining message vectors of all relation r ∈ Ri,
HGNN aggregates and updates them to get the node represen-
tations at l + 1th layer by the update function. The message
function and the update function are defined and implemented
differently by the particular HGNN algorithms.

Relational Graph Convolutional Networks (R-GCN [23]):
The message function of R-GCN uses regularized weights to
transform relation-r-based neighbor nodes. Then, the update
function sums the transferred target node representations and
message vectors and then inputs them to a nonlinear activation
function. Specifically, the representation of node i is updated as
follows:

m
(l)
i,r =

∑
j∈N r

i

1

ci,r
·W(l)

r · h(l)
j , (3)

h
(l+1)
i = σ

(
W

(l)
0 · h(l)

i +
∑
r∈Ri

m
(l)
i,r

)
, (4)

where W
(l)
r and W

(l)
0 are the transformation matrices of

relation-r-based neighbors and self-loops, respectively; ci,r is
a normalization constant; σ(·) is an element-wise activation
function like ReLU.

Hierarchical Attention Model (HA): HA is widely used in
many studies [18], [22], [27], [29], [33], which compute node-
level and edge-level attention weights and aggregate neighbor
nodes by different attention weights. Specifically, the message
and update function of HA is implemented as

m
(l)
i,r = σ

⎛
⎝∑

j∈N r
i

α
(l)
i,j ·W(l)

r · h(l)
j

⎞
⎠ , (5)

h
(l+1)
i =

∑
r∈Ri

β
(l)
i,r ·m(l)

i,r, (6)

where α
(l)
i,j and β

(l)
i,r are node-level and edge-level attention

weights, respectively; σ(·) is an element-wise activation func-
tion like ReLU. The implementations of them may be trivially
different according to different attention mechanisms.

IV. HGN2T FRAMEWORK

A. Overview

The proposed HGN2T framework mainly consists of two
modules: Historical Feature Incorporation (HFI) and Topology
Evolution Update (TEU) modules. To enable HGNNs to capture
valuable parts from historical information, the HFI module
incorporates historical information into the encoding process
of HGNNs. The detective node embedding learned by the HFI
module is used to perform the link detection task. Then, the TEU
module updates the historical information based on the topol-
ogy. The updated historical information contains the dynamic
evolution dependencies up to the current snapshot, and we use
its transformed vector as predictive node embedding to complete
the link prediction task. Finally, by jointly optimizing the link
detection and prediction tasks, the representations learned by
the entire HGN2T framework can fully capture temporal depen-
dencies from historical information. The overall structure of the
proposed HGN2T framework is shown in Fig. 1.

B. Historical Feature Incorporation

There are rich historical dependencies contained in HG snap-
shots of HTGs. Therefore, we use HGNNs to incorporate topo-
logical structures in each timestamp to capture useful infor-
mation from historical dependencies. The HFI module mainly
consists of three steps: raw feature projection, historical feature
combination, and detective embedding.

Raw Feature Projection: In a HG Gt, different types of raw
features xt may have different dimensions and are distributed in
different feature spaces. Therefore, we first transform all types
of node features into a common latent vector space through raw
feature projection. Specifically, for the raw feature of node i
of type φ(i) at timestamp t ∈ {1, 2, . . . , T}, we perform the
following transformations:

h̃t
i = σ

(
Wφ(i) · xt

i + bφ(i)

)
, (7)

where xt
i ∈ Rd′

and h̃t
i ∈ Rd is the d′-dimensional raw feature

and d-dimensional projected feature of node i, respectively;
Wφ(i) ∈ Rd×d′

and bφ(i) ∈ Rd are a trainable transformation
and bias matrix for the type of node φ(i); σ(·) is a nonlinear
activation function, such as ReLU.

Historical Feature Combination: We combine the projected
node features h̃t

i with the hidden state st−1
i containing history

dependencies through a combiner to obtain the input features ht
i

of the HGNNs. Specifically, we aggregate the projected features
h̃t
i and hidden states st−1

i as follows:

ht
i = COMB

(
h̃t
i, s

t−1
i

)
, (8)

where COMB is a binary combiner of projected vector and hid-
den state, such as element-wise Hadamard product and concate-
nation; st−1

i ∈ Rd is the d-dimensional hidden state generated
by the HG-RNN described in Section IV-C. At the first snapshot
or for the unobserved new nodes, we initialize the hidden state
as 0.

Detective Embedding: We use an HGNN to learn the detec-
tive node embeddings Zt from features containing historical
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Fig. 1. Overall architecture of the proposed HGN2T framework. The framework mainly includes two modules: Historical Feature Incorporation (HFI) and
Topology Evolution Update (TEU) modules. The HFI module equips an existing well-designed HGNN to learn the relationship between historical features in St−1

and current snapshot graph Gt. Then, the TEU module updates the topology-aware historical information based on the topology. The whole framework is jointly
optimized by the link detection and the link prediction tasks.

information in each timestamp t ∈ [1, T ] to capture structural
information, which is crucial in detection tasks. Note that we can
flexibly replace suitable HGNNs for different HGs. Specifically,
given a HG snapshot Gt and a historical feature representation
Ht, the detective node embedding is calculated as follows:

Zt = Φ
(
Gt,Ht

)
, (9)

where Φ(·) can be any well-designed HGNN defined in
Section III-B.

Through a single layer of HGNN, the information of the
first-order heterogeneous neighborhood in the current snapshot
can be aggregated. In order to obtain information on multi-order
neighborhoods, the number of layers of HGNN here can be
stacked, which we analyzed in Section V-E.

C. Topology Evolution Update

The temporal dependencies existing among snapshots of
HTGs are crucial for link prediction tasks. However, existing
research usually separates graph structure learning and tem-
poral dependencies modeling, i.e., the temporal neighbors are
only nodes themselves. Neglecting the relationship with other
nodes in the historical snapshot will be unable to directly carry
out message transmission and aggregation of heterogeneous
neighborhood nodes according to the topology, resulting in
insufficient capture of heterogeneous topology information and
temporal dependencies information.

To address this issue, we introduce heterogeneous network
topology into the process of modeling and updating the temporal
evolution by the TEU module. Specifically, we first learn a hid-
den state St to preserve historical dependencies up to timestamp
t. Then, we adopt HGNNs to capture the relationship effects on

each HG snapshot to the recurrent hidden state. Specifically, we
implement two TEU methods, HG-LSTM and HG-GRU.

HG Long-Short-Term Memory: Given a HGGt with its detec-
tive node embeddings Zt generated from Section IV-B at each
time step t ∈ {1, 2, . . . , T}, the update process of HG-LSTM is
as follows:

It = σ
(
ΦZI

(
Gt,Zt

)
+ΦSI

(
Gt,St−1

))
,

Ft = σ
(
ΦZF

(
Gt,Zt

)
+ΦSF

(
Gt,St−1

))
,

Ot = σ
(
ΦZO

(
Gt,Zt

)
+ΦSO

(
Gt,St−1

))
,

C̃t = tanh
(
ΦZC

(
Gt,Zt

)
+ΦSC

(
Gt,St−1

))
,

Ct = Ft �Ct−1 + It � C̃t,

St = Ot � tanh
(
Ct
)
, (10)

where Φ� denotes not shared HGNNs in different inputs and
gates; It, Ft and Ot are the input gate, forget gate and output
gate matrix; Ct and C̃t are the memory cells and candidate
memory cells matrix; St is the hidden state matrix.

HG Gated Recurrent Unit: Given Gt with its detective node
embeddings Zt at each time step t ∈ {1, 2, . . . , T}, HG-GRU
update the hidden state as follows:

Ut = σ
(
ΦZU

(
Gt,Zt

)
+ΦSU

(
Gt,St−1

))
,

Rt = σ
(
ΦZR

(
Gt,Zt

)
+ΦSR

(
Gt,St−1

))
,

S̃t = tanh
(
ΦUS

(
Gt,Ut

)
+ΦSS

(
Gt,Rt � St−1

))
,

St = Ut � St−1 +
(
1−Ut

)� S̃t, (11)

where Φ� denotes unshared HGNNs; where Ut and Rt are
the update and reset gate matrix; σ(·) and � are an activation
function and an element-wise Hadamard product operator. All
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HGNNs Φ� in both (10) and (11) can be replaced according to
different HTGs.

Similarly, the number of HGNN layers here can also be
stacked to capture the temporal dependencies and heterogeneous
topology information of multi-order temporal neighborhoods.
We analyze and report the performance of our framework with
different stacked layers of HG-RNN in Section V-E.

Predective Embedding: After obtaining the updated hidden
state St at each timestamp t ∈ {1, 2, . . . , T} via HG-GNN, we
transform it as the predictive node embedding ẑt+1

i to perform
prediction tasks in the next snapshot Gt+1

ẑt+1
i = σ

(
Ws · sti + bs

)
, (12)

whereWs ∈ Rd×d andbs ∈ Rd are hidden state transformation
and bias matrix; σ(·) is a nonlinear activation function such as
ReLU.

D. Objective Function

The purpose of the HGN2T framework is to extend the
HGNNs to be temporal so that detective and predictive node
embeddings can be learned from HTGs. To achieve this, we opti-
mize the overall model by reconstructing the network topologies
in HTGs.

For both detective and predictive node embeddings, we use
a shared discriminator to calculate the probability of edge pres-
ence. Specifically, for the embedding representation (zi, zj) of
a pair of nodes, we obtain the existence probability of edges as
follows:

P̂
(
(i, j) ∈ Et | zi, zj

)
= D (zi, zj) = σ (MLP (zi‖zj)) ,

(13)
where ‖ denotes the concatenation; MLP represents a two-layer
perceptron model; σ(·) is a nonlinear activation function Sig-
moid to calculate the probabilities.

For the detection task, to effectively capture the structural
information of the current snapshot, we reconstruct the current
network topology using detective node embedding at each times-
tamp. Specifically, in the tth snapshot we compute the detective
loss as follows:

Lt
det =

∑
i∈Vt

∑
j∈N t

i

{− log
(D(zti, z

t
j)
)

+Q · Evn∼P t
n(i)

log
(D(zti, z

t
vn
)
)}
, (14)

where P t
n(i) and Q are the negative sampling distribution and

the number of negative samples, respectively.
To make the extended HGNN model better capture the tempo-

ral dependencies between snapshots, we also optimize the link
prediction task. Similarly, predictive loss is computed here using
predictive node embeddings as follows:

Lt
pre =

∑
i∈Vt

∑
j∈N t

i

{− log
(D(ẑti, ẑ

t
j)
)

+Q · Evn∼P t
n(i)

log
(D(ẑti, ẑ

t
vn
)
)}
, (15)

where P t
n(i) and Q are also the negative sampling distribution

and the number of negative samples, same as (14).

TABLE II
STATISTICS OF THE DATASETS

By jointly optimizing the detection and prediction losses of
each snapshot in HTG, the model can effectively capture the
heterogeneous structure and temporal evolution information in
two adjacent snapshots. The overall objective function is defined
as follows:

L =
T∑

t=1

(Lt
det + Lt

pre

)
+ λ · Lp, (16)

where Lp is the penalty term to prevent over-fitting, i.e., L2

regularization; λ is a hyper-parameter to the control penalty
function.

E. Complexity Analysis

For the Feature Projection module in each snapshot, the
computational complexity is O(|Vt|dd′), where |Vt| is the node
number for snapshot Gt, d and d′ are the dimensions of node
representation and raw feature respectively. For the TEU mod-
ule, the computational complexity is O(TP + |V|Td), where T
is the snapshot numbers, P depends on the HGNN module. The
computational complexity of the detective and predictive loss is
O( ¯|E|TQd), where ¯|E| is the average edge sets size of snapshots,
Q is the negative sample number. Overall, the complexity of
HGN2T isO( ¯|V|Tdd′ + ¯|E|TQd+ TP ), where ¯|V| the average
node sets size of snapshots, which is computational highly
efficient.

V. EXPERIMENTS

A. Datasets and Baselines

To evaluate the effectiveness of the proposed HGN2T frame-
work, we extend the two HGNNs introduced in Section III-B and
conduct experiments on three real-world datasets. The statistics
of the dataset are summarized in Table II.
� DBLP is a computer science bibliography. In this article, we

construct 12 network snapshots that contain 8,470 authors,
9,025 papers, and 1,074 venues.

� AMiner is an academic search engine that helps us to mine
information from academic networks. We extract a subset
of AMiner which contains 12 network snapshots with 8,882
authors, 7,289 papers, and 1,970 venues.

� Yelp records users rating on local business and social rela-
tions. Here we extract a subset of Yelp that is divided into 10
network snapshots by year and consists of 771 businesses,
1,452 users, and 5 stars.
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TABLE III
AUC AND AP SCORES (MEAN ± SD %) OF THE LINK DETECTION TASK

To comprehensively evaluate the performance of our pro-
posed HTN2T framework, we compare static homogeneous
GNNs: VGAE [50], GATv2 [51]; dynamic homogeneous
GNNs EvolveGCN [43], VGRNN [41], DySAT [42] and HG-
WaveNet [46]; static heterogeneous methods metapath2vec [17],
HGT [21], R-GCN [23] and Hierarchical Attention (HA) mech-
anism [18], which is a hierarchical attention structure widely
used in HGNN; dynamic heterogeneous GNN HTGNN [27]. To
verify the effectiveness of the framework, we extend R-GCN
and HA and implement HGN2TRGCN-LSTM, HGN2TRGCN-GRU,
HGN2THA-LSTM and HGN2THA-GRU according to different gate
architectures.

B. Implementation Details

For the homogeneous graph methods (i.e., GATv2, HG-
WaveNet, etc.), we simply ignore the heterogeneity of nodes
and edges in the graph. For the static graph approaches (i.e.,
VGAE, GATv2, etc.), we analyze each snapshot separately, to
demonstrate the importance of timing dependencies. For random
walk-based methods metapath2vec we set the number of walks
per node to 40, the walk length to 60, and the window size to 5.
To better utilize the information of different types of nodes, for
DBLP and AMiner datasets, we set the meta-path as {BSUSB,
SUBUS, UBSBU}. For the Yelp dataset, we set the meta-paths
to {APVPA, PVAVP, VAPAV}. For HTGNN, we set the time
window to {3, 5, 7} and report the best results. In terms of other
parameters, we follow the settings in their original papers.

For the proposed HGN2T framework, we use Glorot initial-
ization [52] and optimize the model with Adam [53] optimizer
and ReduceLROnPlateau scheduler. We set the initial learning
rate of the Adam optimizer to 1e-2 and the regularization param-
eter to 5e-4. The dropout of attention is set to 0.2. We train all
the models with 1,000 epochs and use an early stopping strategy
with a patience tune from 5 to 50. We adopt grid search in the
embedding dimension from 4 to 64 and set it to 32 for each of the
aforementioned baseline methods to allow a fair comparison. All
models are randomly trained for 5 times, and the average results
of test performance are reported.

We complete the experiment on the Ubuntu 20.04.3 LTS
operating system with Intel(R) Xeon(R) Silver 4210R CPU @

2.40 GHz processor and NVIDIA GeForce RTX 3090 GPUs, the
CUDA version used 11.6, and the PyTorch version is 1.12.0. We
implement the proposed HGN2T framework using Deep Graph
Library (DGL) 0.8.2.

C. Dynamic Link Detection

We conduct link detection experiments using the learned
detective node embeddings on the last 3 snapshots and report
their average results. For each time, we randomly removed 10%
and sampled an equal number of negative edges as validation and
test sets. We conducted five repeated experiments and reported
the mean and standard deviation in Table III.

From Table III, we can see that HGN2THA-GRU generally
outperforms all the other methods on all datasets. First, heteroge-
neous GNN models, such as R-GCN and HA, generally achieve
higher prediction accuracy than homogeneous GNNs, such as
GATv2 and HGWaveNet, which indicates the heterogeneity
of the modeling HTG has a noticeable impact on predictive
performance. The reason for the poor prediction results of
HGWaveNet may be that the data set is mainly composed of
heterogeneous triangles, which is inconsistent with the hyper-
bolic manifold of negative curvature. Second, compared with
static models such as R-GCN and VGAE, dynamic models
such as VGRNN and HTGNN have achieved better results,
indicating that historical dependency information is beneficial to
modeling the current snapshot. Third, compared with HTGNN,
our framework achieves better performance on the three datasets,
which demonstrates that the proposed TEU is more effective than
modeling topology and timing information separately. Finally,
compared with R-GCN and HA, our framework achieves signif-
icant performance improvement averages of 3.29% and 4.46%,
which demonstrates that the proposed framework can effectively
integrate historical information and improve the model’s ability
to model the heterogeneity of the current network.

In summary, the link detection task evaluates the model’s abil-
ity to model heterogeneous network structures by completing the
current snapshot topology. The results show that the proposed
framework can effectively model network heterogeneity and
improve modeling accuracy by incorporating historical infor-
mation.
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TABLE IV
AUC AND AP SCORES (MEAN ± SD %) OF THE LINK PREDICTION TASK

TABLE V
AUC AND AP SCORES (MEAN ± SD %) OF THE NEW LINK PREDICTION TASK

D. Dynamic (New) Link Prediction

We conduct link prediction experiments using predictive node
embedding. To evaluate the framework’s prediction results for
new edges, i.e., edges exist in GT+1 but not in GT , we also
perform the new link prediction task. We conduct experiments
on the last 3 snapshots, and the dataset splitting and performance
metrics are the same as in Section V-C. We randomly run 5 times
and report the mean and standard deviation in Tables IV and V,
respectively.

As can be seen from Tables IV and V, HGN2THA-GRU achieves
the best results in almost all evaluation metrics. First, the results
for homogeneous GNNs, such as VGAE and GATv2, are signifi-
cantly worse than for heterogeneous GNNs like R-GCN and HA,
demonstrating that heterogeneity in HTGs is very important for
the embedding results. Second, the obvious performance degra-
dation between the link detection and link prediction results
of the static methods, such as VGAE and R-GCN, shows that
the temporal dependencies are crucial for the link prediction
tasks. Compared with the static HGNN baseline models, the
HTGNN model achieves competitive results in the new link
prediction task, which also proves the importance of modeling
temporal dependencies for HTG representation learning. Third,
comparing link prediction and new link prediction tasks, the

obvious performance difference shows that modeling temporal
history dependencies is important for predicting whether future
nodes will generate edges or not. Finally, the obvious perfor-
mance difference between the R-GCN and HA models in the
link detection task and the link prediction task verifies that the
HGN2T can effectively improve the ability of the static HGNNs
to model temporal dependencies.

In summary, through the proposed framework HGN2T, ex-
tended models have achieved better experimental results than the
baseline models in the link prediction task, and this advantage is
more obvious in new link prediction tasks. This demonstrates the
effectiveness of our framework in extending the static HGNN to
simultaneously model temporal dependencies information and
heterogeneous topological information.

E. Parameter Sensitivity

In this section, we performed a parameter sensitivity analysis
of the HGN2THA-GRU model. The results of three datasets are
shown in Figs. 3, 4, and 5.
� The number of predicted snapshots: We conduct exper-

iments with different prediction lengths from 2 to 6 to
evaluate the performance. As shown in Fig. 2, although
the performance of most models gradually degrades with
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Fig. 2. Analysis of the number of predicted snapshots.

Fig. 3. Parameters sensitive analysis on DBLP dataset.

the increase of the number of predicted snapshots, HGN2T
still achieves the best results. Compared with R-GCN and
HA models, the HGN2T framework achieves more stable
multi-snapshot prediction performance. This shows that
the HGN2T framework has stable performance for both
short-term and long-term prediction.

� The ratio of the training data r: We experiment by adjusting
the number of training edges from 40% to 80% with a step
size of 10% and report the three types of link prediction
results. We can see that the AUC score gradually decreases
with the reduction of the training edges. Overall, the per-
formance of HGN2T is relatively stable across different
training set sizes.

� The number of the embedding dimension d: We vary the
number of embedding dimensions as 4, 8, 16, 32 and 64.

As shown in the results, the performance of the new link
prediction task has a significant drop only when the node
embedding dimension is extremely small (d = 4), which
shows that the HGN2T framework can efficiently capture
rich heterogeneity and temporal information.

� The number of the network layers: To verify the impact of
the number of network layers of HGNN in HFI and TEU
modules, we vary the number of layers from 1 to 5 and
reported the results of HGN2T on the link detection and
prediction task on the Yelp dataset. As shown in Fig. 6, we
can see that HGN2T works best at layers 1-2, which shows
that HGN2T can efficiently capture the temporal structural
and semantic information.

� The number of attention heads K: We vary the number
of attention heads as 1, 2, 4, 8 and 16 to evaluate the
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Fig. 4. Parameters sensitive analysis on AMiner dataset.

Fig. 5. Parameters sensitive analysis on yelp dataset.

Fig. 6. Analysis of the number of network layers.

performance of the HGN2THA-GRU. It can be seen that
the performance on all three tasks of HGN2THA-GRU does
not fluctuate significantly under different attention heads.
This shows that the HGN2T framework can achieve stable
performance with a small number of attention heads.

� The number of negative samples edges Q: We vary the
negative sample multiples by 3, 4, 5, 6 and 7. From the
results, we can see that this parameter has no significant
effect, which shows that the HGN2T can be well-optimized
with a small number of negative samples.

Fig. 7. Ablation study on yelp dataset.

F. Ablation Study

In the proposed framework HGN2T, we perform HTG rep-
resentation learning through two main steps: HFI and TEU. To
verify the effectiveness, we performed ablation experiments for
each part of the HGN2T.

w/o His removes the combination of hidden state and only
uses the projected features as input to HGNNs. w/o TEU replaces
TEU module with a RNN model like GRU [54] to update the
historical information. w/o Det removes the link detection loss to
verify the effectiveness of Jointly Optimize. w/o Att removes the
attention mechanisms denotes HGN2TRGCN-GRU, which extends
the R-GCN [23] to temporal and keeps the rest unchanged.
HGN2T denotes the extended HGN2THA-GRU model. Fig. 7
illustrates the results of the AUC and AP scores of the link
detection and prediction experiments with ablated models on
Yelp datasets.

As shown in Fig. 7, ablation of each part results in varying
degrees of performance degradation. In the link detection task,
HGN2T w/o His has the most obvious performance drop may be
because the user’s historical scoring record in the Yelp dataset
has a great impact on the current moment. In link prediction
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Fig. 8. Visualization of link detection on AMiner dataset.

tasks, the performance degradation of w/o TEU denotes that
TEU can capture more structural and temporal information. w/o
Det leads to the most significant performance degradation on
both link detection and prediction tasks, which demonstrates the
effectiveness of Joint Optimization for the framework. w/o Att
yields performance degradation on all three tasks demonstrating
the effectiveness of the attention mechanism. From the above
analysis, it can be concluded that each part of HGN2T plays an
indispensable role in HTG representation learning.

G. Visualization

To more intuitively observe the link detection and prediction
performance of the proposed HGN2T framework, we conduct
visualization experiments. We show the prediction results of
positive and negative edges in Fig. 8, respectively. Each point
represents the predicted probability of link detection for the
tested edge. The greater the node distance from the center of the
circle, the larger the predicted probability of the corresponding
test edge, and vice versa. The circular dashed line in the figure
indicates a predicted probability of 0.5. The colors of the points
represent the prediction results of different methods. It can be
clearly seen from Fig. 8 that, the points of positive edges of the
HGN2T are generally scattered around the edge of the circle,
while the points of negative edges are concentrated in the center
of the circle. The visualization results show that the proposed
HGN2T framework has obvious performance advantages for
modeling HTGs.

In summary, the above empirical experimental results show
that two existing commonly used HGNNs extended by the
HGN2T framework have a stable and significant performance
improvement in processing HTGs and outperform the baseline
approach of spatio-temporal separation modeling, which ex-
emplifies the effectiveness of the proposed HGN2T to model
temporal and structural information in a coupled manner.

VI. CONCLUSION

In this article, we propose a general framework that extends
existing Heterogeneous Graph Neural Networks (HGNNs) for
Heterogeneous Temporal Graph (HTG) representation learning,
named HGN2T. Specifically, HGN2T includes two modules:

historical feature incorporation and topology evolution update,
which are used to capture historical information and update it
respectively. We jointly optimize the link detection and link
prediction tasks to capture full temporal dependencies from
historical information. We conduct extensive link detection and
prediction tasks on three real-world datasets, and our proposed
framework outperforms the state-of-the-art baselines, which
demonstrates its effectiveness.
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