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Abstract
The recent surge in the number of connected vehicles and vehicular applications really benefits citizens. Various vehicular 
applications are developed to cater for the increasingly sophisticated demands of drivers. Against this background, vehicular 
edge computing (VEC) is put forward as a promising solution to meet the strict latency requirement of these vehicular appli-
cations, by undertaking the computation offloaded from the nearby vehicles. Furthermore, task-oriented caching strategies 
are also applied to VEC for performance improvement. However, challenges faced by caching-enabled VEC still need to 
be addressed. For example, many factors can restrict the application of task caching in VEC, which usually include limited 
caching capability, extra energy consumption incurred by task caching, caching results delivery and so on. To overcome these 
issues, we propose a general caching-enabled VEC scheme and aim to jointly optimize the task caching and computation 
offloading in the VEC system. Moreover, we consider not only the response latency reduction benefitting from task cach-
ing, but also the energy consumption incurred by task caching. In particular, we strive to minimize the weighted sum of the 
service time and energy consumption for all the offloading requests in VEC. Due to the exponential time taken to obtain the 
optimal value, we in this paper propose a genetic algorithm-based task caching and computation offloading strategy. Extensive 
simulation has been carried out to investigate its efficiency compared to the benchmark algorithms. The simulation results 
reveal that the proposed strategy outperforms other approaches including the greedy approach and the random approach.

Keywords  Vehicular edge computing · Task caching · Optimization · Computation offloading · Genetic algorithm

1  Introduction

The rapid development of intelligent transportation systems 
has brought considerable benefits for citizens, e.g., the recent 
surge in the number of connected vehicles and vehicular 
applications. Various vehicular applications are developed 
to cater for the increasingly sophisticated demands of driv-
ers, in addition to the basic demands for driving safety 
[1]. As such, smart vehicles are taking on more and more 
responsibility. For instance, with integrated communication 

and computing modules, not only are they responsible for 
communicating with each other in case of car accidents, but 
also they perform vehicular applications and tasks to satisfy 
non-functional requirements of drivers. By non-functional 
requirements, we mean those requirements imposed from the 
perspective of social communication and infotainment ser-
vice provisioning. The ultra-low response latency becomes 
one of the most urgent needs for these vehicular applications 
such as virtual reality games and in-car cloud games. How-
ever, cloud computing paradigm falls short of such a goal, 
since computation offloading to the cloud center via the core 
networks incurs unpredictable transmission delay.

In this context, vehicular edge computing (VEC) is put 
forward as a promising solution to meet the strict latency 
requirement of these applications [2–4]. Specifically, it 
extends the cloud-like characteristics to the logical edge of 
the networks such as road side units (RSU), and thus pro-
vides the computing resources in close proximity to the vehi-
cles. Task offloading using the fronthaul links instead of the 
backhaul links can drastically reduce the response latency.
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The response latency can be further reduced by applying 
task-oriented caching strategies in VEC systems [5]. Note 
that task-oriented caching (TOC) is not a fancy term for 
information-centric caching (ICC) [6]. In this paper, TOC 
refers to the task execution result caching for the future 
reuse in VEC systems. Tasks can be repeatedly offloaded 
by vehicles with similar behaviors. For instance, drivers 
with similar backgrounds and characters display similar 
driving patterns to a certain extent. With the aid of TOC, 
the execution result can be reused for further reducing the 
response latency, when vehicular applications are offloaded 
and executed at the edge. The difference between TOC and 
ICC lies in that TOC can be implemented at different granu-
larities. The tasks offloaded to the edge usually consist of 
processing codes and user parameters. A fine-granularity 
task caching usually reserves both the processing codes and 
user parameters, while a coarse-granularity task caching 
only reserves the execution result. The fine-granularity task 
caching considers the different preferences with regards to 
(w.r.t.) the input parameters. In spite of such an advantage, 
it incurs more storage overheads and energy consumptions 
in comparison to the coarse-granularity task caching [7]. In 
this paper, TOC only focuses on the coarse-granularity task 
caching in VEC.

Despite enticing advantages by applying TOC to VEC 
systems, there are still several challenges that need to be 
addressed. First, the limited caching capability of the edge 
makes it prohibitively costly to cache all the tasks. Second, 
the small coverage of RSU and high mobility of vehicles 
may increase the data loss during task offloading or result 
return, which definitely degrades the quality of experience 
(QoE). Third, the performance of caching enabled VEC sys-
tems depends on not only which tasks should be cached, but 
also how the caching results are delivered, especially when 
cooperative caching is enabled in VEC with geographically 
dispersed edge servers. Fourth, TOC not only consumes the 
storage resources, but also incurs certain energy consump-
tion. For example, virtual machine environments may hold 
for a while to facilitate task performing in a fine-granularity 
task caching scenario. Therefore, there should be a trade-off 
between response latency and energy consumption. Last but 
not least, most of existing works have not considered the 
caching result delivering in VEC. To simplify the model, they 
just assume that the time taken to retrieve the caching results 
in VEC can be negligible. Such an assumption, however, does 
not always hold in vehicular applications characterized by 
strong interactions and a large size of execution results.

To overcome these issues, in this paper we propose to 
jointly optimize the task caching and computation offloading 
in the VEC system. To facilitate computation calculation, 
we assume that RSUs can perform the tasks in a coopera-
tive way. Furthermore, we consider not only the response 
latency reduction brought by task caching, but also the 

energy consumption incurred by task caching. Specifically, 
we strive to minimize the weighted sum of the service time 
and energy consumption for all the offloading requests. The 
major contributions are given as below:

–	 A general model is proposed in this paper with the aim 
to jointly optimize the task caching and computation off-
loading in VEC system, which takes into account not 
only the benefits of task caching such as response latency 
reduction but also the incurred energy consumption when 
computation is offloaded and undertaken at RSUs.

–	 We mathematically formulate the joint optimization of 
task caching and computation offloading in this paper. 
Owning to the exponential time taken to obtain the opti-
mal solution, we propose a genetic algorithm based strat-
egy to obtain the proximate optimum solution.

–	 A series of experiments have been carried out to evalu-
ate our approach in comparison to the benchmark algo-
rithms. The simulation results have revealed that our 
approach outperforms other approaches in terms of effi-
ciency and effectiveness.

The rest of the paper is organized as follows. Some related 
works are reviewed in Sect. 2. The system model comes in 
Sect. 3 which introduces the three different cases of task 
caching and then formulates our optimization problem. A 
genetic algorithm based strategy is put forward in Sect. 4 for 
jointly optimizing the task caching and computation offload-
ing in VEC. The simulation results are reported in Sect. 5, 
followed by the conclusion in Sect. 6.

2 � Related works

The explosive growth in the number of vehicular applica-
tions has posed great pressure on the limited computing 
capabilities of vehicle-loaded computers, which stimu-
lates the rapid development of VEC. As a new computing 
paradigm, VEC can undertake all or part of computation 
offloaded from vehicles, in hope to satisfy multiple pur-
poses from the drivers and vehicles. Such purposes include 
response latency reduction, energy consumption saving and 
QoE improvement. In this section, we will review some 
related works revolved around VEC for the purpose of per-
formance optimization.

2.1 � Optimization objectives revolved around VEC

Unlike cloud computing where there are sufficient com-
puting and storage resources, VEC pushes the comput-
ing resources to the edge of networks such as RSU at the 
expense of limited computing capabilities owing to the 
sporadic computing resources. As a result, it is necessary 
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to exploit all the dispersive computing resources of vehi-
cles in the vicinity, which however is still challenging and 
an important research direction. Authors in [8] propose the 
notion of Virtual Edge that is a collaborative VEC frame-
work where vehicles with idle computing resources can 
serve as the virtual edge to assist computation. Furthermore, 
an algorithm for virtual edge formation is put forward, which 
pays attention to not only the idle computing resources but 
also the state of virtual edge.

One major benefit of applying VEC to computation off-
loading is to cater for the increasingly sophisticated demands 
of vehicular applications. Note that the wireless coverage 
of RSUs is usually limited and the vehicles are character-
ized by high mobility, thus making it pretty hard to maintain 
high communication quality all the time. Authors in [9] put 
forward an energy aware task offloading strategy for VEC, 
which balances the response latency and energy consump-
tion when performing the computational tasks.

With the advent of the sixth generation (6G) vehicle-to-
everything (V2X) applications, it is necessary to construct 
three-dimensional (3D) and ubiquitous networking cover-
age for the time critical task offloading. An intelligent VEC 
system assisted by unmanned aerial vehicle is proposed in 
[10], so as to meet 6G-V2X requirements including 3D and 
adaptive service coverage.

Considering the strict delay requirement for end-user 
applications, authors in [11] propose a routing scheme based 
on collaborative learning in VEC, which aims to proactively 
find routes using a reinforcement learning algorithm. They 
have proven that their strategy can achieve better perfor-
mance in comparison to the existing works.

Although the response delay of vehicular applications 
can be reduced with the help of edge computing, it is very 
difficult to ensure the communication quality owing to the 
building obstruction or lack of infrastructure. In view of this, 
authors [12] resort to UAVs for addressing such concerns. In 
particular, they propose a computation offloading optimiza-
tion framework where both SDN technology and UAV are 
introduced for optimizing the cost of vehicular tasks.

When considering the self-driving vehicles, the passenger 
profiles including sophisticated infotainment applications 
are supposed to be constructed. Such information should be 
processed in real time. Therefore, a streamlined edge com-
puting infrastructure is needed where computationally inten-
sive workloads are offloaded to a nearby VEC infrastructure. 
To realize the purpose, authors in [13] propose a two-stage 
machine learning-based vehicular edge orchestrator. Such 
an orchestrator considers both task completion success and 
the service time at the same time. Extensive simulation is 
carried out to evaluate the performance of their strategy.

On another hand, the security issues are still challenging 
VEC. One of the main reasons is that the incentive mecha-
nism is insufficient in the vehicular ad-hoc networks which 

is an untrusted and opaque environment. To cope with such 
issues, a consortium blockchain is proposed which aims to 
realize secure resource sharing in VEC [14]. Specifically, a 
contract-based incentive mechanism is leveraged to encour-
age vehicles to contribute idle computation resources.

The intelligent VEC (IVEC) infrastructure has attracted 
extensive attention recently, which benefits from the rapid 
development of AI algorithms recently. Despite the benefits, 
IVEC is vulnerable to fake computation feedback, unfair or 
biased resource allocation. One of the main causes is the 
centralized governance that is transparent to the user. There-
fore, authors in [15] put forward a blockchain-based decen-
tralized architecture to improve the resource management 
in terms of transparency in IVEC. They also try to solve 
the load balancing issue and further design a secure IVEC 
federation model for workloads balancing.

2.2 � Caching aided performance improvement 
in VEC

We also notice that interest is aroused about application of cach-
ing strategies to the task offloading in VEC system [5, 16, 17].

Authors in [18] put forward an architecture for content 
caching in VEC. This architecture is task oriented and at 
least three tasks can be identified, i.e., they can realize popu-
larity prediction of contents, content placement and retrieval 
from the cache, via the artificial intelligence technologies. 
Furthermore, future research opportunities in areas are also 
discussed in depth.

Authors in [19] put forward a cooperative edge caching 
framework. They try to exploit the cooperations among base 
station, RSU and connected vehicles, with the purpose of 
jointly optimizing the content placement and content delivery 
in VEC. Specifically, they model such an optimization problem 
as a double time-scale Markov decision process and solve it by 
a nature-inspired method with a low computation complexity.

Authors in [20] propose a joint optimization for commu-
nication, caching and computing strategy, with the aim to 
realize the cost efficiency in VEC. Specifically, an artificial 
intelligence-based multi-timescale framework is designed 
and they combine the particle swarm optimization with deep 
reinforcement learning to achieve their goals.

Considering the fact that a vast number of parked vehi-
cles may have unexploited computing and storage resources, 
authors in [21] propose a caching strategy for VEC where 
vehicles in the parking lots are made full used, to serve as 
the content providers to cache popular contents in a collabo-
rative way. They aim to minimize the average response delay 
by an efficient content placement algorithm. In our previous 
work [22], we pay attention to a caching enabled task off-
loading in mobile edge computing, and try to optimize the 
weighted sum of energy consumption and response latency 
by an alternate optimization algorithm.
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In comparison to these works, we in this paper focus on a 
more general VEC system where multiple RSUs work together 
to undertake the computation offloaded from vehicles in the 
vicinity and the task caching is further enabled for the perfor-
mance improvement in VEC. In the meanwhile, we consider 
both the response latency reduction brought by task caching, 
but also the energy consumption incurred by task caching.

3 � System model

A system model considered in this paper is denoted in Fig. 1, 
which consists of multiple edge servers with limited wireless 
coverage. The edge servers are respectively deployed at geo-
graphically dispersed RSUs. Thus, the computing resources 
can be provisioned at RSUs. Owing to the limited wireless 
coverage, each RSU can only serve the vehicles within its 
own coverage. RSUs are connected with each other in a 
wired way (e.g., fiber-optic networks). In the meanwhile, 
they also connect to the remote cloud center via the backhaul 
links. On another hand, each edge is equipped with a caching 
unit for caching the task execution results.

Let R = {R1,⋯ ,RM} denote the set of RSUs (edge serv-
ers) and Vi = {v1

i
,⋯ , v

ni
i
} the set of vehicles within the cover-

age of Ri in which ni is the number of vehicles that Ri can 
serve. Assume that the computations that need to be offloaded 
come from the set of K tasks, indexed by T = {t1, t2,⋯ , tK} . 
Each task tk can be denoted by tk = (dk, sk, rk) where dk denotes 
the input size of tk which usually consists of the processing 
codes and parameters, sk the needed number of CPU cycles to 
accomplish tk , and rk the data size of execution result. Let ci 
denote the caching capability of Ri , and hence the total amount 
of cached results at Ri should be no larger than ci . Let Reqk

i,j
 

denote a computation offloading request for task tk from the jth 

vehicle in the serving area of Ri . Define � ≜ {�
1
,⋯ ,�

M
} as 

a decision matrix, where �
m
= {�1

m
,⋯ ,�K

m
} and �k

m
∈ {0, 1} . 

The binary variable �k
m
 represents whether task tk is cached at 

Rm . Specifically, �k
m
 is equal to 1 when task tk is cached at Rm , 

and 0, otherwise.
The computation offloading procedure in caching enabled 

VEC system can be described as below. A vehicle vj
i
 sends 

Reqk
i,j

 together with the beacon information to Ri . Ri checks its 
own caching unit. If the task tk is cached in the caching unit, 
Ri will directly return the execution result to vj

i
 . If tk is not 

cached at Ri , Ri will communicate with other RSUs in R to 
check whether they have cached tk . If tk is cached, Ri retrieves 
the caching result from the edge server which has the least 
transmission delay. If none of the edge servers in R cache tk , 
v
j

i
 offloads the computation to Ri for execution. It shall be noted 

that in reality the bandwidth among RSUs is much higher than 
between RSU and vehicles. Thus, in comparison to task off-
loading, it takes much less time to retrieve the caching result 
from other RSUs even through multiple hops. In this way, 
computation offloading in caching assisted VEC can reduce 
the service delay for vehicles, which can mitigate the high 
demands for computing resources and further improve QoE.

3.1 � Communication and computation model

When a request Reqk
i,j

 arrives, there are three cases for Ri to 
consider, given as below.

3.1.1 � Case 1: Task tk cached at Ri

The first case is that the task tk has been cached at Ri . Namely, 
�k
i
= 1 . Then, there is no need for vj

i
 to offload the computation 

and thus the offloading time, denoted by toff ,k
i,j

 , is zero. Simi-
larly, the execution time of tk , denoted by texe,k

i,j
 , is also zero. 

The return time, denoted by trtn,k
i,j

 , can be calculated as:

where bi,j is the transmission rate from Ri to vj
i
 and expressed as:

where w is the bandwidth of the wireless channel, Pi is the 
transmission power of Ri , and �2 is the noise power.

Accordingly, the service time lcase1 , which includes the 
offloading time, the execution time and the return time, can 
be calculated as:

(1)t
rtn,k

i,j
=

rk

bi,j
,

(2)bi,j = w log2(1 +
Pi

�2
),

(3)lcase1 = �k
i
(t
off ,k

i,j
+ t

exe,k

i,j
+ t

rtn,k

i,j
) = �k

i

rk

bi,j
.Wireless 
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Fig. 1   An application scenario considered in this paper
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On the other hand, the energy consumption in the first case 
denoted by ecase1 should also be considered as follows. In this 
paper, the energy consumption usually includes four parts, i.e., 
the energy consumption for offloading the computation to the 
edge denoted by eoff ,k

i,j
 , energy consumption for task execution at 

the edge denoted by eexe,k
i,j

 , energy consumption for results return 
denoted by ertn,k

i,j
 , and the energy consumption for task caching 

denoted by ec,k
i,j

 . In terms of the first case where the requested 
computation has been cached at Ri , the energy consumption ecase1 
only consists of ertn,k

i,j
 and ec,k

i,j
 . ertn,k

i,j
 can be calculated as follows.

The energy consumption for task caching ec,k
i,j

 can be given 
as:

where �i is the static power consumption for one unit data/
task caching which only depends on Ri . e

c,k

i,j
 is independent 

of vehicles which send the offloading requests. Thus, the 
total energy consumption ecase1 can be given as:

The weighted sum of response latency and energy con-
sumption denoted by lecase1 is given as:

where w1(w2) ∈ [0, 1] and w1 + w2 = 1 . They are used to 
strike a balance between response latency and energy 
consumption.

3.1.2 � Case 2: Task tk cached at other RSUs

The second case is that Ri does not cache tk , but at least one 
of other RSUs in R caches tk . In this case, �k

i
= 0 . Let R−i 

denote the set of RSUs except Ri . Define �k
−i

 as:

The above equation can guarantee that there exists at least 
one RSU, say Rm(∈ R−i) , which caches tk . According to the 
computation offloading procedure mentioned earlier, Ri will 
retrieve the caching result from Rm and then deliver it to vj

i
 . 

Accordingly, the service time lcase2 can be expressed as:

where rk
bR

 denotes the time taken for Ri to retrieve the caching 
result from Rm and bR is the transmission rate between Rm 
and Ri . Since RSUs in R are connected with each other in 

(4)e
rtn,k

i,j
= t

rtn,k

i,j
Pi.

(5)e
c,k

i,j
= �irk,

(6)ecase1 = �k
i
(e

rtn,k

i,j
+ e

c,k

i,j
) = �k

i
(t
rtn,k

i,j
Pi + �irk).

(7)lecase1 = w1lcase1 + w2ecase1,

(8)�k
−i

=
�

j∈{1,⋯,m}
⋀

j≠i

(1 − �k
j
) = 0.

(9)lcase2 = (1 − �k
i
)(1 − �k

−i
)(
rk

bi,j
+

rk

bR
),

the ultra-fast fiber-optic networks, we assume that transmis-
sion rate between two RSUs are the same for simplicity. On 
the other hand, in addition to ertn,k

i,j
 and ec,k

i,j
 , the energy con-

sumption in the second case also includes the energy con-
sumption for delivering the caching result from the source 
RSU Rm to the destination RSU Ri , denoted by edlv,k

i,j
 as 

follows:

where Pm is the transmission power of Rm . Accordingly, 
the total energy consumption in the second case can be 
expressed as:

Thus, the weighted sum of response latency and energy 
consumption can be calculated as:

3.1.3 � Case 3: Task tk not cached at R

The last case is that none of RSUs in R has cached the task 
tk . In this case, �k

i
= 0 and �k

−i
= 1 . vj

i
 needs to offload tk to 

Ri for execution. Thus, the service time actually includes the 
offloading time, execution time and return time. The offload-
ing time can be given as:

where bj,i is the transmission rate from vj
i
 to Ri and expressed 

as:

where w is the bandwidth of the wireless channel, Pj

i
 is the 

transmission power of vj
i
 , and �2 is the noise power. The 

execution time texe,k
i,j

 is given as:

where �j
i
 is the processing capability of vj

i
 . The return time 

is given as the same as Eq. (1). Therefore, the service time 
lcase3 can be expressed as:

(10)e
dlv,k

i,j
=

rk

bR
Pm,

(11)ecase2 = (1 − �k
i
)(1 − �k

−i
)(e

rtn,k

i,j
+ e

c,k

i,j
+ e

dlv,k

i,j
).

(12)lecase2 = w1lcase2 + w2ecase2.

(13)t
off ,k

i,j
=

dk

bj,i
,

(14)bj,i = w log2(1 +
P
j

i

�2
).

(15)t
exe,k

i,j
=

sk

�
j

i

,

(16)

lcase3 = �k
−i
(1 − �k

i
)(t

off ,k

i,j
+ t

exe,k

i,j
+ t

rtn,k

i,j
)

= �k
−i
(1 − �k

i
)(
dk

bj,i
+

sk

�
j

i

+
rk

bi,j
).
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The energy consumption in this case actually includes 
e
off ,k

i,j
 , eexe,k

i,j
 , and ertn,k

i,j
.

And eexe,k
i,j

 is given as:

where �i is the effective capacitance coefficient of the CPU 
chip of Ri , and �i is the processing frequency of Ri . e

rtn,k

i,j
 is 

the same as that in the first case. Accordingly, the total 
energy consumption is given as:

The weighted sum of response latency and energy con-
sumption in this case is

3.2 � Problem formulation

In this paper, we aim to optimize the weighted sum of ser-
vice time and energy consumption in caching assisted VEC 
system for the offloading requests, as defined in Eq. (21). 
Usually, the more the number of tasks that are cached, the 
less the service time. However, the more the number of tasks 
that are cached, the more the energy consumption in the 
VEC system. Therefore, the minimization of both of them 
actually seeks a balance between response latency reduction 
and energy consumption saving. In particular, we take into 
account not only the application of TOC, but also the hori-
zontal cooperation among RSUs in R . The rationale behind 
this is that the tasks cached at other RSUs could be very ben-
eficial to the current RSU with the task offloading request. 
Based on these descriptions, the optimization problem in 
this paper can be formulated as below:

(17)e
off ,k

i,j
= t

off ,k

i,j
P
j

i
.

(18)e
exe,k

i,j
= �isk�

2
i
,

(19)ecase3 = �k
−i
(1 − �k

i
)(e

off ,k

i,j
+ e

exe,k

i,j
+ e

rtn,k

i,j
).

(20)lecase3 = w1lcase3 + w2ecase3.

(21)

O(�) =

K∑
k=1

M∑
i=1

ni∑
j=1

[lecase1 + lecase2 + lecase3]

=

K∑
k=1

M∑
i=1

ni∑
j=1

w1[(
rk

bi,j
+

rk

bR
) − �k

i

rk

bR

+ �k
−i
(
dk

bj,i
+

sk

�
j

i

−
rk

bR
) − �k

i
�k
−i
(
dk

bj,i
+

sk

�
j

i

−
rk

bR
)]

+ w2[�
k
i
(e

rtn,k

i,j
+ e

c,k

i,j
) + (1 − �k

i
)(e

rtn,k

i,j
+ e

c,k

i,j
+ e

dlv,k

i,j

+ �k
−i
(e

off ,k

i,j
+ e

exe,k

i,j
− e

c,k

i,j
− e

dlv,k

i,j
))].

(22)(P1) min
�

O(�),

where the constraint (23) guarantees that the total amount 
of cached tasks at each RSU in R should not exceed its 
caching capability. As mentioned earlier, owing to the ubiq-
uitous connections among RSUs in fiber-optic networks, the 
transmission rate among them is assumed to be bR . Such 
an assumption implies that for the RSU with the offloading 
request, other RSUs are equally important to it in the sense 
that any one of them caching the requested task can make an 
equal contribution to it. As a result, for each task, say ti in T  , 
it is actually unnecessary to repeatedly cache it in R . Thus, 
we use the constraint (24) to guarantee that each task can be 
cached at most once. Constraints (26)–(27) denote that the 
processing frequencies of vehicles and RSUs are adjusted 
for the sake of energy consumption saving. Similarly, the 
constraints (28)–(29) mean that the transmission power of 
vehicles and RSUs are also adjusted. The constraint (30) 
guarantees that the decision variable is binary in this paper.

Intuitively, problem P1 aims to optimize both the 
response latency and energy consumption by placing the 
cached task results at RSUs, on the condition that the sets 
of tasks cached at different RSUs are disjoint. However, it is 
different from the set partitioning since the set partitioning 
requires that the union of these subsets should be the whole 
set. Whereas, in our problem, the union does not have to be 
it, owing to the fact that some tasks can be cached by none 
of these RSUs. The simplest way to solve this problem is 
to enumerate all the possible solutions over the searching 
space, which however is prohibitively costly due to the expo-
nential amount of time.

(23)s.t.

K∑
k=1

�k
i
rk ≤ ci, ∀i ∈ {1,⋯ ,M},

(24)
m∑
i=1

�k
i
≤ 1, ∀k ∈ {1,⋯ ,K},

(25)w1 + w2 = 1, w1,w2 ∈ [0, 1],

(26)�i,min ≤ �i ≤ �i,max, ∀i ∈ {1,⋯ ,M},

(27)
�
j,min

i
≤ �

j

i
≤ �

j,max

i
, ∀i ∈ {1,⋯ ,M}, j ∈ {1,⋯ , ni},

(28)Pi,min ≤ Pi ≤ Pi,max, ∀i ∈ {1,⋯ ,M},

(29)
P
j,min

i
≤ P

j

i
≤ P

j,max

i
, ∀i ∈ {1,⋯ ,M}, j ∈ {1,⋯ , ni},

(30)
�k
i
,�k

−i
∈ {0, 1}, ∀i ∈ {1,⋯ ,M}, ∀k ∈ {1,⋯ ,K},

(31)�k
−i

∈ {0, 1}, ∀i ∈ {1,⋯ ,M}, ∀k ∈ {1,⋯ ,K},
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4 � Algorithm design

Let J(�) denote the objective value for a single offloading 
request Reqk

i,j
 , which can be defined as:

We can rewrite J(�) as:

From the above equation we can observe that for the 
offloading request Reqk

i,j
 , the minimization of J(�) depends 

upon not only the caching decision of task tk at Ri , but also 
that at other RSUs in R−i . To efficiently tackle this issue, a 
joint optimization of task caching and computation offload-
ing in this paper can be decomposed into two phases. First, 
an initial task caching decision � is made. Then based on 
the current task caching decision, J(�) can be calculated, 
and moreover the corresponding value of O(�) can be 
obtained.

It is worthwhile mentioning that the value of O(�) is 
unique given the caching decision � . In the next, we try to 
replace the current decision with a newly resulting cach-
ing decision as long as the new value of O(�) is better than 
the original one. The procedure can be repeated until a 
convergence condition is achieved, e.g., the value of O(�) 
does not decrease any more. From the description, we can 
see that the iteration-based algorithms can be adopted to 
solve our problem in this paper. In view of this, we propose 
a genetic algorithm (GA) to jointly optimize the caching 
decision and computation in VEC. Although GA is some-
times time consuming when the searching space is huge, 
it is especially suited for our optimization problem in this 
paper. This is because the searching space is not very large 
when the solution is encoded, due to the constraints such 
as (24).

(32)
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Lemma 1  Given the task caching decision � , the time taken 
for the offloading requests to seek the optimal value of O(�) 
is O(TM

∑M

i=1
ni) in the worst case.

Proof  Given the task caching profile � , the offloading 
request Reqk

i,j
 can be processed based on the aforementioned 

three cases. Obviously, the best case is that Ri has cached the 
task tk , which will take the time of O(1) to calculate J(�) . 
For the other two cases, i.e., Ri has not cached the task tk , 
each RSU in R−i should be checked to see whether there is 
one RSU which caches tk . As a result, the time complexity 
of RSU checking is O(M) in the worst case. There are M 
RSUs with each serving ni(i = 1,⋯ ,M) vehicles. Therefore, 
to find the optimal value of O(�) needs the time of 
O(TM

∑M

i=1
ni) in the worst case. 	�  ◻

Lemma (1) reveals that given the task caching profile � , 
the optimal value of O(�) can be obtained almost in real 
time. Therefore, we utilize GA to iteratively calculate the 
value of O(�) by repeatedly constructing the caching deci-
sion. GA has demonstrated powerful searching capability 
over the solution domain. As a representative of population-
based searching algorithms, GA generally includes selec-
tion, crossover and mutation operations.

4.1 � Encoding

We need to encode our problem in line with the requirements 
of GA at the beginning. Usually, each individual (i.e., the so-
called phenotype) in the population can denote a possible solu-
tion. The corresponding genotype can be obtained as follows. 
We aim to jointly optimize the task caching and computation 
offloading in VEC. Recall that a matrix � is used to represent 
the caching decisions of R over the tasks T  . Each row in � 
denotes the decision profile of one RSU over all the tasks in 
T  . Thus, this matrix is actually the decision profile of all the 
RSUs over the tasks. Accordingly, this matrix M can be used 
to present the chromosome (the genotype), i.e.,

where each element �k,m(∈ {0, 1}) (1 ≤ k ≤ K, 1 ≤ m ≤ M) 
denotes whether task tk is cached at Rm . Namely, �k,m in M is 
the same meaning as �k

m
 defined earlier. Thus, the population 

can be constituted by numerous chromosomes. The whole 
population denotes the potential solution space. Since �k,m 
is a binary variable, the potential solution space consists of 
2KM potential solutions. Searching over such a huge solution 
space is impracticable in latency sensitive scenarios.

(34)M =

⎡⎢⎢⎢⎢⎢⎢⎣

�1,1 ⋅ ⋅⋅ ⋅ ⋅⋅ ⋅ ⋅⋅ �1,M

�2,1 ⋅ ⋅⋅ ⋅ ⋅⋅ ⋅ ⋅⋅ �2,M

�3,1 ⋅ ⋅⋅ ⋅ ⋅⋅ ⋅ ⋅⋅ �3,M

�4,1 ⋅ ⋅⋅ ⋅ ⋅⋅ ⋅ ⋅⋅ �4,M

⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅⋅ ⋅ ⋅⋅ ⋅ ⋅⋅

�K,1 ⋅ ⋅⋅ ⋅ ⋅⋅ ⋅ ⋅⋅ �K,M

⎤⎥⎥⎥⎥⎥⎥⎦
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On the other hand, our constraint condition (24) represents 
that each task in T  is cached at most once. This constraint, if 
leveraged properly, can greatly prune the searching space. To 
be more specific, in terms of the chromosome M , the con-
straint (24) means that for each row k, also known as the gene 
segment, there is at most one element �k,m which is equal to 1. 
Hence, there are total M + 1 cases for row k. The total search-
ing space is actually (M + 1)K , which is much smaller than 
2MK . However, it is worth noting that M is actually a sparse 
matrix due to the fact that there is at most one element �k,m 
equal to 1 in row k. Thus, there are at most K nonzero elements 
in M of KM elements.

If we do the mutation operations based on M for produc-
ing the offsprings, there would be lots of constraint-violated 
offsprings, since it is only allowed to have at most one nonzero 
element in each gene segment. To cope with this issue, we 
reconstruct the chromosome by leveraging the constraint (24). 
To be more specific, the chromosome M† is expressed as:

where �k,u ∈ {0, 1} , 1 ≤ k ≤ K, 1 ≤ u ≤ U and U = ⌈logM+1
2

⌉ . 
The row vector � i = (�i,1,⋯ ,�i,U) (1 ≤ i ≤ K) represents 
which RSU task ti is cached at. Specifically, we regard 
� i = (�i,1,⋯ ,�i,U) as the binary number, and convert it to 
the decimal numeral as the index of the RSU in R . When 
the resulting decimal numeral is zero, it means that no RSU 
in R caches ti . It is obvious that the mutation operated upon 
M

† will avoid the above issue.

(35)M
† =

⎡⎢⎢⎢⎢⎢⎢⎣

�1,1 ⋅ ⋅⋅ ⋅ ⋅⋅ ⋅ ⋅⋅ �1,U

�2,1 ⋅ ⋅⋅ ⋅ ⋅⋅ ⋅ ⋅⋅ �2,U

�3,1 ⋅ ⋅⋅ ⋅ ⋅⋅ ⋅ ⋅⋅ �3,U

�4,1 ⋅ ⋅⋅ ⋅ ⋅⋅ ⋅ ⋅⋅ �4,U

⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅⋅ ⋅ ⋅⋅ ⋅ ⋅⋅

�K,1 ⋅ ⋅⋅ ⋅ ⋅⋅ ⋅ ⋅⋅ �K,U

⎤⎥⎥⎥⎥⎥⎥⎦

4.2 � Fitness function

Fitness function denotes the individual adaptability to the 
environments during evolution. Such a quantitative evalua-
tion can help GA decide which individuals can be reserved 
and which individuals cannot. In terms of our problem in 
this paper, we want to minimize both the service time and 
energy consumption. When it comes to the individual in GA, 
an individual with more powerful environmental adaptabil-
ity always has a lower value of O(�) . Therefore, we use Eq. 
(21) as the fitness function. Given the task caching profile � , 
a smaller value of the fitness function always denotes a better 
individual w.r.t. the environmental adaptability.

4.3 � Selection operation

Selection operation plays a key role in the process of indi-
vidual evolvement in GA. Furthermore, it also affects the 
convergence rate of GA. Generally, the better individuals 
in terms of the fitness values have a higher probability to 
be reserved during the evolvement of the population. By 
doing this, the optimal solution can be found at a high speed. 
In this paper, we adopt the simple roulette-wheel selection 
to reserve the better individuals. Specifically, in each gen-
eration, a portion of individuals are reserved for the next 
generation by selection operation based on the selection 
probability. After the selection operation, we supplement 
the individuals to keep the same population size.

4.4 � Crossover operation

Crossover operation is used for generating the offsprings, 
which usually requires the cooperation between two par-
ents. As an important means to preserve species diversity, 

Fig. 2   Example of multiple 
point crossover
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crossover operation is implemented by exchanging the gene 
segments between two parents. In this paper, we adopt a 
multiple point crossover to generate the offsprings [23]. Spe-
cifically, an example of multiple point crossover operation 
is depicted in Fig. 2.

As depicted, the crossover operation is assisted by a 
binary vector S. The number of elements in S is the same 
as the number of rows in M† . The value of elements in S 
denotes whether the corresponding gene segments (rows) 
in two parents need to be exchanged. For instance, the first 
element of S is one, which means that the gene segments 
(0,0,0,0) from Parent1 and (1,1,1,1) from Parent2 should 
be exchanged.

4.5 � Mutation operation

The mutation operation is also an important means to pre-
serve the spaces diversity. Specifically, the mutation opera-
tion, which only involves one individual (parent), is usu-
ally implemented after the crossover operation by altering 
a gene in the gene segment of the parent. As a result, the 
resulting offspring is sort of “close” to the parent, in terms 
of distance between them in the multi-dimensional solution 
space. Thus, the crossover and mutation operations serve 
different purposes, respectively, i.e., the crossover operation 
focuses on the improvement of the global search capabil-
ity while the mutation operation pays attention to the local 
search capability improvement. In terms of our problem, 
a single point mutation is used, to prevent GA from fall-
ing into the local best solutions. Specifically, the mutation 
needs another binary vector S which has only one nonzero 
element. The index of the nonzero element in S denotes the 

location (i.e., gene segment) of the mutation. Then gene is 
also randomly determined for the mutation operation in the 
chosen gene segment.

4.6 � GA‑based algorithm design

The general framework for GA is depicted in Fig. 3, which 
consists of several steps such as selection, crossover, and 
mutation operations. Generally, the running time of GA 
depends upon when the stopping criteria are met. In terms 
of our optimization problem, the GA based joint optimiza-
tion of task caching and computation offloading in VEC is 
shown in Algorithm 1.

In the algorithm, we use the crossover probability and 
mutation probability to control the crossover and mutation 
operations, respectively. It is worth mentioning that the 
crossover and mutation are operated on the same population 
S1 , which makes the order of the two operations irrelevant 
in this algorithm.

There are many constraint conditions in the problem for-
mulation such as constraints (23)–(31), so many resulting 
individuals may be constraint-violated after crossover and 
mutation operations. It is necessary to check and remove 
those individuals which violate the constraints when a new 
population is generated. In case of a constraint violation, 
new individuals should be added to keep the same size of 
population. The running time of this algorithm depends 
upon the stopping criteria adopted in this paper. Usually, 
there are two most popular ways to serve as the stopping cri-
teria. One is to directly set the number of iteration steps. The 
other is to define the optimization gap between the globally 
optimal fitness value explored so far and the current fitness 

Fig. 3   The general framework 
for GA
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value. If the value of optimization gap is smaller than the 
given threshold, we can draw a conclusion that the algorithm 
has converged.

5 � Simulation results and analysis

5.1 � Experimental settings

We have conducted a series of experiments to investigate 
the GA based joint optimization of task caching and com-
putation offloading in terms of effectiveness and efficiency 
in this section. First, our experiments are run on a laptop 
with 1.8GHz Intel I5 Quad-Core CPU, 8G of RAM, Micro-
soft Windows 10 Operating System, Python 3.7. Second, 
the initial parameter settings in the experiments are set 
appropriately. For instance, the number of RSUs serving 
the moving vehicles is set to 5, and the number of vehicles 
served by each RSU ranges from 15 to 30. For the three 
components of tasks, say tk = (dk, sk, rk) , dk ranges from 1 
to 51, sk ranges from 30 to 70 and rk ranges from 30 to 40. 
The caching capability of each RSU ci ranges from 100 to 
200. On the other hand, for the GA involved parameters, 
the population size and the number of iterations are set to 
100 and 50, respectively.

It shall be noted that the proposed algorithm GATC 
can be affected by many factors. For instance, param-
eters, such as the crossover probability, mutation prob-
ability, population size, and the number of iterations, can 
greatly influence the performance of GATC w.r.t. running 
time, convergence rate and obtained solution. Parameters, 
including the number of RSUs, the number of offload-
ing requests and so on, can also affect the performance of 
GATC in comparison to other approaches. To investigate 
the efficiency and effectiveness of GATC, two approaches 
are introduced as the benchmark algorithms.

Random approach. One simple way for task caching is to 
select the RSU in a random way. To be more specific, tasks 
from T  can be cached arbitrarily at RSUs without constraint 

violations. There are at least two constraints which are 
imposed upon the task caching. For example, one is that 
the total caching results at one RSU should not exceed its 
own caching capability, which corresponds to the constraint 
(23). The other is that each task can only be cached at most 
once, which corresponds to the constraint (24).

Greedy approach. There are many rules to guide 
the solution searching when the greedy approaches are 
adopted. For instance, different RSUs may have different 
caching capabilities. Thus an intuitive rule is that RSUs 
with more powerful caching capabilities should cache 
more tasks. Therefore, these RSUs can choose either the 
tasks with larger result size or the tasks with smaller result 
size first. Different caching rules may result in different 
performance. However, this greedy rule does not consider 
the dynamic distribution of these offloading requests. 
Specifically, although the task is cached, most of the off-
loading requests for it come from other RUSs rather than 
the one where it is cached. Accordingly, the bandwidth 
resources among these RSUs can be seriously consumed 
to transmit the caching results. To avoid this situation, we 
in this paper adopt another greedy rule, i.e., each RUS 
decides the tasks to be cached based on its own offload-
ing requests. They tend to cache those most frequently 
requested tasks in their own serving area. One inevitable 
case is that tasks can be repeatedly cached at different 
RSUs. To cope with this issue, state information about 
cached tasks should be disseminated among these RSUs. 
Despite extra communication resources consumed by 
RSUs, it is still more efficient than the former one.

5.2 � Impact of parameters

In this section, we have conducted a series of experiments 
to evaluate the influence of the GA-involved parameters 
upon our strategy. These parameters include the crossover 
probability, mutation probability and the population size.

First, the effects of the crossover probability on GATC 
are investigated in terms of the obtained optimal values and 
the response latency. The results are shown in Figs. 4 and 5, 
respectively. We denote the crossover probability by cp in 
the experiments. Five values for cp are evaluated. Other 
parameters are set to default values empirically. For exam-
ple, the population size is set to 50 and the mutation prob-
ability is set to 0.02. The number of iteration steps is 50 in 
Fig. 4 and 20 in Fig. 5. From Fig. 4, we can observe that the 
performance of GATC is affected by the crossover probabil-
ity to some extent. In terms of the obtained fitness values, the 
best crossover probability is 0.3 and the worst is 0.2. When 
the crossover probability is set appropriately (i.e., cp = 0.3 ), 
the fitness values are averagely reduced by 5%, 36%, 2% 
and 18%, compared to the cases cp = 0.1, 0.2, 0.4, 0.5 respec-
tively. These different fitness values denote that GATC are 
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stuck in different locally optimal solutions respectively. 
We also notice that no matter which case is considered, the 
obtained fitness values do not change any more when the 
number of iterations comes to 20. The response times are 
shown in Fig. 5 when the different crossover probability is 
considered. The number of iterations is up to 20. This is 
because the fitness values as shown in Fig. 4 do not change 

since then. The time taken to obtain the approximately opti-
mal fitness values is acceptable. On one hand, GATC takes 
time to search for the best solution over the huge searching 
space, and on the other hand, GATC takes time to check 
the validity of these individuals in the population. When 
the individuals are invalid, it still needs to supplement new 
individuals to the population.

Fig. 4   Fitness values with dif-
ferent crossover probabilities

Fig. 5   Response times with dif-
ferent crossover probabilities
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Second, the effects of the mutation probability on GATC 
are investigated in terms of the obtained optimal values and 
the response latency. The results are shown in Figs. 6 and 7, 
respectively. We denote the mutation probability by cm in 
the experiments. Similar to the evaluation of crossover prob-
ability in the first set of experiments, five values for cm are 
investigated. Other parameters are also set to default values 

empirically. Note that based on the results shown in the first 
set of experiments, the crossover probability is set to 0.3. 
The population size is set to 50. The number of iteration 
steps is 50 in Fig. 6 and 30 in Fig. 7. Figure 6 shows that 
the performance of GATC is also affected by the mutation 
probability to some extent. In terms of the obtained fitness 
values, the best mutation probability is 0.04 and the worst is 

Fig. 6   The fitness values with 
different mutation probabilities

Fig. 7   The response times with 
different mutation probability
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0.01. That means the local searching capability of GATC can 
achieve the best with the mutation probability equal to 0.04. 
To be more specific, when the mutation probability is 0.04, 
the fitness values are averagely reduced by 6%, 0.5%, 4% 
and 1%, compared to the cases cm = 0.01, 0.02, 0.03, 0.05 
respectively. These different fitness values also denote that 
GATC can be stuck in different locally optimal solutions 
respectively. Furthermore, GATC with different mutation 
probability has different convergence rates. In the mean-
while, we also notice that no matter which case is consid-
ered, the obtained fitness values do not change any more 
when the number of iterations comes to 30. The response 
times are shown in Fig. 7 when the different mutation prob-
ability is considered. The number of iterations is up to 30, 
for the reason that the fitness values as shown in Fig. 6 do 
not decrease any more. The analysis about time consumption 
is similar to the first set of experiments which also includes 
two parts – one for solution searching in huge solution space 
and the other for the validity checking for the individuals in 
the population. We do not detail them further.

Third, the effect of the population size on GATC is inves-
tigated in terms of the obtained optimal values. Generally, 
the larger the population size, the better the obtained fit-
ness values. This is because a larger population includes 
more individuals which can explore more potential solutions 
at the same time. However, a larger population size also 
incurs more time consumption. Therefore, there should be 
a tradeoff between the time consumption and the optimal 
value. Specifically, the experimental results are shown in 
Fig. 8. We denote the population size by size in the figure. 

The population size varies from 50 to 150 with a step of 
25. Other parameters are set empirically, e.g., the crossover 
probability is set to 0.3, and the mutation probability is 0.04. 
The number of iteration steps is 50.

From this figure, we can draw several conclusions based 
on the observations. First, the population size can affect 
GATC w.r.t. the fitness values. For example, the optimal 
values are different when the population size is different. In 
this experiment, the performance can reach the best when 
the population size is 125, which however contradicts the 
cognition that a larger population size always brings about 
a better fitness value. One possible and acceptable explana-
tion is that GATC has been stuck in locally optimal solutions 
very soon. For example, as far as the population size equal 
to 150 is concerned, GATC converges to the local optimum 
value at the fastest speed. After that, the fitness value does 
not decrease any more. Second, generally speaking, the 
convergence rate is high no matter which population size is 
investigated. Last but not least, as discussed earlier, a larger 
population size does not always yield a better solution.

5.3 � Approach comparison

In this section, we compare our approach with the bench-
mark algorithms. Since we have evaluated the GA involved 
parameters in the previous section, GATC will be run with 
parameters denoting the best performance. Specifically, we 
compare our approach with others from multiple perspec-
tives. The first set of experiments is conducted to com-
pare them when the number of RSUs changes. When the 

Fig. 8   The fitness values with 
different population sizes
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number of RSUs in the VEC system is large, the number of 
vehicular applications served by RSUs is also very large. 
In this context, the number of tasks that can be cached 
also increases. Accordingly, the probability that the tasks 
requested by vehicles are already cached in the VEC sys-
tems increases. However, the fact that a large number of 
tasks cached in the VEC system not only incurs energy 

consumptions as denoted in Eq. (5), but also consumes 
more bandwidth resources for state information dissemina-
tion and sharing among RSUs.

The simulation result is shown in Fig. 9. It is obvious that 
GATC can achieve the best performance compared to both 
the random approach and the greedy approach. The random 
approach is always the worst among the three approaches. 

Fig. 9   Performance comparison 
with different numbers of RSUs

Fig. 10   Performance compari-
son with different numbers of 
offloading requests
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With the increasing number of RSUs, the number of offload-
ing requests also increases. Accordingly, the optimal value 
defined by Eq. (21) becomes larger and larger. The optimal 
value of the random approach varies sharply compared to 
the other two approaches.

In addition, the number of vehicles served by each RSU 
can also affect the performance of our strategy. An assump-
tion has been made in the experiment that the number of off-
loading requests is the same as the number of vehicles in the 
serving area of each RSU. The second set of experiments has 
been carried out to evaluate the influence of the number of 
offloading requests upon the strategy. In the experiment, the 
number of RSUs is 5, and the number of offloading requests 
for each RSU varies from 15 to 30. The simulation result is 
shown in Fig. 10. As expected, GATC is the best while the 
random approach is the worst among the three approaches. 
However, when the number of requests is 16, the random 
approach is better than the greedy approach. One possible 
explanation is that the placement of task results at RSUs in 
a random way caters for the randomly generated offloading 
requests much more than the greedy approach. This figure 
also reveals that the optimal values increase for the three 
approaches as the number of offloading requests increases.

Last, the three approaches are compared with each other 
from the viewpoint of static energy consumption. The ben-
efits of task caching have been summarized in the previ-
ous sections, such as response latency reduction and QoE 
improvement. We also mentioned that task caching may 
render more energy consumptions especially for the fine-
granularity task caching. Therefore, we conduct the last 
set of experiments to investigate the influence of the static 
energy consumptions (i.e., �i defined in Eq. 5). For simplifi-
cation, we assume that all the �i is the same. In other words, 
the static power consumption for one unit data/task caching 
is the same for all the RUSs in R . As the equation denotes, 

when the value of � increases, the corresponding energy 
consumption also increases. In the experiment, the number 
of RSUs is 5 and the number of offloading requests for each 
RSU is 20. Each vehicle randomly requests the computation 
offloading to its serving RSU, i.e., offloading the task from 
T  in a random way. The simulation results are shown in 
Fig. 11, where � varies from 0.1 to 0.9.

From this figure, we can see that the optimal values of the 
three strategies all increase as the value of � increases, which 
is reasonable since � is the unit cost for task caching in terms 
of energy consumptions. Still, GATC averagely achieves the 
best performance w.r.t. the optimal values and the random 
approach averagely achieves the worst performance among 
the three approaches. Interestingly, the random approach 
achieves the best performance when the value of � is 0.2, 
compared to the greedy approach and GATC. The reason 
is similar to the case shown in Fig. 10 where the random 
approach is better than the greedy approach with the number 
of requests equal to 16. Specifically, the random placement of 
task results at RSUs caters to the randomly generated offload-
ing requests much more than GATC and the greedy approach.

6 � Conclusion

Extensive attention has been paid to task offloading in VEC 
system recently. As a new computing paradigm, VEC can 
undertake the computation offloaded from the vehicles in its 
serving area. To further enhance the performance of VEC 
w.r.t. response latency reduction, task oriented caching strat-
egy has been applied to VEC. However, some issues that 
revolved around caching enabled task offloading in VEC still 
need to be addressed. In this paper, we have proposed a gen-
eral caching-enabled VEC scheme. For example, we consider 
not only caching results placement at RSUs but also the cach-
ing results delivery in VEC. For the problem formulation, 
both the response latency and energy consumption are taken 
into consideration, by jointly optimizing the task caching and 
computation offloading in VEC. A genetic algorithm-based 
approach is put forward to minimize the weighted sum of the 
service time and energy consumption for all the offloading 
requests. Simulation results have shown its advantages over 
the benchmark algorithms. For the future work, we plan to 
design a more efficient algorithm for this issue.
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