
2
0

2
0

 1
6
th

 I
n

te
rn

a
ti

o
n

a
l

C
o

n
fe

re
n

c
e
 o

n
 M

o
b

il
it

y
,

S
en

si
n

g
 a

n
d
 N

e
tw

o
rk

in
g

 (
M

S
N

)
| 9

7
8

-1
-7

2
8

1
-9

9
1

6
-0

/2
0

/$
3

1
.0

0
 ©

2
0

2
0

 I
E

E
E

 |
D

O
I:

1

0
.1

1
0

9
/M

S
N

5
0

5
8

9
.2

0
2

0
.0

0
0

3
3

2020 16th International Conference on Mobility, Sensing and Networking (MSN)

CoOMO: Cost-efficient Computation Outsourcing

with Multi-site Offloading for Mobile-Edge

Services

Tianhui Meng*, Huaming Wu^, Zhihao Shang+, Yubin Zhao*, and Cheng-Zhong Xu§

* Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China

tTianjin University, Tianjin, China

+Freie Universitat Berlin, Berlin, Germany

§ State Key Lab of IoTSC & Dept. of Computer and Information Science, University of Macau, Macau, China

Abstract—Mobile phones and tablets are becoming the primary
platform of choice. However, these systems still suffer from
limited battery and computation resources. A popular technique
in mobile edge systems is computing outsourcing that augments
the capabilities of mobile systems by migrating heavy workloads
to resourceful clouds located at the edges of cellular networks.
In the multi-site scenario, it is possible for mobile devices to
save more time and energy by offloading to several cloud service
providers. One of the most important challenges is how to choose
servers to offload the jobs. In this paper, we consider a multi-site
decision problem. We present a scheme to determine the proper
assignment probabilities in a two-site mobile-edge computing
system. We propose an open queueing network model for an
offloading system with two servers and put forward performance
metrics used for evaluating the system. Then in the specific
scenario of a mobile chess game, where the data transmission is
small but the computation jobs are relatively heavy, we conduct
offloading experiments to obtain the model parameters. Given the
parameters as arrival rates and service rates, we calculate the
optimal probability to assign jobs to offload or locally execute and
the optimal probabilities to choose different cloud servers. The
analysis results confirm that our multi-site offloading scheme is
beneficial in terms of response time and energy usage. In addition,
sensitivity analysis has been conducted with respect to the system
arrival rate to investigate wider implications of the change of
parameter values.

Index Terms—Computation outsourcing, Multi-site offloading,
Mobile-edge computing, Queueing networks

I. In t r o d u c t i o n

As a key 5G enabler technology, Mobile Edge Com-

puting (MEC) has emerged as a new computing paradigm

that provides end-users with low latency in their access to

applications deployed at the edge of the cloud [1], [2]. In

MEC, computation offloading is a promising solution proposed

to improve the mobile devices’ performance by migrating

heavy computation workload to resourceful servers [3]. In

recent years, there has been a lot of research on mobile

cloud offloading and computation outsourcing [4]-[6]. Mobile-

edge computing offloading is different from the traditional

client-server architecture, where a thin client always migrates

computation to a server [7]. The current cloud computing

infrastructure provides mobile systems with plenty and easy

Corresponding author: Huaming Wu (whming@tju.edu.cn).

Fig. 1. Multi-site offloading scenario.

access to public cloud resources. Hence, there are several cloud

service providers that use public clouds to address the mobile

computing problems. For example, Apple’s iCloud provides a

service to its customer by hosting their applications and data

in public clouds (i.e., Amazon EC2 and Microsoft Azure) [8].

The possibility to offload involves taking a decision regarding

whether and what computation to migrate [9].

Mobile devices can access multiple cloud providers and

edge servers (Fig. 1) and it is possible for mobile systems

to optimize their metrics by offloading different parts of the

computation to different servers [4], [10], [11]. However, the

issues of poor flexibility, complex structure, and not suitable

for lightweight equipment hinders the large-scale application

of the existing schemes.

In this paper, we propose a cost-efficient and light-weighted

scheme for multi-site offloading and outsourcing in mobile-

edge services. Different from the existing schemes, the pro-

posed scheme accelerates the decision process by leveraging

open queueing network models. Given the arrival and service

rates of the queues, the optimal probability to assign jobs to

offload and the optimal strategy to choose offloading servers

are specified for the system gain in terms of response time

and energy consumption. We also propose metrics to evaluate

the performance and cost of the multi-site offloading system.

In order to validate the proposed offloading scheme, experi-

ments are conducted by including a mobile chess game in our

offloading engine, where we run experiments using different

978-1-7281-9916-0/20/$31.00 ©2020 IEEE
DOI 10.1109/MSN50589.2020.00033

113

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 12,2021 at 09:20:26 UTC from IEEE Xplore. Restrictions apply.

mobile devices in different network conditions. A mobile chess

game is a good candidate application to investigate the benefits

of mobile cloud offloading since the data transmission is

small but the computation work can be relatively heavy. The

experimental results confirm that using the proposed multi-

site offloading scheme more time and energy can be saved

on the mobile devices. Real-time multimedia applications,

especially real-time strategy games, fitness applications are

some applications that benefit from this approach.

The remainder of this paper is structured as follows. Section

2 presents the system model and metrics. Section 3 shows

the evaluation of the proposed offloading scheme. Finally, the

paper is concluded in Section 4.

II. Re l a t e d Wo r k

A number of researches exist on offloading decisions for

improving system performance and saving energy [10], [12]-

[15]. To achieve energy-efficient offloading under a completion

time constraint, Guo et al. [13] provide a dynamic offloading

decision scheme to reduce energy consumption and shorten

completion time. Hu et al. [15] propose a software framework

to deploy existing robotic software packages to the cloud and

transform them into cloud services. Wu and Wolter investigate

two types of delayed offloading policies and optimize a

proposed Energy-Response time Weighted Product (ERWP)

metric [16]. However, most of the prior studies in this area

propose a limited form of offloading, that is limited to a single

server as the offloading target [16], [17].

Besides the schemes for single-site offloading, there are

a few number of works in the area of multi-site offloading

decisions. Goudarzi et al. study a hybrid solution that finds

the offloading solution in a timely manner with two decision

algorithms [18]. Enzai et al. [19] propose a heuristic algo-

rithm for the multi-site computation offloading problem. Since

the multi-site offloading depicts a more generic mobile-edge

computing model, and it contains the single-site offloading

problem, we address multi-site decision problem in this paper.

Compared with existing solutions, our proposed model is

lighter and more flexible.

III. Sy s t e m Mo d e l

We propose a novel offloading policy for the multi-site

offloading system by considering the following realistic sce-

nario. Rather than directly connecting to remote cloud servers,

the mobile devices use a nearby cloudlet (or an edge server)

through Wi-Fi or 3G/LTE networks to obtain reliable con-

nections and services. The term cloudlet refers to a layer

connecting mobile devices and cloud servers. A cloudlet can

be either a computer or a cluster of digital infrastructure which

is well-connected to the Internet and provides cloud users with

a rapid response and specifically customized functionalities

[20]. As shown in Fig. 1, cloudlets are located close to mobile

devices while the cloud servers are generally far.

The jobs of the system are generated by the mobile appli-

cations which can either execute them locally on the mobile

device or offload them to cloud servers. In the latter case the

mobile devices discover a nearby cloudlet and offload jobs

to it before receiving the computation results sent back by the

servers. The offloadable jobs can be any computation-intensive

or energy-intensive jobs such as Optical Character Recognition

(OCR), real-time translating and chess algorithm computation.

The offloading decision mechanisms on the mobile systems

are managed by the system administrator by a Mobile Device

Management (MDM) system. The administrator can decide

how many jobs to offload and how many to execute locally.

The decision algorithm we use is a static algorithm which

assigns jobs to be offloaded or executed locally randomly

with a certain probability. The jobs assigned to offload are

temporarily stored in the cloudlet offloading buffer before they

are sent to the cloud servers.

There are several cloud servers available for executing the

jobs in this scenario. The cloudlets collect jobs from nearby

mobile clients and decide how many jobs to offload to each

server in order to save the most execution time and energy.

The cloudlet, also managed by the system administrator, uses a

static strategy to offload the jobs to different servers according

to certain probabilities. Finally, the jobs are offloaded to the

desired servers through a network and after being processed by

the servers, the results are sent back to the mobile devices. For

the sake of model simplicity, we consider a two-site offloading

scenario. In fact, the more complicated situation can also be

attributed to a two-site problem when the servers are divided

into two categories, fast and slow ones.

An example of this scenario could be a financial company,

where the employees use their mobile devices to do a certain

computation job. There are cloudlets in each floor of the

company building which the mobiles can connect and offload

jobs to. After collecting the jobs, the cloudlet sends them to

either the company’s private cloud or a public cloud through

Internet to execute the jobs. Finally, the computation results

are sent back to the mobile devices.

A. Performance Analysis Model
In order to evaluate the performance of a two-site mobile

offloading execution, we define an open queueing network

model from our scenario shown in Fig. 2. The cloud servers

and the mobile device execution are represented as queueing

nodes. It is assumed the service times have an exponential

distribution for each queue and the jobs are generated by a

number of mobile devices as a Poisson process with rate A

[21]. Each time a job is generated, a decision has to be taken by

the mobile devices whether it is offloaded to the cloud server
or executed locally. There is a dispatcher di in Fig. 2 which is

used to allocate the offloadable jobs either to the cloud servers

or to the mobile device with an offloading probability n. Thus,

a ratio of 1 — n of the total jobs are allocated to the mobile

device and served with rate

After an offloadable job is assigned to offloading, it is first

stored in the offloading buffer in the cloudlet. The dispatcher

d2 is used to allocate the jobs to the different servers. In

our scenario there are two cloud servers in the system, one

server is in Germany (server.de) and the other one is located in

114

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 12,2021 at 09:20:26 UTC from IEEE Xplore. Restrictions apply.

a 1 — aChina (server.cn). The service rates are m1 and M2 respectively.

a of the jobs are allocated to server.de while 1 — a of

the jobs are offloaded to server.cn. The mobile devices are

assumed to be located in Germany. In the proposed two-

site mobile cloud offloading system management, the two

assignment probabilities n and a are the parameters that the

system administrator can tune to adjust the performance. In the

following sections, we explore how to determine the optimal

probabilities n and a for the optimal system gain.

B. Performance Metrics
In order to evaluate the performance of the multi-site of-

floading system, we propose several metrics: average response

time, mean energy consumption, accounting cost and Dollar

per Job metric. We not only analyze the performance metrics

independently, but also consider the tradeoff between different

metrics in this section.
1) Average response time: The response time is the time

between arrival of a job until it completes service and departs.

In queueing theory, the mean response time can be computed

using Little’s law [22]

E [N] = AE [R]. (1)

E[] is the expectation of a random variable. Then the response

time

e i«] = ™ = (1 —p) 1 = p —r • <2)

where p is the system utilization.

In the proposed queueing network model, the system mean

response time equals the average of the response times in

the offloading queue and in the local execution queue. That

is the sum of products of response time and probability of

assignment to each queue:

E [R] = (1 — n) ■ E Rlocal] + n ■ E [Roffload] • (3)

Similarly, the response time of the two-site offloading queue

is computed as

E [R]
1 — n

Mm (1 n)A
+n

Mi — anA +
M2 — (1 a)nA

(5)
2) Energy consumption: The energy consumption is the

energy spent by the mobile device in a period of time. Aaron

Carroll made elaborate measurements and computations of the

energy consumption of each module in mobile systems in [23].

As introduced by Carroll, the energy consumption of executing

different commands are not equal. Thus we assign two energy

parameters es and em to represent the energy consumption

for offloading execution and local execution of jobs on the

smartphone respectively. The offloading energy parameter es
includes both the power used by data transmission and waiting

for the results. Since the value of energy in mobile devices and

servers are different, we assign another specific weight (6s and

Om). Then the expected energy consumed per job is:

E [E] = nE [Roffload] esOs + (1 — n)E [Rlocal] ■ emQm • (6)

That is the expected energy consumption equals the sum of

products of the expected response time and energy parameter

of each queue. Substituting the model parameters into Eq. 6,

we get

(1 — n) e s 9 s

E [f] = - T T H rMm (1 n) A
a

+ n e m ^m +
Mi — a n A

1 — a
M2 — (1 — a)nA

(7)

3) Energy-response time tradeoff metric: Energy consump-

tion and response time are two primary aspects for mobile

cloud offloading systems which must be taken into considera-

tion when making offloading decisions [21]. In order to inves-

tigate how expected response time will interact with expected

energy consumption, we study the tradeoff between these

two metrics, which is a nontrivial multi-objective optimization

problem:

E [Roffload] = (1 — a) ■ E [Rcn] + a ■ E [Rde] • (4)

Substituting Eq. 2, Eq. 4 and model parameters into Eq. 3

we get the expected response time of the multi-site offloading

system as:

Fig. 2. A queueing model for mobile cloud offloading system

Tradeoff = E [R] ■ E [E] =] • (8)

The tradeoff metric we propose is an objective function

formed from the product of the expected energy consumption

(Eq. 6) and the expected response time (Eq. 3). This can be

seen as energy per job metric, which is the better the lower.

4) Accounting cost: In addition to energy and performance

we propose an accounting cost metric to represent the cost

property of the multi-site offloading system.

The accounting cost we considered is the system cost. We

assume that the billing of the server in Germany (server.de)

is more expensive than the server in China (server.cn). But

the German server is closer to the user. Since most popular

cloud service providers, like Google App Engine (GAE) and

Sina App Engine (SAE), charge their users by incoming

and outgoing network traffic, we define two cost weighting

115

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 12,2021 at 09:20:26 UTC from IEEE Xplore. Restrictions apply.

parameters Zde and (en that are multiplied by the number

of jobs. Hence the cost metric is given by the sum of the

probability of offloading to each server multiplied with the

cost weighting parameter:

Cost = n \ [a ■ Zde + (1 — a) ■ Ze n] • (9)

5) Dollar per Job metric: The tradeoff between response

time and cost metric is also analyzed. An objective function

formed from the tradeoff of these two metrics is created to

demonstrate the tradeoff situation. Since the reciprocal of the

response time can be interpreted as the number of processed

jobs, we call the product Dollar per Job metric as shown

below:

Dollar per Job = E [R] ■ Cost = —i— • (10)
e [R]

As a system designer, one may look forward to maintaining

the response time with lower cost, as for the Dollar per Job

metric, the lower the better.

The parameters for the queueing model are measured from

runtime experimental data. In Section V we evaluate the

offloading system using the proposed metrics.

IV. Ru n t i m e o f t h e Of f l o a d i n g Ch e s s Ga m e

In the proposed model, the parameters p 1, p 2 and

are needed as the input of the proposed queueing network

model. Thus in this section, we explore these parameters

by conducting experiments. A mobile chess game is a good

candidate application to investigate the benefits of mobile

cloud offloading since the data transmission is small but the

computation work can be relatively heavy. We develop our

testbed based on the chess module CuckooChess 1.12 [24], an

advanced free open source chess program under the GNU Gen-

eral Public License written in Java. The CuckooChess module

implements many of the standard methods for computer chess

programs which enable us to develop various desired chess

strategies.

We show the runtime experiments of the offloading chess

engine. Most chess programs are divided into two parts: an

engine that computes the best move given a current board

representation and a user interface. The chess engine can

be run either on the mobile device or on the remote server

while the interface will always remain on the mobile device.

The two parts communicate with each other using a public

communication protocol. The most popular protocol is the

Chess Engine Communication Protocol (CECP) [25].

We vary the search depth in the tree which is a parameter

commonly used to adjust the difficulty of a chess game. We

investigate only the runtime of the chess moves, which is used

as an indicative parameter for the performance of the device.

In our evaluations, we do not consider the influence of fault

occurrences in the communication networks because we only

focus on the total response time of the offloading server which

includes the transmission time and the server execution time.

Fig. 3. The mobile offloading experiment deployment

TABLE I
Tr a c e r o u t e r e s u l t s f r o m d i f f e r e n t n e t w o r k s

from-to
Number

of Hops

Packet

Loss

Average

RTT(ms)

eduroam - server 7 0.10% 7.5

O2 DSL - server 15 0.20% 52.8

China ADSL - server 22 3.60% 286.0

eduroam - China server 22 3.10% 288.2

A. Hardware and Network Specification

The experiment deployment is illustrated in Fig. 3. We

use different connections to parameterize our model. The

offloading server (xen-virtual-machine: 2.53 GHz 4core Xeon

CPU E5649 with 8 GB RAM) is located at our institute in

Berlin. For the runtime experiments we used two different

mobile phones, a Samsung Galaxy S6 (2.1 GHz Exynos 7420

CPU with 3 GB RAM) and a Redmi 2 (1.2 GHz Qualcomm

Snapdragon 410 CPU with 1 GB RAM). We connected

the Samsung Galaxy S6 to the server through two different

networks, the eduroam WLAN at the institute and the 02

DSL network from a residential area in Berlin. The Redmi

2 connected to the offloading server through ADSL network

form China Unicom (a Chinese state-owned telecommunica-

tions operator) from Beijing. The mobile phones access the

networks through Wi-Fi.

We could hence investigate three very different network

connections to our offloading server: an excellent connection

using eduroam, a good connection using O2 DSL and a less

stable, and longer connection from China using China Unicom

ADSL. In order to show the three network characteristics, we

run the MTR tool [26] for about 10 minutes in the each

scenario and show the results in a table.

The first three result rows in Table I summarize the tracer-

oute results to the offloading server host https://www.mi.

fu-berlin.de/offload from the three networks. They illustrate

the number of hops, the packet loss as well as the average

round-trip time (RTT) for a packet to this host.

When the mobile device is connecting to the eduroam

network in our institute, the average RTT from the MTR tool is

7.5 ms and it needs 7 hops to the offloading server. Meanwhile,

in the 02 DSL, it takes 15 hops and the average RTT is 52.8

116

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 12,2021 at 09:20:26 UTC from IEEE Xplore. Restrictions apply.

ms, which has more network delay than eduroam. The worst

network is Unicom ADSL from China because it is far away

(22 hops) from the server in Germany and the average RTT

is 286 ms. The network connection from China also has the

highest packet loss.

Even though the network conditions are changing from time

to time, the traceroute results can still act as indications of the

network characteristics in a general order of magnitude.

It is worth mentioning that in the runtime experiments we

set up one offloading server which is located at our institute,

while we use two mobile devices: one is in Germany and

the other in China. Thus for the Chinese server queue, the

measurement direction is opposite to that in the queueing

network model. In the model, jobs are offloaded to the Chinese

server, but the runtime measurements are taken by sending

jobs from China to the German server. We assume the runtime

distributions are identical for both directions so that we can

use the runtime results to parameterize the service rate for

server.cn.
To support this assumption, we take another traceroute mea-

surement from our institute to a Chinese server (baidu.com)

shown in the row of Table I. From the results, one can

see that the number of hops and average RTT (22 hops,

288.2 ms RTT) are nearly the same with that from China

client to German server (22 hops, 286.0 ms RTT). Since our

model only takes the mean response time into consideration,

the transmission time distributions of both directions can be

considered identical in our case.

B. Mean runtime of first 10 rounds

Fig. 4 shows the mean runtime of the first 10 chess rounds

with the two different mobile devices in different network

conditions. We use an average over the first ten rounds since

some games end very quickly and almost all games took at

least ten rounds, such that those mean values can cover most

of the 60 tests. The results are shown with confidence intervals

(CI). The local execution time increases rapidly up to several

seconds per round on both devices with growing depth. The

increase seems to be roughly exponential. However, the server

has more processing power and the remote execution time

increases slowly but seems to be linearly for both devices and

all networks.

We assume that the processing speed of the server will be in

the same order or magnitude irrespective of the network over

which it is accessed. Therefore, we attribute the difference in

the speed of the remote execution using the different networks

to the quality of the network conditions. Using eduroam, since

the server and the client are in the same LAN, the execution

time is the lowest and offloading is beneficial for any search

depth. While using the 02 network local execution of the chess

search is faster up to a search depth of 7. For higher difficulty,

from depth 8 onwards, offloading will increase the processing

speed. As for the connection from China, even using a less

powerful device Redmi 2, offloading takes longer and is only

beneficial for search depth 9 and more.

Fig. 4. Mean runtime with different mobile devices in different network
conditions

C. Runtime for a full game
The times shown in Table II describe the mean time that

must be invested in a full game. We have used the mean

number of rounds needed per search depth and the mean time

needed for the mean number of rounds. Obviously, the time per

game increases most with the depth for the full computation

on both mobile devices.

All remote executions increase less and offloading within

the eduroam network at our institute is the fastest for a

full game at all levels of difficulty. The decisions for a full

game will be mostly the same as for the first ten rounds, as

considered in Fig. 4.

When the network connection is stable and the user is in

the same LAN as the offloading server(e.g. eduroam in our

experiment), one should always offload his computation to

save time and energy. While as one uses a less powerful device

(Redmi 2), one should decide to offload when the search depth

is larger than 6 in a good network (e.g. 02 DSL). It can be seen

that offloading is beneficial even for a very powerful mobile

device (Samsung S6) when the search depth is more than 8.

However, if the network delay is high, it is wise to execute

the computation locally on the mobile device before the search

depth of 10, in which we assume the network condition does

not change during one game time.

V. Ev a l u a t i o n o f t h e Mu l t i -s i t e Of f l o a d i n g

Sc h e m e

In this Section, we evaluate the performance metrics pro-

posed in Section III-B using the model analysis results. We

parameterize the queues in the proposed model for multi-

site offloading scenario using the experiment results from our

offloading chess engine.

A. Response Time Analysis
In Fig. 5 we show the average system response time E [R]

versus the offloading probability n and the probability of

choosing the German server a. The light color area at the

bottom of the figure is the area where the system witnesses

117

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 12,2021 at 09:20:26 UTC from IEEE Xplore. Restrictions apply.

TABLE II
Me a n Ti m e p e r Ga m e (m s)

depth
device

3 5 7 9 11

S6 local 1647.02 4454.53 11752.20 44483.90 95115.70

S6 edurom remote 804.27 916.77 1203.08 1666.47 1698.15

S6 O2 remote 5253.47 8439.13 10092.90 11634.20 13967.10

Redmi local 1793.78 6099.82 23977.40 67450.70 142052.00

Redmi China remote 40650.70 40532.10 40853.60 40343.60 40972.50

Fig. 5. System average response time over the offloading probability n and
the optimal probability of choosing the German server a

the shortest average response time. Searching from the figure,

we get the optimum point (n = 0.85,a = 0.73) for the average

response time metric. Besides, one can also see the edge in the

top (n = 0, no jobs are offloaded) shows the highest response

time when all jobs are executed on the mobile device. For the

sake of brevity, in the following analysis we set the offloading

probability n = 0.85 so that we mainly study how the system

performance interacts with the probability of choosing the

German server a.

We can further formulate the optimization of the mean

response time metric for the offloading assignment as:

argmin E [R] , (11)
a

and we find the probability of choosing the German server a

to server.de and server.cn (1 — a) queues such that E [R] is

minimized when all queues are in operation. After setting the

offloading probability n as a constant, the optimal probability

a can be computed by taking the derivative of the expected

response time E [R]:

d E[R]

da
(12)

E[R]

Optimum

A = 0.20

A = 0.15

A = 0.10

A = 0.05

Fig. 6. Mean system response time changing with the probability of choosing
the German server a

Tradeoff

Fig. 7. Response time and energy tradeoff over the optimal probability of
choosing the German server a

Then the optimal probability a to assign a job

server.de queue is

a = An^i — 2^ i fi 2 + (m i + M2 — An) ^ 1 fi 2

An (m i — M2) ’

Substituting the numerical instances of model parameters

into Eq. 13, we get exactly the same optimal value a = 0.73

as shown in Fig. 5.

We show the two-dimensional result of the mean system

response time changing with the probability of choosing the

German a in Fig. 6. The results are presented with four differ-

ent arrival rates A = 0.05,0.10, 0.15 and 0.20 respectively. We

vary the probability of choosing the German server a from 0

to the

(13)

118

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 12,2021 at 09:20:26 UTC from IEEE Xplore. Restrictions apply.

Cost

Fig. 8. Accounting cost changing with the probability of choosing the German
server a

to 1. When a = 1 all offloading jobs go to server.de, whereas

for a = 0 all jobs are executed in server.cn.
From the figure, we found the optimal probability of choos-

ing the German server a to minimize the system average

response time for different arrival rates. When the workload

is low (A = 0.05), E [R] is minimized when a = 1 , that is

all jobs are offloaded to server.de. As the system workload

increases, the optimal probability a decreases and the jobs

are offloaded to both the German and Chinese servers. When

A = 0.2, the optimal probability a is 0.73, the same as the

value we derived from Eq. 13.

B. Tradeoff Analysis
We present the tradeoff of energy consumption and response

time in Fig. 7. As the average response time metric, we

formulate the optimization of the Tradeoff metric as:

argmin Tradeoff. (14)
a

We found that the optimal probability of choosing the

German server for the tradeoff metric is the same as the

one for the average response time metric (Fig. 6). The reason

is that in the multi-site offloading scenario, the response time

dominates the tradeoff metric. When the response time shorter,

the mobile device can save more energy by using the results

sent from the servers.

C. Dollar per Job Analysis
The accounting cost metric changes with the probability

of choosing the German server as depicted in Fig. 8. It

is assumed that the Germany server charges more than the

Chinese server as the cost parameters are Zde = 2.5 and Zen =

1. We also present the results with four different arrival rates

A = 0.05,0.10,0.15 and 0.20 respectively.

Obviously, the accounting cost metric increases monotoni-

cally with growing probability of choosing the German server

, since the larger the more jobs are offloaded to the more

expensive server server.de. Similarly, the larger the system

arrival rate A the more the user has to pay. However, from

Fig. 9 when the system workload is heavy (A = 0.20) we can

find the optimal probability a = 0.49 for the Dollar per Job

metric. As the system arrival rate decreases, it is cheaper to

Fig. 9. Dollar per Jobs metric over the probability of choosing the German
server a

offload all the jobs to the Chinese server. That is we get the

lowest Dollar per Job metric when a = 0.

Given the system parameters as arrival rates and service

rates, we can calculate the optimal offloading probability n

and probability of choosing the German server for different

performance metrics and give advice to system administrators

as to how to configure the multi-site offloading system.

D. Sensitivity Analysis

Sensitivity analyses were implemented to explore the effects

of increasing the system arrival rate A on the probability of

choosing the German server a (Fig. 10(a)) and the Dollar per

Job metric (Fig. 10(b)). As expected, increasing the system

arrival rate necessarily made the offloading less cost-effective

and the Dollar per Job metric increased accordingly. However,

for the optimal probability of choosing the German server an

increase in the arrival rate will cause its decrease because as

the system workload is heavier some jobs should be offloaded

to server.cn to avoid the long waiting time in the queue of

server.de.

VI. Co n c l u s i o n s

In this paper we presented CoOMO, a cost-efficient multi-

site offloading scheme for mobile computation outsourcing.

CoOMO aims to provide a light-weighted, yet powerful and

efficient offloading assignment decision for mobile cloud ser-

vices. First, an open queueing network model is proposed for

the multi-site offloading system and performance metrics used

for evaluating the system are presented. The experimental re-

sults confirm that our multi-site offloading scheme is beneficial

in terms of response time and energy when the recommended

assignment probabilities are applied. We found that the optimal

probability for choosing the offloading server for the energy-

response time tradeoff metric is the same as the one for the

average response time metric. When the system workload is

heavy, we found the optimal probability a = 0.49 for the

Dollar per Job metric. However, as the system arrival rate is

low, it is always cheaper to offload all the jobs to the remote

Chinese server.

119

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 12,2021 at 09:20:26 UTC from IEEE Xplore. Restrictions apply.

0.9

,E 0.85

Z 0.8

13
E

\
\
\

■ \
\

■ \
\

. \

0.05 0.10 0.15 0.20

Increase in arrival rate A

0.25

(a) Effect of increase in arrival rate A on the optimal probability
(A

(b) Effect of increase in arrival rate A on Dollar per Job metric

Fig. 10. Sensitivity analysis results

Ac k n o w l e d g m e n t

This work is supported by the Key-Area Research

and Development Program of Guangdong Province

(N0.2020B010164002), the National Key R&D Program

of China (No. 2018YFB1004804) and the Basic Research

Program of Shenzhen (JCYJ20180302145731531).

Re f e r e n c e s

[1] J. Wang, J. Pan, F. Esposito, P. Calyam, Z. Yang, and P. Mohapatra,
“Edge cloud offloading algorithms: Issues, methods, and perspectives,”
ACM Computing Surveys (CSUR), vol. 52, no. 1, pp. 1-23, 2019.

[2] S. Lin and J. Wan, “Context-awareness enhances 5g mec resource allo-

cation,” in International Symposium on Pervasive Systems, Algorithms
and Networks. Springer, 2019, pp. 347-358.

[3] A. Anand, G. De Veciana, and S. Shakkottai, “Joint scheduling of urllc
and embb traffic in 5g wireless networks,” IEEE/ACM Transactions on
Networking, vol. 28, no. 2, pp. 477-490, 2020.

[4] Y. Zhang, J. Zhou, Y. Xiang, L. Y. Zhang, F. Chen, S. Pang, and

X. Liao, “Computation outsourcing meets lossy channel: Secure sparse
robustness decoding service in multi-clouds,” IEEE Transactions on Big

Data, 2017.

[5] Z. Shan, K. Ren, M. Blanton, and C. Wang, “Practical secure computa-
tion outsourcing: A survey,” ACM Computing Surveys (CSUR), vol. 51,
no. 2, pp. 1-40, 2018.

[6] S. Debnath and B. Bhuyan, “An efficient computation and storage
outsourcing process with verification for light weight devices,” in Inter-
national Conference on Innovation in Modern Science and Technology.
Springer, 2019, pp. 94-103.

[7] B. Zhou and R. Buyya, “Augmentation techniques for mobile cloud
computing: A taxonomy, survey, and future directions,” ACM Computing
Surveys (CSUR), vol. 51, no. 1, pp. 1-38, 2018.

[8] M. B. Terefe, H. Lee, N. Heo, G. C. Fox, and S. Oh, “Energy-efficient
multisite offloading policy using markov decision process for mobile
cloud computing,” Pervasive and Mobile Computing, 2016.

[9] Q. Qi, J. Wang, Z. Ma, H. Sun, Y. Cao, L. Zhang, and J. Liao,
“Knowledge-driven service offloading decision for vehicular edge com-
puting: A deep reinforcement learning approach,” IEEE Transactions on

Vehicular Technology, vol. 68, no. 5, pp. 4192-4203, 2019.
[10] R. Kumari, S. Kaushal, and N. Chilamkurti, “Energy conscious multi-site

computation offloading for mobile cloud computing,” Soft Computing,
vol. 22, no. 20, pp. 6751-6764, 2018.

[11] D. Sulaiman and A. Barker, “Mamoc-android: Multisite adaptive com-
putation offloading for android applications,” in 2019 7th IEEE In-
ternational Conference on Mobile Cloud Computing, Services, and
Engineering (MobileCloud). IEEE, 2019, pp. 68-75.

[12] A. Khalili, S. Zarandi, and M. Rasti, “Joint resource allocation and
offloading decision in mobile edge computing,” IEEE Communications

Letters, vol. 23, no. 4, pp. 684-687, 2019.
[13] S. Guo, J. Liu, Y. Yang, B. Xiao, and Z. Li, “Energy-efficient dynamic

computation offloading and cooperative task scheduling in mobile cloud
computing,” IEEE Transactions on Mobile Computing, vol. 18, no. 2,
pp. 319-333, 2019.

[14] F. Altaf, S. Maity et al., “Linearly homomorphic signature based
secure computation outsourcing in vehicular adhoc networks,” in 2019
Innovations in Power and Advanced Computing Technologies (i-PACT),
vol. 1. IEEE, 2019, pp. 1-7.

[15] B. Hu, H. Wang, P. Zhang, B. Ding, and H. Che, “Cloudroid: A

cloud framework for transparent and qos-aware robotic computation
outsourcing,” in 2017 IEEE 10th International Conference on Cloud
Computing (CLOUD). IEEE, 2017, pp. 114-121.

[16] H. Wu and K. Wolter, “Stochastic analysis of delayed mobile offloading
in heterogeneous networks,” IEEE Transactions on Mobile Computing,
vol. 17, no. 2, pp. 461-474, 2017.

[17] Q. Wang and K. Wolter, “Reducing task completion time in mobile

offloading systems through online adaptive local restart,” in Proceed-
ings of the 6th ACM/SPEC International Conference on Performance
Engineering, ser. ICPE ’15. New York, NY, USA: ACM, 2015, pp.
3-13.

[18] M. Goudarzi, M. Zamani, and A. T. Haghighat, “A fast hybrid multi-

site computation offloading for mobile cloud computing,” Journal of
Network and Computer Applications, vol. 80, pp. 219-231, 2017.

[19] N. I. M. Enzai and M. Tang, “A heuristic algorithm for multi-site

computation offloading in mobile cloud computing,” Procedia Computer
Science, vol. 80, pp. 1232-1241, 2016.

[20] K. Gai, M. Qiu, H. Zhao, L. Tao, and Z. Zong, “Dynamic energy-aware
cloudlet-based mobile cloud computing model for green computing,”
Journal of Network and Computer Applications, vol. 59, pp. 46-54,
2016.

[21] H. Wu, W. Knottenbelt, and K. Wolter, “Analysis of the energy-response
time tradeoff for mobile cloud offloading using combined metrics,” in
Teletraffic Congress (ITC 27), 2015 27th International. IEEE, 2015,
pp. 134-142.

[22] R. Jain, The art of computer systems performance analysis: techniques
for experimental design, measurement, simulation, and modeling. John
Wiley & Sons, 1990.

[23] A. Carroll and G. Heiser, “An analysis of power consumption in a
smartphone.” in USENIX annual technical conference, vol. 14. Boston,
MA, 2010.

[24] P. Osterlund, “Cuckoochess 1.12,” http://hem.bredband.net/petero2b/
javachess/index.html.

[25] T. Mann and H.G.Muller, “Chess engine communication protocol,” https:
//home.hccnet.nl/h.g.muller/engine-intf.html.

[26] “My traceroute,” https://github.com/traviscross/mtr.

120

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on April 12,2021 at 09:20:26 UTC from IEEE Xplore. Restrictions apply.

