
Vol.:(0123456789)1 3

Peer-to-Peer Networking and Applications
https://doi.org/10.1007/s12083-021-01252-w

Joint optimization of task caching and computation offloading
in vehicular edge computing

Chaogang Tang1 · Huaming Wu2 

Received: 19 July 2021 / Accepted: 30 September 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
The recent surge in the number of connected vehicles and vehicular applications really benefits citizens. Various vehicular
applications are developed to cater for the increasingly sophisticated demands of drivers. Against this background, vehicular
edge computing (VEC) is put forward as a promising solution to meet the strict latency requirement of these vehicular appli-
cations, by undertaking the computation offloaded from the nearby vehicles. Furthermore, task-oriented caching strategies
are also applied to VEC for performance improvement. However, challenges faced by caching-enabled VEC still need to
be addressed. For example, many factors can restrict the application of task caching in VEC, which usually include limited
caching capability, extra energy consumption incurred by task caching, caching results delivery and so on. To overcome these
issues, we propose a general caching-enabled VEC scheme and aim to jointly optimize the task caching and computation
offloading in the VEC system. Moreover, we consider not only the response latency reduction benefitting from task cach-
ing, but also the energy consumption incurred by task caching. In particular, we strive to minimize the weighted sum of the
service time and energy consumption for all the offloading requests in VEC. Due to the exponential time taken to obtain the
optimal value, we in this paper propose a genetic algorithm-based task caching and computation offloading strategy. Extensive
simulation has been carried out to investigate its efficiency compared to the benchmark algorithms. The simulation results
reveal that the proposed strategy outperforms other approaches including the greedy approach and the random approach.

Keywords  Vehicular edge computing · Task caching · Optimization · Computation offloading · Genetic algorithm

1  Introduction

The rapid development of intelligent transportation systems
has brought considerable benefits for citizens, e.g., the recent
surge in the number of connected vehicles and vehicular
applications. Various vehicular applications are developed
to cater for the increasingly sophisticated demands of driv-
ers, in addition to the basic demands for driving safety
[1]. As such, smart vehicles are taking on more and more
responsibility. For instance, with integrated communication

and computing modules, not only are they responsible for
communicating with each other in case of car accidents, but
also they perform vehicular applications and tasks to satisfy
non-functional requirements of drivers. By non-functional
requirements, we mean those requirements imposed from the
perspective of social communication and infotainment ser-
vice provisioning. The ultra-low response latency becomes
one of the most urgent needs for these vehicular applications
such as virtual reality games and in-car cloud games. How-
ever, cloud computing paradigm falls short of such a goal,
since computation offloading to the cloud center via the core
networks incurs unpredictable transmission delay.

In this context, vehicular edge computing (VEC) is put
forward as a promising solution to meet the strict latency
requirement of these applications [2–4]. Specifically, it
extends the cloud-like characteristics to the logical edge of
the networks such as road side units (RSU), and thus pro-
vides the computing resources in close proximity to the vehi-
cles. Task offloading using the fronthaul links instead of the
backhaul links can drastically reduce the response latency.

 *	 Huaming Wu
	 whming@tju.edu.cn

	 Chaogang Tang
	 cgtang@cumt.edu.cn

1	 School of Computer Science and Technology, China
University of Mining and Technology, Xuzhou 221116,
China

2	 The Center for Applied Mathematics, Tianjin University,
Tianjin 300072, China

http://orcid.org/0000-0002-4761-9973
http://crossmark.crossref.org/dialog/?doi=10.1007/s12083-021-01252-w&domain=pdf

	 Peer-to-Peer Networking and Applications

1 3

The response latency can be further reduced by applying
task-oriented caching strategies in VEC systems [5]. Note
that task-oriented caching (TOC) is not a fancy term for
information-centric caching (ICC) [6]. In this paper, TOC
refers to the task execution result caching for the future
reuse in VEC systems. Tasks can be repeatedly offloaded
by vehicles with similar behaviors. For instance, drivers
with similar backgrounds and characters display similar
driving patterns to a certain extent. With the aid of TOC,
the execution result can be reused for further reducing the
response latency, when vehicular applications are offloaded
and executed at the edge. The difference between TOC and
ICC lies in that TOC can be implemented at different granu-
larities. The tasks offloaded to the edge usually consist of
processing codes and user parameters. A fine-granularity
task caching usually reserves both the processing codes and
user parameters, while a coarse-granularity task caching
only reserves the execution result. The fine-granularity task
caching considers the different preferences with regards to
(w.r.t.) the input parameters. In spite of such an advantage,
it incurs more storage overheads and energy consumptions
in comparison to the coarse-granularity task caching [7]. In
this paper, TOC only focuses on the coarse-granularity task
caching in VEC.

Despite enticing advantages by applying TOC to VEC
systems, there are still several challenges that need to be
addressed. First, the limited caching capability of the edge
makes it prohibitively costly to cache all the tasks. Second,
the small coverage of RSU and high mobility of vehicles
may increase the data loss during task offloading or result
return, which definitely degrades the quality of experience
(QoE). Third, the performance of caching enabled VEC sys-
tems depends on not only which tasks should be cached, but
also how the caching results are delivered, especially when
cooperative caching is enabled in VEC with geographically
dispersed edge servers. Fourth, TOC not only consumes the
storage resources, but also incurs certain energy consump-
tion. For example, virtual machine environments may hold
for a while to facilitate task performing in a fine-granularity
task caching scenario. Therefore, there should be a trade-off
between response latency and energy consumption. Last but
not least, most of existing works have not considered the
caching result delivering in VEC. To simplify the model, they
just assume that the time taken to retrieve the caching results
in VEC can be negligible. Such an assumption, however, does
not always hold in vehicular applications characterized by
strong interactions and a large size of execution results.

To overcome these issues, in this paper we propose to
jointly optimize the task caching and computation offloading
in the VEC system. To facilitate computation calculation,
we assume that RSUs can perform the tasks in a coopera-
tive way. Furthermore, we consider not only the response
latency reduction brought by task caching, but also the

energy consumption incurred by task caching. Specifically,
we strive to minimize the weighted sum of the service time
and energy consumption for all the offloading requests. The
major contributions are given as below:

–	 A general model is proposed in this paper with the aim
to jointly optimize the task caching and computation off-
loading in VEC system, which takes into account not
only the benefits of task caching such as response latency
reduction but also the incurred energy consumption when
computation is offloaded and undertaken at RSUs.

–	 We mathematically formulate the joint optimization of
task caching and computation offloading in this paper.
Owning to the exponential time taken to obtain the opti-
mal solution, we propose a genetic algorithm based strat-
egy to obtain the proximate optimum solution.

–	 A series of experiments have been carried out to evalu-
ate our approach in comparison to the benchmark algo-
rithms. The simulation results have revealed that our
approach outperforms other approaches in terms of effi-
ciency and effectiveness.

The rest of the paper is organized as follows. Some related
works are reviewed in Sect. 2. The system model comes in
Sect. 3 which introduces the three different cases of task
caching and then formulates our optimization problem. A
genetic algorithm based strategy is put forward in Sect. 4 for
jointly optimizing the task caching and computation offload-
ing in VEC. The simulation results are reported in Sect. 5,
followed by the conclusion in Sect. 6.

2 � Related works

The explosive growth in the number of vehicular applica-
tions has posed great pressure on the limited computing
capabilities of vehicle-loaded computers, which stimu-
lates the rapid development of VEC. As a new computing
paradigm, VEC can undertake all or part of computation
offloaded from vehicles, in hope to satisfy multiple pur-
poses from the drivers and vehicles. Such purposes include
response latency reduction, energy consumption saving and
QoE improvement. In this section, we will review some
related works revolved around VEC for the purpose of per-
formance optimization.

2.1 � Optimization objectives revolved around VEC

Unlike cloud computing where there are sufficient com-
puting and storage resources, VEC pushes the comput-
ing resources to the edge of networks such as RSU at the
expense of limited computing capabilities owing to the
sporadic computing resources. As a result, it is necessary

Peer-to-Peer Networking and Applications	

1 3

to exploit all the dispersive computing resources of vehi-
cles in the vicinity, which however is still challenging and
an important research direction. Authors in [8] propose the
notion of Virtual Edge that is a collaborative VEC frame-
work where vehicles with idle computing resources can
serve as the virtual edge to assist computation. Furthermore,
an algorithm for virtual edge formation is put forward, which
pays attention to not only the idle computing resources but
also the state of virtual edge.

One major benefit of applying VEC to computation off-
loading is to cater for the increasingly sophisticated demands
of vehicular applications. Note that the wireless coverage
of RSUs is usually limited and the vehicles are character-
ized by high mobility, thus making it pretty hard to maintain
high communication quality all the time. Authors in [9] put
forward an energy aware task offloading strategy for VEC,
which balances the response latency and energy consump-
tion when performing the computational tasks.

With the advent of the sixth generation (6G) vehicle-to-
everything (V2X) applications, it is necessary to construct
three-dimensional (3D) and ubiquitous networking cover-
age for the time critical task offloading. An intelligent VEC
system assisted by unmanned aerial vehicle is proposed in
[10], so as to meet 6G-V2X requirements including 3D and
adaptive service coverage.

Considering the strict delay requirement for end-user
applications, authors in [11] propose a routing scheme based
on collaborative learning in VEC, which aims to proactively
find routes using a reinforcement learning algorithm. They
have proven that their strategy can achieve better perfor-
mance in comparison to the existing works.

Although the response delay of vehicular applications
can be reduced with the help of edge computing, it is very
difficult to ensure the communication quality owing to the
building obstruction or lack of infrastructure. In view of this,
authors [12] resort to UAVs for addressing such concerns. In
particular, they propose a computation offloading optimiza-
tion framework where both SDN technology and UAV are
introduced for optimizing the cost of vehicular tasks.

When considering the self-driving vehicles, the passenger
profiles including sophisticated infotainment applications
are supposed to be constructed. Such information should be
processed in real time. Therefore, a streamlined edge com-
puting infrastructure is needed where computationally inten-
sive workloads are offloaded to a nearby VEC infrastructure.
To realize the purpose, authors in [13] propose a two-stage
machine learning-based vehicular edge orchestrator. Such
an orchestrator considers both task completion success and
the service time at the same time. Extensive simulation is
carried out to evaluate the performance of their strategy.

On another hand, the security issues are still challenging
VEC. One of the main reasons is that the incentive mecha-
nism is insufficient in the vehicular ad-hoc networks which

is an untrusted and opaque environment. To cope with such
issues, a consortium blockchain is proposed which aims to
realize secure resource sharing in VEC [14]. Specifically, a
contract-based incentive mechanism is leveraged to encour-
age vehicles to contribute idle computation resources.

The intelligent VEC (IVEC) infrastructure has attracted
extensive attention recently, which benefits from the rapid
development of AI algorithms recently. Despite the benefits,
IVEC is vulnerable to fake computation feedback, unfair or
biased resource allocation. One of the main causes is the
centralized governance that is transparent to the user. There-
fore, authors in [15] put forward a blockchain-based decen-
tralized architecture to improve the resource management
in terms of transparency in IVEC. They also try to solve
the load balancing issue and further design a secure IVEC
federation model for workloads balancing.

2.2 � Caching aided performance improvement
in VEC

We also notice that interest is aroused about application of cach-
ing strategies to the task offloading in VEC system [5, 16, 17].

Authors in [18] put forward an architecture for content
caching in VEC. This architecture is task oriented and at
least three tasks can be identified, i.e., they can realize popu-
larity prediction of contents, content placement and retrieval
from the cache, via the artificial intelligence technologies.
Furthermore, future research opportunities in areas are also
discussed in depth.

Authors in [19] put forward a cooperative edge caching
framework. They try to exploit the cooperations among base
station, RSU and connected vehicles, with the purpose of
jointly optimizing the content placement and content delivery
in VEC. Specifically, they model such an optimization problem
as a double time-scale Markov decision process and solve it by
a nature-inspired method with a low computation complexity.

Authors in [20] propose a joint optimization for commu-
nication, caching and computing strategy, with the aim to
realize the cost efficiency in VEC. Specifically, an artificial
intelligence-based multi-timescale framework is designed
and they combine the particle swarm optimization with deep
reinforcement learning to achieve their goals.

Considering the fact that a vast number of parked vehi-
cles may have unexploited computing and storage resources,
authors in [21] propose a caching strategy for VEC where
vehicles in the parking lots are made full used, to serve as
the content providers to cache popular contents in a collabo-
rative way. They aim to minimize the average response delay
by an efficient content placement algorithm. In our previous
work [22], we pay attention to a caching enabled task off-
loading in mobile edge computing, and try to optimize the
weighted sum of energy consumption and response latency
by an alternate optimization algorithm.

	 Peer-to-Peer Networking and Applications

1 3

In comparison to these works, we in this paper focus on a
more general VEC system where multiple RSUs work together
to undertake the computation offloaded from vehicles in the
vicinity and the task caching is further enabled for the perfor-
mance improvement in VEC. In the meanwhile, we consider
both the response latency reduction brought by task caching,
but also the energy consumption incurred by task caching.

3 � System model

A system model considered in this paper is denoted in Fig. 1,
which consists of multiple edge servers with limited wireless
coverage. The edge servers are respectively deployed at geo-
graphically dispersed RSUs. Thus, the computing resources
can be provisioned at RSUs. Owing to the limited wireless
coverage, each RSU can only serve the vehicles within its
own coverage. RSUs are connected with each other in a
wired way (e.g., fiber-optic networks). In the meanwhile,
they also connect to the remote cloud center via the backhaul
links. On another hand, each edge is equipped with a caching
unit for caching the task execution results.

Let R = {R1,⋯ ,RM} denote the set of RSUs (edge serv-
ers) and Vi = {v1

i
,⋯ , v

ni
i
} the set of vehicles within the cover-

age of Ri in which ni is the number of vehicles that Ri can
serve. Assume that the computations that need to be offloaded
come from the set of K tasks, indexed by T = {t1, t2,⋯ , tK} .
Each task tk can be denoted by tk = (dk, sk, rk) where dk denotes
the input size of tk which usually consists of the processing
codes and parameters, sk the needed number of CPU cycles to
accomplish tk , and rk the data size of execution result. Let ci
denote the caching capability of Ri , and hence the total amount
of cached results at Ri should be no larger than ci . Let Reqk

i,j

denote a computation offloading request for task tk from the jth

vehicle in the serving area of Ri . Define � ≜ {�
1
,⋯ ,�

M
} as

a decision matrix, where �
m
= {�1

m
,⋯ ,�K

m
} and �k

m
∈ {0, 1} .

The binary variable �k
m
 represents whether task tk is cached at

Rm . Specifically, �k
m
 is equal to 1 when task tk is cached at Rm ,

and 0, otherwise.
The computation offloading procedure in caching enabled

VEC system can be described as below. A vehicle vj
i
 sends

Reqk
i,j

 together with the beacon information to Ri . Ri checks its
own caching unit. If the task tk is cached in the caching unit,
Ri will directly return the execution result to vj

i
 . If tk is not

cached at Ri , Ri will communicate with other RSUs in R to
check whether they have cached tk . If tk is cached, Ri retrieves
the caching result from the edge server which has the least
transmission delay. If none of the edge servers in R cache tk ,
v
j

i
 offloads the computation to Ri for execution. It shall be noted

that in reality the bandwidth among RSUs is much higher than
between RSU and vehicles. Thus, in comparison to task off-
loading, it takes much less time to retrieve the caching result
from other RSUs even through multiple hops. In this way,
computation offloading in caching assisted VEC can reduce
the service delay for vehicles, which can mitigate the high
demands for computing resources and further improve QoE.

3.1 � Communication and computation model

When a request Reqk
i,j

 arrives, there are three cases for Ri to
consider, given as below.

3.1.1 � Case 1: Task tk cached at Ri

The first case is that the task tk has been cached at Ri . Namely,
�k
i
= 1 . Then, there is no need for vj

i
 to offload the computation

and thus the offloading time, denoted by toff ,k
i,j

 , is zero. Simi-
larly, the execution time of tk , denoted by texe,k

i,j
 , is also zero.

The return time, denoted by trtn,k
i,j

 , can be calculated as:

where bi,j is the transmission rate from Ri to vj
i
 and expressed as:

where w is the bandwidth of the wireless channel, Pi is the
transmission power of Ri , and �2 is the noise power.

Accordingly, the service time lcase1 , which includes the
offloading time, the execution time and the return time, can
be calculated as:

(1)t
rtn,k

i,j
=

rk

bi,j
,

(2)bi,j = w log2(1 +
Pi

�2
),

(3)lcase1 = �k
i
(t
off ,k

i,j
+ t

exe,k

i,j
+ t

rtn,k

i,j
) = �k

i

rk

bi,j
.Wireless

Coverage

Remote Cloud Center

V2I Link

RSU
Edge

Server
RSU

Edge

Server
RSU

Edge

Server

Fronthaul Link Backhaul Link

Caching UnitCaching Result Return

Core Network

Fig. 1   An application scenario considered in this paper

Peer-to-Peer Networking and Applications	

1 3

On the other hand, the energy consumption in the first case
denoted by ecase1 should also be considered as follows. In this
paper, the energy consumption usually includes four parts, i.e.,
the energy consumption for offloading the computation to the
edge denoted by eoff ,k

i,j
 , energy consumption for task execution at

the edge denoted by eexe,k
i,j

 , energy consumption for results return
denoted by ertn,k

i,j
 , and the energy consumption for task caching

denoted by ec,k
i,j

 . In terms of the first case where the requested
computation has been cached at Ri , the energy consumption ecase1
only consists of ertn,k

i,j
 and ec,k

i,j
 . ertn,k

i,j
 can be calculated as follows.

The energy consumption for task caching ec,k
i,j

 can be given
as:

where �i is the static power consumption for one unit data/
task caching which only depends on Ri . e

c,k

i,j
 is independent

of vehicles which send the offloading requests. Thus, the
total energy consumption ecase1 can be given as:

The weighted sum of response latency and energy con-
sumption denoted by lecase1 is given as:

where w1(w2) ∈ [0, 1] and w1 + w2 = 1 . They are used to
strike a balance between response latency and energy
consumption.

3.1.2 � Case 2: Task tk cached at other RSUs

The second case is that Ri does not cache tk , but at least one
of other RSUs in R caches tk . In this case, �k

i
= 0 . Let R−i

denote the set of RSUs except Ri . Define �k
−i

 as:

The above equation can guarantee that there exists at least
one RSU, say Rm(∈ R−i) , which caches tk . According to the
computation offloading procedure mentioned earlier, Ri will
retrieve the caching result from Rm and then deliver it to vj

i
 .

Accordingly, the service time lcase2 can be expressed as:

where rk
bR

 denotes the time taken for Ri to retrieve the caching
result from Rm and bR is the transmission rate between Rm
and Ri . Since RSUs in R are connected with each other in

(4)e
rtn,k

i,j
= t

rtn,k

i,j
Pi.

(5)e
c,k

i,j
= �irk,

(6)ecase1 = �k
i
(e

rtn,k

i,j
+ e

c,k

i,j
) = �k

i
(t
rtn,k

i,j
Pi + �irk).

(7)lecase1 = w1lcase1 + w2ecase1,

(8)�k
−i

=
�

j∈{1,⋯,m}
⋀

j≠i

(1 − �k
j
) = 0.

(9)lcase2 = (1 − �k
i
)(1 − �k

−i
)(
rk

bi,j
+

rk

bR
),

the ultra-fast fiber-optic networks, we assume that transmis-
sion rate between two RSUs are the same for simplicity. On
the other hand, in addition to ertn,k

i,j
 and ec,k

i,j
 , the energy con-

sumption in the second case also includes the energy con-
sumption for delivering the caching result from the source
RSU Rm to the destination RSU Ri , denoted by edlv,k

i,j
 as

follows:

where Pm is the transmission power of Rm . Accordingly,
the total energy consumption in the second case can be
expressed as:

Thus, the weighted sum of response latency and energy
consumption can be calculated as:

3.1.3 � Case 3: Task tk not cached at R

The last case is that none of RSUs in R has cached the task
tk . In this case, �k

i
= 0 and �k

−i
= 1 . vj

i
 needs to offload tk to

Ri for execution. Thus, the service time actually includes the
offloading time, execution time and return time. The offload-
ing time can be given as:

where bj,i is the transmission rate from vj
i
 to Ri and expressed

as:

where w is the bandwidth of the wireless channel, Pj

i
 is the

transmission power of vj
i
 , and �2 is the noise power. The

execution time texe,k
i,j

 is given as:

where �j
i
 is the processing capability of vj

i
 . The return time

is given as the same as Eq. (1). Therefore, the service time
lcase3 can be expressed as:

(10)e
dlv,k

i,j
=

rk

bR
Pm,

(11)ecase2 = (1 − �k
i
)(1 − �k

−i
)(e

rtn,k

i,j
+ e

c,k

i,j
+ e

dlv,k

i,j
).

(12)lecase2 = w1lcase2 + w2ecase2.

(13)t
off ,k

i,j
=

dk

bj,i
,

(14)bj,i = w log2(1 +
P
j

i

�2
).

(15)t
exe,k

i,j
=

sk

�
j

i

,

(16)

lcase3 = �k
−i
(1 − �k

i
)(t

off ,k

i,j
+ t

exe,k

i,j
+ t

rtn,k

i,j
)

= �k
−i
(1 − �k

i
)(
dk

bj,i
+

sk

�
j

i

+
rk

bi,j
).

	 Peer-to-Peer Networking and Applications

1 3

The energy consumption in this case actually includes
e
off ,k

i,j
 , eexe,k

i,j
 , and ertn,k

i,j
.

And eexe,k
i,j

 is given as:

where �i is the effective capacitance coefficient of the CPU
chip of Ri , and �i is the processing frequency of Ri . e

rtn,k

i,j
 is

the same as that in the first case. Accordingly, the total
energy consumption is given as:

The weighted sum of response latency and energy con-
sumption in this case is

3.2 � Problem formulation

In this paper, we aim to optimize the weighted sum of ser-
vice time and energy consumption in caching assisted VEC
system for the offloading requests, as defined in Eq. (21).
Usually, the more the number of tasks that are cached, the
less the service time. However, the more the number of tasks
that are cached, the more the energy consumption in the
VEC system. Therefore, the minimization of both of them
actually seeks a balance between response latency reduction
and energy consumption saving. In particular, we take into
account not only the application of TOC, but also the hori-
zontal cooperation among RSUs in R . The rationale behind
this is that the tasks cached at other RSUs could be very ben-
eficial to the current RSU with the task offloading request.
Based on these descriptions, the optimization problem in
this paper can be formulated as below:

(17)e
off ,k

i,j
= t

off ,k

i,j
P
j

i
.

(18)e
exe,k

i,j
= �isk�

2
i
,

(19)ecase3 = �k
−i
(1 − �k

i
)(e

off ,k

i,j
+ e

exe,k

i,j
+ e

rtn,k

i,j
).

(20)lecase3 = w1lcase3 + w2ecase3.

(21)

O(�) =

K∑
k=1

M∑
i=1

ni∑
j=1

[lecase1 + lecase2 + lecase3]

=

K∑
k=1

M∑
i=1

ni∑
j=1

w1[(
rk

bi,j
+

rk

bR
) − �k

i

rk

bR

+ �k
−i
(
dk

bj,i
+

sk

�
j

i

−
rk

bR
) − �k

i
�k
−i
(
dk

bj,i
+

sk

�
j

i

−
rk

bR
)]

+ w2[�
k
i
(e

rtn,k

i,j
+ e

c,k

i,j
) + (1 − �k

i
)(e

rtn,k

i,j
+ e

c,k

i,j
+ e

dlv,k

i,j

+ �k
−i
(e

off ,k

i,j
+ e

exe,k

i,j
− e

c,k

i,j
− e

dlv,k

i,j
))].

(22)(P1) min
�

O(�),

where the constraint (23) guarantees that the total amount
of cached tasks at each RSU in R should not exceed its
caching capability. As mentioned earlier, owing to the ubiq-
uitous connections among RSUs in fiber-optic networks, the
transmission rate among them is assumed to be bR . Such
an assumption implies that for the RSU with the offloading
request, other RSUs are equally important to it in the sense
that any one of them caching the requested task can make an
equal contribution to it. As a result, for each task, say ti in T  ,
it is actually unnecessary to repeatedly cache it in R . Thus,
we use the constraint (24) to guarantee that each task can be
cached at most once. Constraints (26)–(27) denote that the
processing frequencies of vehicles and RSUs are adjusted
for the sake of energy consumption saving. Similarly, the
constraints (28)–(29) mean that the transmission power of
vehicles and RSUs are also adjusted. The constraint (30)
guarantees that the decision variable is binary in this paper.

Intuitively, problem P1 aims to optimize both the
response latency and energy consumption by placing the
cached task results at RSUs, on the condition that the sets
of tasks cached at different RSUs are disjoint. However, it is
different from the set partitioning since the set partitioning
requires that the union of these subsets should be the whole
set. Whereas, in our problem, the union does not have to be
it, owing to the fact that some tasks can be cached by none
of these RSUs. The simplest way to solve this problem is
to enumerate all the possible solutions over the searching
space, which however is prohibitively costly due to the expo-
nential amount of time.

(23)s.t.

K∑
k=1

�k
i
rk ≤ ci, ∀i ∈ {1,⋯ ,M},

(24)
m∑
i=1

�k
i
≤ 1, ∀k ∈ {1,⋯ ,K},

(25)w1 + w2 = 1, w1,w2 ∈ [0, 1],

(26)�i,min ≤ �i ≤ �i,max, ∀i ∈ {1,⋯ ,M},

(27)
�
j,min

i
≤ �

j

i
≤ �

j,max

i
, ∀i ∈ {1,⋯ ,M}, j ∈ {1,⋯ , ni},

(28)Pi,min ≤ Pi ≤ Pi,max, ∀i ∈ {1,⋯ ,M},

(29)
P
j,min

i
≤ P

j

i
≤ P

j,max

i
, ∀i ∈ {1,⋯ ,M}, j ∈ {1,⋯ , ni},

(30)
�k
i
,�k

−i
∈ {0, 1}, ∀i ∈ {1,⋯ ,M}, ∀k ∈ {1,⋯ ,K},

(31)�k
−i

∈ {0, 1}, ∀i ∈ {1,⋯ ,M}, ∀k ∈ {1,⋯ ,K},

Peer-to-Peer Networking and Applications	

1 3

4 � Algorithm design

Let J(�) denote the objective value for a single offloading
request Reqk

i,j
 , which can be defined as:

We can rewrite J(�) as:

From the above equation we can observe that for the
offloading request Reqk

i,j
 , the minimization of J(�) depends

upon not only the caching decision of task tk at Ri , but also
that at other RSUs in R−i . To efficiently tackle this issue, a
joint optimization of task caching and computation offload-
ing in this paper can be decomposed into two phases. First,
an initial task caching decision � is made. Then based on
the current task caching decision, J(�) can be calculated,
and moreover the corresponding value of O(�) can be
obtained.

It is worthwhile mentioning that the value of O(�) is
unique given the caching decision � . In the next, we try to
replace the current decision with a newly resulting cach-
ing decision as long as the new value of O(�) is better than
the original one. The procedure can be repeated until a
convergence condition is achieved, e.g., the value of O(�)
does not decrease any more. From the description, we can
see that the iteration-based algorithms can be adopted to
solve our problem in this paper. In view of this, we propose
a genetic algorithm (GA) to jointly optimize the caching
decision and computation in VEC. Although GA is some-
times time consuming when the searching space is huge,
it is especially suited for our optimization problem in this
paper. This is because the searching space is not very large
when the solution is encoded, due to the constraints such
as (24).

(32)

J(�) =w1[(
rk

bi,j
+

rk

bR
) − �k

i

rk

bR
+ �k

−i
(
dk

bj,i
+

sk

�
j

i

−
rk

bR
)

− �k
i
�k
−i
(
dk

bj,i
+

sk

�
j

i

−
rk

bR
)] + w2[�

k
i
(e

rtn,k

i,j
+ e

c,k

i,j
)

+ (1 − �k
i
)(e

rtn,k

i,j
+ e

c,k

i,j
+ e

dlv,k

i,j
+ �k

−i
(e

off ,k

i,j

+ e
exe,k

i,j
− e

c,k

i,j
− e

dlv,k

i,j
))].

(33)

J(�) =[w1(
rk

bi,j
+

rk

bR
)) + w2(e

rtn,k

i,j
+ e

c,k

i,j
+ e

dlv,k

i,j
)]

+ �k
i
[w2e

dlv,k

i,j
− w1

rk

bR
] + �k

−i
[w1(

dk

bj,i
+

sk

�
j

i

−
rk

bR
)

+ w2(e
off ,k

i,j
+ e

exe,k

i,j
− e

c,k

i,j
− e

dlv,k

i,j
)]

− �k
i
�k
−i
[w1(

dk

bj,i
+

sk

�
j

i

−
rk

bR
)

+ w2(e
off ,k

i,j
+ e

exe,k

i,j
− e

c,k

i,j
− e

dlv,k

i,j
)].

Lemma 1  Given the task caching decision � , the time taken
for the offloading requests to seek the optimal value of O(�)
is O(TM

∑M

i=1
ni) in the worst case.

Proof  Given the task caching profile � , the offloading
request Reqk

i,j
 can be processed based on the aforementioned

three cases. Obviously, the best case is that Ri has cached the
task tk , which will take the time of O(1) to calculate J(�) .
For the other two cases, i.e., Ri has not cached the task tk ,
each RSU in R−i should be checked to see whether there is
one RSU which caches tk . As a result, the time complexity
of RSU checking is O(M) in the worst case. There are M
RSUs with each serving ni(i = 1,⋯ ,M) vehicles. Therefore,
to find the optimal value of O(�) needs the time of
O(TM

∑M

i=1
ni) in the worst case. 	� ◻

Lemma (1) reveals that given the task caching profile � ,
the optimal value of O(�) can be obtained almost in real
time. Therefore, we utilize GA to iteratively calculate the
value of O(�) by repeatedly constructing the caching deci-
sion. GA has demonstrated powerful searching capability
over the solution domain. As a representative of population-
based searching algorithms, GA generally includes selec-
tion, crossover and mutation operations.

4.1 � Encoding

We need to encode our problem in line with the requirements
of GA at the beginning. Usually, each individual (i.e., the so-
called phenotype) in the population can denote a possible solu-
tion. The corresponding genotype can be obtained as follows.
We aim to jointly optimize the task caching and computation
offloading in VEC. Recall that a matrix � is used to represent
the caching decisions of R over the tasks T  . Each row in �
denotes the decision profile of one RSU over all the tasks in
T  . Thus, this matrix is actually the decision profile of all the
RSUs over the tasks. Accordingly, this matrix M can be used
to present the chromosome (the genotype), i.e.,

where each element �k,m(∈ {0, 1}) (1 ≤ k ≤ K, 1 ≤ m ≤ M)
denotes whether task tk is cached at Rm . Namely, �k,m in M is
the same meaning as �k

m
 defined earlier. Thus, the population

can be constituted by numerous chromosomes. The whole
population denotes the potential solution space. Since �k,m
is a binary variable, the potential solution space consists of
2KM potential solutions. Searching over such a huge solution
space is impracticable in latency sensitive scenarios.

(34)M =

⎡⎢⎢⎢⎢⎢⎢⎣

�1,1 ⋅ ⋅⋅ ⋅ ⋅⋅ ⋅ ⋅⋅ �1,M

�2,1 ⋅ ⋅⋅ ⋅ ⋅⋅ ⋅ ⋅⋅ �2,M

�3,1 ⋅ ⋅⋅ ⋅ ⋅⋅ ⋅ ⋅⋅ �3,M

�4,1 ⋅ ⋅⋅ ⋅ ⋅⋅ ⋅ ⋅⋅ �4,M

⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅⋅ ⋅ ⋅⋅ ⋅ ⋅⋅

�K,1 ⋅ ⋅⋅ ⋅ ⋅⋅ ⋅ ⋅⋅ �K,M

⎤⎥⎥⎥⎥⎥⎥⎦

	 Peer-to-Peer Networking and Applications

1 3

On the other hand, our constraint condition (24) represents
that each task in T is cached at most once. This constraint, if
leveraged properly, can greatly prune the searching space. To
be more specific, in terms of the chromosome M , the con-
straint (24) means that for each row k, also known as the gene
segment, there is at most one element �k,m which is equal to 1.
Hence, there are total M + 1 cases for row k. The total search-
ing space is actually (M + 1)K , which is much smaller than
2MK . However, it is worth noting that M is actually a sparse
matrix due to the fact that there is at most one element �k,m
equal to 1 in row k. Thus, there are at most K nonzero elements
in M of KM elements.

If we do the mutation operations based on M for produc-
ing the offsprings, there would be lots of constraint-violated
offsprings, since it is only allowed to have at most one nonzero
element in each gene segment. To cope with this issue, we
reconstruct the chromosome by leveraging the constraint (24).
To be more specific, the chromosome M† is expressed as:

where �k,u ∈ {0, 1} , 1 ≤ k ≤ K, 1 ≤ u ≤ U and U = ⌈logM+1
2

⌉ .
The row vector � i = (�i,1,⋯ ,�i,U) (1 ≤ i ≤ K) represents
which RSU task ti is cached at. Specifically, we regard
� i = (�i,1,⋯ ,�i,U) as the binary number, and convert it to
the decimal numeral as the index of the RSU in R . When
the resulting decimal numeral is zero, it means that no RSU
in R caches ti . It is obvious that the mutation operated upon
M

† will avoid the above issue.

(35)M
† =

⎡⎢⎢⎢⎢⎢⎢⎣

�1,1 ⋅ ⋅⋅ ⋅ ⋅⋅ ⋅ ⋅⋅ �1,U

�2,1 ⋅ ⋅⋅ ⋅ ⋅⋅ ⋅ ⋅⋅ �2,U

�3,1 ⋅ ⋅⋅ ⋅ ⋅⋅ ⋅ ⋅⋅ �3,U

�4,1 ⋅ ⋅⋅ ⋅ ⋅⋅ ⋅ ⋅⋅ �4,U

⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅⋅ ⋅ ⋅⋅ ⋅ ⋅⋅

�K,1 ⋅ ⋅⋅ ⋅ ⋅⋅ ⋅ ⋅⋅ �K,U

⎤⎥⎥⎥⎥⎥⎥⎦

4.2 � Fitness function

Fitness function denotes the individual adaptability to the
environments during evolution. Such a quantitative evalua-
tion can help GA decide which individuals can be reserved
and which individuals cannot. In terms of our problem in
this paper, we want to minimize both the service time and
energy consumption. When it comes to the individual in GA,
an individual with more powerful environmental adaptabil-
ity always has a lower value of O(�) . Therefore, we use Eq.
(21) as the fitness function. Given the task caching profile � ,
a smaller value of the fitness function always denotes a better
individual w.r.t. the environmental adaptability.

4.3 � Selection operation

Selection operation plays a key role in the process of indi-
vidual evolvement in GA. Furthermore, it also affects the
convergence rate of GA. Generally, the better individuals
in terms of the fitness values have a higher probability to
be reserved during the evolvement of the population. By
doing this, the optimal solution can be found at a high speed.
In this paper, we adopt the simple roulette-wheel selection
to reserve the better individuals. Specifically, in each gen-
eration, a portion of individuals are reserved for the next
generation by selection operation based on the selection
probability. After the selection operation, we supplement
the individuals to keep the same population size.

4.4 � Crossover operation

Crossover operation is used for generating the offsprings,
which usually requires the cooperation between two par-
ents. As an important means to preserve species diversity,

Fig. 2   Example of multiple
point crossover

1 1 1 11 1 1 1

1 1 1 11 1 1 1

1 1 1 11 1 1 1

1 1 1 11 1 1 1

0

1 11 1

1 11 1

0 00 0

0

0

0

0 0 0 0

0 0

0 0 0

0 0 0

0 0 00

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

Parent1

Parent2

Child1

Child2

S

1

0

0

1

Peer-to-Peer Networking and Applications	

1 3

crossover operation is implemented by exchanging the gene
segments between two parents. In this paper, we adopt a
multiple point crossover to generate the offsprings [23]. Spe-
cifically, an example of multiple point crossover operation
is depicted in Fig. 2.

As depicted, the crossover operation is assisted by a
binary vector S. The number of elements in S is the same
as the number of rows in M† . The value of elements in S
denotes whether the corresponding gene segments (rows)
in two parents need to be exchanged. For instance, the first
element of S is one, which means that the gene segments
(0,0,0,0) from Parent1 and (1,1,1,1) from Parent2 should
be exchanged.

4.5 � Mutation operation

The mutation operation is also an important means to pre-
serve the spaces diversity. Specifically, the mutation opera-
tion, which only involves one individual (parent), is usu-
ally implemented after the crossover operation by altering
a gene in the gene segment of the parent. As a result, the
resulting offspring is sort of “close” to the parent, in terms
of distance between them in the multi-dimensional solution
space. Thus, the crossover and mutation operations serve
different purposes, respectively, i.e., the crossover operation
focuses on the improvement of the global search capabil-
ity while the mutation operation pays attention to the local
search capability improvement. In terms of our problem,
a single point mutation is used, to prevent GA from fall-
ing into the local best solutions. Specifically, the mutation
needs another binary vector S which has only one nonzero
element. The index of the nonzero element in S denotes the

location (i.e., gene segment) of the mutation. Then gene is
also randomly determined for the mutation operation in the
chosen gene segment.

4.6 � GA‑based algorithm design

The general framework for GA is depicted in Fig. 3, which
consists of several steps such as selection, crossover, and
mutation operations. Generally, the running time of GA
depends upon when the stopping criteria are met. In terms
of our optimization problem, the GA based joint optimiza-
tion of task caching and computation offloading in VEC is
shown in Algorithm 1.

In the algorithm, we use the crossover probability and
mutation probability to control the crossover and mutation
operations, respectively. It is worth mentioning that the
crossover and mutation are operated on the same population
S1 , which makes the order of the two operations irrelevant
in this algorithm.

There are many constraint conditions in the problem for-
mulation such as constraints (23)–(31), so many resulting
individuals may be constraint-violated after crossover and
mutation operations. It is necessary to check and remove
those individuals which violate the constraints when a new
population is generated. In case of a constraint violation,
new individuals should be added to keep the same size of
population. The running time of this algorithm depends
upon the stopping criteria adopted in this paper. Usually,
there are two most popular ways to serve as the stopping cri-
teria. One is to directly set the number of iteration steps. The
other is to define the optimization gap between the globally
optimal fitness value explored so far and the current fitness

Fig. 3   The general framework
for GA

Begin
Population

Initialization

Individual

Evaluation

Individual

Evaluation

Stopping

Criteria Met
EndEnd

MutationMutation

CrossoverCrossover

SelectionSelection

Yes

No

Iteration

Process

New

Population

	 Peer-to-Peer Networking and Applications

1 3

value. If the value of optimization gap is smaller than the
given threshold, we can draw a conclusion that the algorithm
has converged.

5 � Simulation results and analysis

5.1 � Experimental settings

We have conducted a series of experiments to investigate
the GA based joint optimization of task caching and com-
putation offloading in terms of effectiveness and efficiency
in this section. First, our experiments are run on a laptop
with 1.8GHz Intel I5 Quad-Core CPU, 8G of RAM, Micro-
soft Windows 10 Operating System, Python 3.7. Second,
the initial parameter settings in the experiments are set
appropriately. For instance, the number of RSUs serving
the moving vehicles is set to 5, and the number of vehicles
served by each RSU ranges from 15 to 30. For the three
components of tasks, say tk = (dk, sk, rk) , dk ranges from 1
to 51, sk ranges from 30 to 70 and rk ranges from 30 to 40.
The caching capability of each RSU ci ranges from 100 to
200. On the other hand, for the GA involved parameters,
the population size and the number of iterations are set to
100 and 50, respectively.

It shall be noted that the proposed algorithm GATC
can be affected by many factors. For instance, param-
eters, such as the crossover probability, mutation prob-
ability, population size, and the number of iterations, can
greatly influence the performance of GATC w.r.t. running
time, convergence rate and obtained solution. Parameters,
including the number of RSUs, the number of offload-
ing requests and so on, can also affect the performance of
GATC in comparison to other approaches. To investigate
the efficiency and effectiveness of GATC, two approaches
are introduced as the benchmark algorithms.

Random approach. One simple way for task caching is to
select the RSU in a random way. To be more specific, tasks
from T can be cached arbitrarily at RSUs without constraint

violations. There are at least two constraints which are
imposed upon the task caching. For example, one is that
the total caching results at one RSU should not exceed its
own caching capability, which corresponds to the constraint
(23). The other is that each task can only be cached at most
once, which corresponds to the constraint (24).

Greedy approach. There are many rules to guide
the solution searching when the greedy approaches are
adopted. For instance, different RSUs may have different
caching capabilities. Thus an intuitive rule is that RSUs
with more powerful caching capabilities should cache
more tasks. Therefore, these RSUs can choose either the
tasks with larger result size or the tasks with smaller result
size first. Different caching rules may result in different
performance. However, this greedy rule does not consider
the dynamic distribution of these offloading requests.
Specifically, although the task is cached, most of the off-
loading requests for it come from other RUSs rather than
the one where it is cached. Accordingly, the bandwidth
resources among these RSUs can be seriously consumed
to transmit the caching results. To avoid this situation, we
in this paper adopt another greedy rule, i.e., each RUS
decides the tasks to be cached based on its own offload-
ing requests. They tend to cache those most frequently
requested tasks in their own serving area. One inevitable
case is that tasks can be repeatedly cached at different
RSUs. To cope with this issue, state information about
cached tasks should be disseminated among these RSUs.
Despite extra communication resources consumed by
RSUs, it is still more efficient than the former one.

5.2 � Impact of parameters

In this section, we have conducted a series of experiments
to evaluate the influence of the GA-involved parameters
upon our strategy. These parameters include the crossover
probability, mutation probability and the population size.

First, the effects of the crossover probability on GATC
are investigated in terms of the obtained optimal values and
the response latency. The results are shown in Figs. 4 and 5,
respectively. We denote the crossover probability by cp in
the experiments. Five values for cp are evaluated. Other
parameters are set to default values empirically. For exam-
ple, the population size is set to 50 and the mutation prob-
ability is set to 0.02. The number of iteration steps is 50 in
Fig. 4 and 20 in Fig. 5. From Fig. 4, we can observe that the
performance of GATC is affected by the crossover probabil-
ity to some extent. In terms of the obtained fitness values, the
best crossover probability is 0.3 and the worst is 0.2. When
the crossover probability is set appropriately (i.e., cp = 0.3 ),
the fitness values are averagely reduced by 5%, 36%, 2%
and 18%, compared to the cases cp = 0.1, 0.2, 0.4, 0.5 respec-
tively. These different fitness values denote that GATC are

Peer-to-Peer Networking and Applications	

1 3

stuck in different locally optimal solutions respectively.
We also notice that no matter which case is considered, the
obtained fitness values do not change any more when the
number of iterations comes to 20. The response times are
shown in Fig. 5 when the different crossover probability is
considered. The number of iterations is up to 20. This is
because the fitness values as shown in Fig. 4 do not change

since then. The time taken to obtain the approximately opti-
mal fitness values is acceptable. On one hand, GATC takes
time to search for the best solution over the huge searching
space, and on the other hand, GATC takes time to check
the validity of these individuals in the population. When
the individuals are invalid, it still needs to supplement new
individuals to the population.

Fig. 4   Fitness values with dif-
ferent crossover probabilities

Fig. 5   Response times with dif-
ferent crossover probabilities

	 Peer-to-Peer Networking and Applications

1 3

Second, the effects of the mutation probability on GATC
are investigated in terms of the obtained optimal values and
the response latency. The results are shown in Figs. 6 and 7,
respectively. We denote the mutation probability by cm in
the experiments. Similar to the evaluation of crossover prob-
ability in the first set of experiments, five values for cm are
investigated. Other parameters are also set to default values

empirically. Note that based on the results shown in the first
set of experiments, the crossover probability is set to 0.3.
The population size is set to 50. The number of iteration
steps is 50 in Fig. 6 and 30 in Fig. 7. Figure 6 shows that
the performance of GATC is also affected by the mutation
probability to some extent. In terms of the obtained fitness
values, the best mutation probability is 0.04 and the worst is

Fig. 6   The fitness values with
different mutation probabilities

Fig. 7   The response times with
different mutation probability

Peer-to-Peer Networking and Applications	

1 3

0.01. That means the local searching capability of GATC can
achieve the best with the mutation probability equal to 0.04.
To be more specific, when the mutation probability is 0.04,
the fitness values are averagely reduced by 6%, 0.5%, 4%
and 1%, compared to the cases cm = 0.01, 0.02, 0.03, 0.05
respectively. These different fitness values also denote that
GATC can be stuck in different locally optimal solutions
respectively. Furthermore, GATC with different mutation
probability has different convergence rates. In the mean-
while, we also notice that no matter which case is consid-
ered, the obtained fitness values do not change any more
when the number of iterations comes to 30. The response
times are shown in Fig. 7 when the different mutation prob-
ability is considered. The number of iterations is up to 30,
for the reason that the fitness values as shown in Fig. 6 do
not decrease any more. The analysis about time consumption
is similar to the first set of experiments which also includes
two parts – one for solution searching in huge solution space
and the other for the validity checking for the individuals in
the population. We do not detail them further.

Third, the effect of the population size on GATC is inves-
tigated in terms of the obtained optimal values. Generally,
the larger the population size, the better the obtained fit-
ness values. This is because a larger population includes
more individuals which can explore more potential solutions
at the same time. However, a larger population size also
incurs more time consumption. Therefore, there should be
a tradeoff between the time consumption and the optimal
value. Specifically, the experimental results are shown in
Fig. 8. We denote the population size by size in the figure.

The population size varies from 50 to 150 with a step of
25. Other parameters are set empirically, e.g., the crossover
probability is set to 0.3, and the mutation probability is 0.04.
The number of iteration steps is 50.

From this figure, we can draw several conclusions based
on the observations. First, the population size can affect
GATC w.r.t. the fitness values. For example, the optimal
values are different when the population size is different. In
this experiment, the performance can reach the best when
the population size is 125, which however contradicts the
cognition that a larger population size always brings about
a better fitness value. One possible and acceptable explana-
tion is that GATC has been stuck in locally optimal solutions
very soon. For example, as far as the population size equal
to 150 is concerned, GATC converges to the local optimum
value at the fastest speed. After that, the fitness value does
not decrease any more. Second, generally speaking, the
convergence rate is high no matter which population size is
investigated. Last but not least, as discussed earlier, a larger
population size does not always yield a better solution.

5.3 � Approach comparison

In this section, we compare our approach with the bench-
mark algorithms. Since we have evaluated the GA involved
parameters in the previous section, GATC will be run with
parameters denoting the best performance. Specifically, we
compare our approach with others from multiple perspec-
tives. The first set of experiments is conducted to com-
pare them when the number of RSUs changes. When the

Fig. 8   The fitness values with
different population sizes

	 Peer-to-Peer Networking and Applications

1 3

number of RSUs in the VEC system is large, the number of
vehicular applications served by RSUs is also very large.
In this context, the number of tasks that can be cached
also increases. Accordingly, the probability that the tasks
requested by vehicles are already cached in the VEC sys-
tems increases. However, the fact that a large number of
tasks cached in the VEC system not only incurs energy

consumptions as denoted in Eq. (5), but also consumes
more bandwidth resources for state information dissemina-
tion and sharing among RSUs.

The simulation result is shown in Fig. 9. It is obvious that
GATC can achieve the best performance compared to both
the random approach and the greedy approach. The random
approach is always the worst among the three approaches.

Fig. 9   Performance comparison
with different numbers of RSUs

Fig. 10   Performance compari-
son with different numbers of
offloading requests

Peer-to-Peer Networking and Applications	

1 3

With the increasing number of RSUs, the number of offload-
ing requests also increases. Accordingly, the optimal value
defined by Eq. (21) becomes larger and larger. The optimal
value of the random approach varies sharply compared to
the other two approaches.

In addition, the number of vehicles served by each RSU
can also affect the performance of our strategy. An assump-
tion has been made in the experiment that the number of off-
loading requests is the same as the number of vehicles in the
serving area of each RSU. The second set of experiments has
been carried out to evaluate the influence of the number of
offloading requests upon the strategy. In the experiment, the
number of RSUs is 5, and the number of offloading requests
for each RSU varies from 15 to 30. The simulation result is
shown in Fig. 10. As expected, GATC is the best while the
random approach is the worst among the three approaches.
However, when the number of requests is 16, the random
approach is better than the greedy approach. One possible
explanation is that the placement of task results at RSUs in
a random way caters for the randomly generated offloading
requests much more than the greedy approach. This figure
also reveals that the optimal values increase for the three
approaches as the number of offloading requests increases.

Last, the three approaches are compared with each other
from the viewpoint of static energy consumption. The ben-
efits of task caching have been summarized in the previ-
ous sections, such as response latency reduction and QoE
improvement. We also mentioned that task caching may
render more energy consumptions especially for the fine-
granularity task caching. Therefore, we conduct the last
set of experiments to investigate the influence of the static
energy consumptions (i.e., �i defined in Eq. 5). For simplifi-
cation, we assume that all the �i is the same. In other words,
the static power consumption for one unit data/task caching
is the same for all the RUSs in R . As the equation denotes,

when the value of � increases, the corresponding energy
consumption also increases. In the experiment, the number
of RSUs is 5 and the number of offloading requests for each
RSU is 20. Each vehicle randomly requests the computation
offloading to its serving RSU, i.e., offloading the task from
T in a random way. The simulation results are shown in
Fig. 11, where � varies from 0.1 to 0.9.

From this figure, we can see that the optimal values of the
three strategies all increase as the value of � increases, which
is reasonable since � is the unit cost for task caching in terms
of energy consumptions. Still, GATC averagely achieves the
best performance w.r.t. the optimal values and the random
approach averagely achieves the worst performance among
the three approaches. Interestingly, the random approach
achieves the best performance when the value of � is 0.2,
compared to the greedy approach and GATC. The reason
is similar to the case shown in Fig. 10 where the random
approach is better than the greedy approach with the number
of requests equal to 16. Specifically, the random placement of
task results at RSUs caters to the randomly generated offload-
ing requests much more than GATC and the greedy approach.

6 � Conclusion

Extensive attention has been paid to task offloading in VEC
system recently. As a new computing paradigm, VEC can
undertake the computation offloaded from the vehicles in its
serving area. To further enhance the performance of VEC
w.r.t. response latency reduction, task oriented caching strat-
egy has been applied to VEC. However, some issues that
revolved around caching enabled task offloading in VEC still
need to be addressed. In this paper, we have proposed a gen-
eral caching-enabled VEC scheme. For example, we consider
not only caching results placement at RSUs but also the cach-
ing results delivery in VEC. For the problem formulation,
both the response latency and energy consumption are taken
into consideration, by jointly optimizing the task caching and
computation offloading in VEC. A genetic algorithm-based
approach is put forward to minimize the weighted sum of the
service time and energy consumption for all the offloading
requests. Simulation results have shown its advantages over
the benchmark algorithms. For the future work, we plan to
design a more efficient algorithm for this issue.

Acknowledgements  This work is supported by the National Natural
Science Foundation of China (61801325 and 62071327). The authors
are really grateful to the editor and anonymous reviewers for their pro-
fessional comments and helpful suggestions.

Declarations 

Conflict of interest  The authors declare that they have no conflict of
interest.

Fig. 11   Performance comparison with different static energy con-
sumption

	 Peer-to-Peer Networking and Applications

1 3

References

	 1.	 Tang C, Zhu C, Wei X, Wu H, Li Q, Rodrigues JJPC (2020) Intel-
ligent resource allocation for utility optimization in rsu-empowered
vehicular network. IEEE Access 8:94453–94462

	 2.	 Feng J, Liu Z, Wu C, Ji Y (2019) Mobile edge computing for the
internet of vehicles: Offloading framework and job scheduling.
IEEE Veh Technol Mag 14(1):28–36

	 3.	 Laroui M, Nour B, Moungla H, Afifi H, Cherif MA (2020) Mobile
vehicular edge computing architecture using rideshare taxis as a
mobile edge server. In: IEEE 17th Annual Consumer Communi-
cations & Networking Conference, CCNC 2020, Las Vegas, NV,
USA, January 10-13, 2020, IEEE pp. 1–2

	 4.	 Zhang J, Guo H, Liu J, Zhang Y (2020) Task offloading in vehicu-
lar edge computing networks: A load-balancing solution. IEEE
Trans Veh Technol 69(2):2092–2104

	 5.	 Xu J, Chen L, Zhou P (2018) Joint service caching and task off-
loading for mobile edge computing in dense networks. In: 2018
IEEE Conference on Computer Communications, INFOCOM
2018, Honolulu, HI, USA, April 16-19, 2018, IEEE pp. 207–215

	 6.	 Yao Y, Xiao B, Wang W, Yang G, Zhou X, Peng Z (2020) Real-
time cache-aided route planning based on mobile edge computing.
IEEE Wirel Commun 27(5):155–161

	 7.	 Avino G, Malinverno M, Malandrino F, Casetti C, Chiasserini C (2017)
Characterizing docker overhead in mobile edge computing scenarios.
In: Proceedings of the Workshop on Hot Topics in Container Net-
working and Networked Systems, HotConNet@SIGCOMM 2017,
Los Angeles, CA, USA, August 25, 2017, ACM pp. 30–35

	 8.	 Cha N, Wu C, Yoshinaga T, Ji Y, Yau KA (2021) Virtual edge:
Exploring computation offloading in collaborative vehicular edge
computing. IEEE Access 9:37739–37751

	 9.	 Gu X, Zhang G (2021) Energy-efficient computation offload-
ing for vehicular edge computing networks. Comput Commun
166:244–253

	10.	 Hu J, Chen C, Cai L, Khosravi MR, Pei Q, Wan S (2021) Uav-
assisted vehicular edge computing for the 6g internet of vehicles:
Architecture, intelligence, and challenges. IEEE Commun Stand
Mag 5(2):12–18

	11.	 Wu C, Liu Z, Liu F, Yoshinaga T, Ji Y, Li J (2020) Collaborative learn-
ing of communication routes in edge-enabled multi-access vehicular
environment. IEEE Trans Cogn Commun Netw 6(4):1155–1165

	12.	 Zhao L, Yang K, Tan Z, Li X, Sharma S, Liu Z (2021) A novel
cost optimization strategy for sdn-enabled uav-assisted vehicu-
lar computation offloading. IEEE Trans Intell Transp Syst
22(6):3664–3674

	13.	 Sonmez C, Tunca C, Ozgovde A, Ersoy C (2021) Machine learning-
based workload orchestrator for vehicular edge computing.
IEEE Trans Intell Transp Syst 22(4):2239–2251

	14.	 Wang S, Ye D, Huang X, Yu R, Wang Y, Zhang Y (2021) Con-
sortium blockchain for secure resource sharing in vehicular edge
computing: A contract-based approach. IEEE Trans Netw Sci Eng
8(2):1189–1201

	15.	 Islam S, Badsha S, Sengupta S, La HM, Khalil I, Atiquzzaman M
(2021) Blockchain-enabled intelligent vehicular edge computing.
IEEE Netw 35(3):125–131

	16.	 Hao Y, Chen M, Hu L, Hossain MS, Ghoneim A (2018) Energy
efficient task caching and offloading for mobile edge computing.
IEEE Access 6:11365–11373

	17.	 Xing H, Cui J, Deng Y, Nallanathan A (2019) Energy-efficient
proactive caching for fog computing with correlated task arriv-
als. In: 20th IEEE International Workshop on Signal Processing
Advances in Wireless Communications, SPAWC 2019, Cannes,
France, July 2-5, 2019, IEEE pp. 1–5

	18.	 Javed MA, Zeadally S (2021) Ai-empowered content caching in
vehicular edge computing: Opportunities and challenges. IEEE
Netw 35(3):109–115

	19.	 Qiao G, Leng S, Maharjan S, Zhang Y, Ansari N (2020) Deep
reinforcement learning for cooperative content caching in
vehicular edge computing and networks. IEEE Internet Things J
7(1):247–257

	20.	 Tan LT, Hu RQ, Hanzo L (2019) Twin-timescale artificial intel-
ligence aided mobility-aware edge caching and computing in
vehicular networks. IEEE Trans Veh Technol 68(4):3086–3099

	21.	 Wang S, Zhang Z, Yu R, Zhang Y (2017) Low-latency caching
with auction game in vehicular edge computing. In: 2017 IEEE/
CIC International Conference on Communications in China,
ICCC 2017, Qingdao, China, October 22-24, 2017, IEEE pp. 1–6

	22.	 Tang C, Zhu C, Wei X, Wu H, Rodrigues JJPC (2021a) Task off-
loading and caching for mobile edge computing. In: 2021 IEEE
17th Int. Wireless Communications & Mobile Computing Confer-
ence-, IWCMC, Harbin, China, June 28 - July 2, 2021, IEEE pp.
1–5

	23.	 Tang C, Xia S, Li Q, Chen W, Fang W (2021b) Resource pooling
in vehicular fog computing. J Cloud Comput 10(1):19

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Chaogang Tang  received his B.S.
degree from the Nanjing Univer-
sity of Aeronautics and Astronau-
tics, Nanjing, China, and Ph.D.
degree from the School of Infor-
mation Science and Technology,
University of Science and Tech-
nology of China, Hefei, China,
and the Department of Computer
Science, City University of Hong
Kong, under a joint Ph.D. Pro-
gram, in 2012. He is now with the
China University of Mining and
Technology. His research inter-
ests include mobile cloud com-

puting, fog computing, Internet of Things and big data.

Huaming Wu  received the B.E.
and M.S. degrees from Harbin
Institute of Technology, China in
2009 and 2011, respectively, both
in electrical engineering. He
received the Ph.D. degree with
the highest honor in computer sci-
ence at Free University of Berlin,
Germany in 2015. He is currently
an associate professor in the
Center for Applied Mathematics,
Tianjin University. His current
research interests include mobile
and cloud computing, edge com-
puting, wireless and mobile net-

work systems, internet of things (IoTs), and deep learning.

	Joint optimization of task caching and computation offloading in vehicular edge computing
	Abstract
	1 Introduction
	2 Related works
	2.1 Optimization objectives revolved around VEC
	2.2 Caching aided performance improvement in VEC

	3 System model
	3.1 Communication and computation model
	3.1.1 Case 1: Task cached at
	3.1.2 Case 2: Task cached at other RSUs
	3.1.3 Case 3: Task not cached at

	3.2 Problem formulation

	4 Algorithm design
	4.1 Encoding
	4.2 Fitness function
	4.3 Selection operation
	4.4 Crossover operation
	4.5 Mutation operation
	4.6 GA-based algorithm design

	5 Simulation results and analysis
	5.1 Experimental settings
	5.2 Impact of parameters
	5.3 Approach comparison

	6 Conclusion
	Acknowledgements
	References

