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Abstract—Internet of Health Things (IoHT) is a promis-
ing e-Health paradigm that involves offloading numerous
computational-intensive and delay-sensitive tasks from lo-
cally limited IoHT points to edge servers (ESs) with abun-
dant computational resources in close proximity. How-
ever, existing computation offloading techniques struggle
to meet the burgeoning health demands in ultra-reliable
and low-latency communication (URLLC), one of the 5G
application scenarios. This article proposes a Multi-Agent
Soft-Actor-Critic-discrete based URLLC-constrained task
offloading and resource allocation (MASACDUA) scheme to
maximize throughput while minimizing power consumption
on the remote side, considering the long-term URLLC con-
straints. The URLLC constraint conditions are formulated
using extreme value theory, and Lyapunov optimization is
employed to divide the problem into task offloading and
computation resource allocation. MASAC-discrete and a
queue backlog-aware algorithm are utilized to approach
task offloading and computation resource allocation, re-
spectively. Extensive simulation results demonstrate that
MASACDUA outperforms traditional DRL algorithms under
different IoHT points and data arrival rate intervals and
achieves superior performance in delay, bound violation
probability, and other characteristics related to URLLC.

Index Terms—Internet of Health Things, multi-agent
reinforcement learning, task offloading, URLLC.

I. INTRODUCTION

THE Internet of Health Things (IoHT), an extension of In-
ternet of Things (IoT) in the healthcare domain, is gaining
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significant popularity in numerous ways [1], [2], [3]. It is revolu-
tionizing healthcare by enabling smart health solutions [4], [5],
[6], such as real-time monitoring of physiological data, sensor
patches with real-time respiration, human activity recognition
and the development of sustainable wearable devices. Health-
care has become more prevalent due to the rapid adoption and
large-scale deployment of IoT and substantial advancements
in data generation and exchange [7], [8]. IoHT is reshaping
traditional health systems in many unprecedented ways [9],
[10], [11], enhancing data processing accuracy, strengthening
reliability, and enabling convenient connections. However, from
another perspective, there are still challenges related to life-
demanding or computation-intensive tasks that require prompt
processing of abundant data with strict quality of service (QoS)
requirements, posing a significant challenge to the existing IoHT
framework.

Nonetheless, due to the inherent limitations of computation
resources in IoHT devices, tasks originating from these devices
are often offloaded to remote cloud servers, resulting in unsatis-
factory experiences, particularly when considering the stringent
QoS demands of IoHT applications. These cloud servers are un-
able to meet the real-time processing and response requirements
of IoHT services [12]. To address this issue, edge computing
has emerged as a viable solution to process health-related data
closer to its source, thereby minimizing latency and ensuring
better QoS for IoHT applications.

One of the widely accepted application scenarios for 5G tech-
nology is ultra-reliable low-latency communication (URLLC).
URLLC plays a vital role in upholding applications within the
IoHT context [13] as certain tasks in IoHT are life-demanding
and delay-sensitive. Conventional techniques fail to meet the
specific requirements of IoHT in such cases. Therefore, the
adoption of URLLC is essential to ensure the reliability and
effectiveness of our model. The extreme value theory (EVT) [14]
offers an effective means to characterize the features of URLLC
by concentrating on the probability and statistics of bound
violation events.

Multi-agent deep reinforcement learning (MADRL) [15] is an
emerging technology that enables more than one agent to make
decisions through interacting with the environment, without any
prior knowledge. Considering the presence of numerous IoHT
points in real-world scenarios, the adoption of MADRL becomes
a natural choice. Heuristic approaches, although capable of deal-
ing with multiple IoHT points, can only provide actions without a
comprehensive policy, making them vulnerable to system distur-
bances. Thus, MADRL is considered as a more suitable approach
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in this context. There are numerous options available when it
comes to MADRL algorithms. One of the top choices currently
is the multi-agent Soft Actor-Critic (SAC) algorithm [16], which
has been widely employed in previous works. Unlike other DRL
algorithms that solely focus on maximizing the reward function
in the long run, SAC also maximizes the entropy of the action,
ensuring a more balanced exploration and exploitation trade-off
during the training process. Notably, the entropy parameter in
SAC is treated as a trainable parameter [17]. However, SAC
is not well-suited for discrete action space. Hence, we employ
a variant of SAC known as SAC-discrete [18] combined with
multi-agent to address this limitation. Our objective is to ensure
stability in terms of data queuing and energy consumption, while
also optimizing long-term throughput. We employ Lyapunov
optimization to decompose a multi-stage optimization problem
into many sub-problems in each time slot, achieving stability
and optimizing performance in our IoHT system [19], [20].

In this article, we bring up a Multi-Agent Soft Actor-
Critic-Discrete-based URLLC-constrained task offloading and
resource allocation (MASACDUA) scheme for various IoHT
points. The intention is to maximize the throughput of the
system by offloading computation-intensive and delay-sensitive
tasks, while ensuring long-term URLLC constraints. The main
contributions of this article are summarized as follows:

� URLLC-constraint Task Offloading Model: We develop a
task offloading model that takes into account the URLLC
constraints. The proposed model is specifically designed
to integrate the dynamic computing capabilities of base
stations, which enhances its practicality for real-world
implementation. By incorporating this feature, the model
becomes well-suited for deployment in practical scenar-
ios and can effectively adapt to the dynamic computing
requirements of base stations.

� MASACDUA Mechanism with Lyapunov Optimization:
To tackle the formulated problem, we propose a multi-
agent SAC-discrete approach, which mitigates the inferior
learning performance that can arise from unstable data
arrivals and dynamic computing resources with varying
numbers of IoHT points and BSs. Furthermore, we utilize
Lyapunov optimization to achieve short-term optimization
while adhering to long-term URLLC constraints, which
may not be attainable within short time periods.

� CTDE Execution: To enhance the throughput from IoHT
points and reduce the energy consumption of BSs, we fur-
ther generalize the proposed centralized algorithm into a
decentralized control setting. Particularly, each IoHT point
acts as an independent agent with its own decentralized
policy, which explores offloading decisions based on local
observations. And when training the model, each agent can
get the whole state.

II. RELATED WORK

A. Task Offloading in IoHT

Task offloading is considered an essential direction for the
IoHT system and has attracted significant attention from both
academia and industry. For instance, Materwala et al. [21]
proposed an algorithm for energy-aware offloading that min-
imizes the energy consumed by the patients’ requests, which

are computation-intensive but do not require real-time response.
Wang et al. [13] proposed an energy-efficient scheme called
UTO-EXP3 that employs multi-armed bandit (MAB) and EVT
for task offloading in locally resource-limited IoHT points.
Mukherjee et al. [22] aimed to minimize the average response
time of tasks with different priorities that are scheduled in
edge-assisted healthcare services with hard and soft deadlines at
end-users and edge medical servers. Ren et al. [23] tackled the
critical challenges of task offloading strategies by considering
time, security, and reliability factors. They proposed a hierarchi-
cal network framework based on wireless body area networks
that centralizes control but distributes computation, with the goal
of enabling smart healthcare IoT applications.

B. Task Offloading Under URLLC Scenarios

In URLLC scenarios, the need for immediate and accurate
communication often results in a flood of data requests, neces-
sitating the use of task offloading and demanding higher levels
of QoS. To address this challenge, Chen et al. [24] formulated
an optimization problem for a parallel task offloading scenario
aimed at reducing service delay. Their approach involves jointly
finding the best solution, taking into account the computation
resources of users and the sub-tasks assigned to multiple edge
points in the vicinity. To optimize the solution, the authors
consider normal tasks with minimal decomposition granularity.
Dang et al. [25] proposed a novel edge network architecture that
addresses the URLLC constraints. Specifically, the proposed ar-
chitecture integrates communication allocation and computation
offloading to reduce worst-case latency. This is achieved through
consideration of factors such as user association, transmission
power, and the processing rate of user equipment. Overall,
their approach offers a unified solution that optimizes resource
utilization and improves performance in URLLC-constrained
environments. Wang et al. [26] focused on the down-link design
in URLLC to identify transmission protocols that are latency-
constrained and achieved a low output probability, while also
translating the up-link procedure into an up-link budget. Liao
et al. [27] proposed an intent-aware task offloading scheme for an
air-ground combined vehicular edge computing (VEC) scenario,
where they model the intent as maximizing long-term QoE
while considering long-term URLLC constraints to increase the
probability of task offloading success.

C. DRL Method Used for Task Offloading

Some researchers have investigated the MADRL-based task
offloading without URLLC-constraint [28]. Li et al. [29], [30]
expected long-term improvements for NOMA-enabled coop-
erative computation offloading, where a scattered network
is adopted to enhance its stability whereas league learning
is exploited to explore the environment collaboratively. Seid
et al. [31] diminished the overall computation cost meanwhile
guaranteeing the QoS requirements of IoT devices or UEs in
the IoT network. Gao et al. [32] optimized multiple UAVs’
trajectories to reduce the global synchronized communication
overhead with ground users’ offloading delay, energy efficiency
as well as obstacle avoidance system. Jia et al. [33] proposed a
multi-agent Ly-MAPPO to sustain each vehicle to maximize
the logarithmic average data processing rate (LDPR) under
long-term restrictions, which requires only local observation to
give offloading policies and queue stability.
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TABLE I
THE QUALITATIVE COMPARISON OF CURRENT LITERATURE, WHERE O&R

REFERS TO THE USE OF BOTH OFFLOADING, AND � INDICATES THE
UTILIZATION OF MULTI-MASAC

Recently, a newly multi-agent maximum-entropy CTDE ar-
chitecture named MASAC [34] has arrested attention from the
IoT or edge computing academia. The utilization of entropy
regularization in the reward function can effectively potenti-
ate exploration, thus deterring the problem of over-fitting and
pre-convergence. Many researchers have to integrate MASAC
with edge computing scenarios. Wu et al. [35] constructed an
edge-terminal collaboration model, where energy minimization
and delay violation punishment are optimized through spec-
trum sharing and vehicle power control for task offloading. Wu
et al. [36] proposed a method to minimize the average age of
information and front-haul traffic loads in IoT networks by
characterizing the average energy consumption during trans-
mission from IoT sensors. This is done under the assumption
of an effective wireless transmission condition. Yan et al. [37]
proposed a consensus communication mechanism founded on
counterfactual reasoning. Graph Attention Networks with the
fully decentralized MASAC are utilized to reinforce the coop-
eration among agents.

D. A Qualitative Comparison

Table I presents a comprehensive comparison between our
approach and related works with regards to various essential
elements, e.g., URLLC, Offloading and Resource allocation
(O&R), DRL, Multi-Agent, IoHT scenarios, energy-efficiency,
data throughput, and Lyapunov-based and heuristic methods. To
the best of our knowledge, our proposed approach is the first to
integrate all the aforementioned factors into a unified framework,
thereby distinguishing itself from prior works.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Overall System Model

Fig. 1 illustrates the system architecture consisting ofN IoHT
points and I + J BSs, where I BSs with larger computation
resources and J BSs are BSs with small ones. In real scenarios,
it is not reasonable to set only a single or just one type of
edge server for the whole system, considering the distances
and distributions between BSs and IoHT points. IoHT points
include patients and doctors, financial services and medical
institutions, and the devices of pharmaceutical enterprises and

Fig. 1. Application scenario of the proposed scheme for IoHT.

TABLE II
NOTATIONS AND THEIR DEFINITIONS

online platforms. Each BS is co-located with an ES that provides
both radio access and computational services, eliminating the
need for assistance from a remote cloud or other BSs. The
devices are irregularly distributed throughout the network and
operate continuously.

The sets of IoHT points and servers are denoted as U =
{u1, . . . , ui, . . . , uM} andS = {s1, . . . , sj , . . . , sI+J}, respec-
tively. We consider a time-slotted model that is characterized
by a fixed duration of time slots denoted as τ , and a series
of successive slots, where the set of all slots is defined as
T = {1, . . . , t . . . , T}. We assume that the channel information
remains unchanged during each slot, while it may fluctuate
dynamically between different slots. Meanwhile, the set of
available BSs for each user, denoted as ui, remains fixed across
slots. In each slot, the user ui autonomously decides whether to
offload their tasks or not. The main notations in our article are
summarized in Table II.
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B. Traffic Model at IoHT Device Side

We presume that tasks arrive at user ui randomly in each
time slot and are subsequently offloaded to the selected BS for
computation. The number of tasks arriving at ui in the t-th time
slot is denoted as Ai(t) Mbits/s. To store data that has not yet
been offloaded from ui, we introduce the concept of the local
task buffer. Specifically, each task buffer associated with ui can
be modeled as a data queue, and its backlog (i.e., the length of
the local task buffer) is denoted as Qi(t), where

Qi(t+ 1) = max {Qi(t)− Ui(t) + τAi(t), 0}, (1)

which satisfies the initial conditions: Qi(0) = 0, ∀ui ∈ U at t =
0. The transmission rate from ui to sj is given by:

Ri,j(t) = Wi,j(t) log2

(
1 +

Pgi,j(t)

N0

)
, (2)

where Wi,j denotes the subchannel bandwidth allocated to each
BS and shared among its connected UEs, P and N0 are the
transmission power, and noise power density, respectively, and
gi,j(t) is the wireless channel gain between i ∈ U and BS j ∈
S, including path loss and channel fading. We assume that all
channels experience block fading.

Furthermore, we assume that the downlink transmission delay
can be ignored due to its negligible cost compared with the
offloaded tasks before computation. In the t-th time slot, Di,j(t)
denotes the quantity of task data offloaded from point ui to BS
sj and Ri,j(t) denotes the achievable throughput of ui in the
same time slot, which can be formulated as:

zi,j(t) = min {Qi(t) + τAi(t), τRi,j(t)}, (3)

Ui(t) =

I+J∑
j=1

xi,j(t)zi,j(t). (4)

C. Computation Model at the BS Side

A virtual task buffer is established at each BS to store the
offloaded but not yet executed tasks from ui. The execution of
these offloaded tasks is carried out using the CPU provided by
the respective BSs. The amount of task data produced by ui

and stored at BS sj is denoted by Hi,j(t). The allocation of
CPU-cycle frequency will be explained later. Even though ui

does not transmit data to sj , fi,j(t) can still be non-zero, and
therefore the amount of data processed at sj , denoted as Yi,j(t),
is defined as:

Yi,j(t) = min

{
Hi,j(t) + xi,j(t)zi,j(t),

τfi,j(t)

λi

}
, (5)

where λi denotes the computation density of the task data and
satisfies the constraint

∑N
i=1 fij(t) ≤ fj,max(t).

The task buffer dedicated to storing the tasks of user ui

at the BS can be modeled as a queue. However, the BS-side
information such as the queue backlog Hi,j(t) and allocated
CPU-cycle frequency fi,j(t) are unknown to ui. Nevertheless,
ui can establish a virtual remote queue Hi,j(t) locally for BS
sj . This virtual queue evolves as follows:

Hi,j(t+ 1) = max {Hi,j(t)− Yi,j(t) + xi,j(t)zi,j(t), 0},
(6)

which satisfies the initial conditions: Hi,j(0) = 0, ∀sj ∈ S, ∀ui

∈ U at t = 0

D. Power Consumption Model at the BS Side

The power consumption of sj for remote execution is:

pj(t) =

N∑
i=1

κ (fi,j(t))
3 , (7)

where κ is the switched capacitance of sj’s execution CPU,
determined by the hardware implementation. Similarly, pj(t)
should satisfy:

lim
T→∞

1

T

T∑
t=1

pj(t) ≤ γj , ∀sj ∈ S, (8)

where γj is the time-average power threshold.

E. URLLC Constraints

The end-to-end latency encountered by a device is influenced
by the choice of execution approach. In the scenario where IoHT
devices offload tasks to BSs, the experienced end-to-end latency
encompasses the following components: i) queuing delay within
the local task buffer; ii) uplink and downlink delay; iii) queuing
delay at the remote location; iv) computational delay at the
remote location. Neglecting the downlink feedback delay of
computational results is deemed reasonable, as the data size
of computational results is typically smaller compared to that
of offloaded tasks. This assumption has also been adopted in
prior works [13], [44].

URLLC from both IoHT points and ESs requires rigorous
restrictions on the queuing delay which holds a large proportion
of the end-to-end delay. As a result, URLLC constraints must be
enforced on both the local and remote sides. According to Little’s
Law, the average queuing delay is proportional to the ratio of
the average queue length to the average data arrival rate [45].
Therefore, the average queuing delays for the local task Di and
the remote task Di,j can be expressed as follows:

Di = lim
T→∞

1

T

T∑
t=1

Qi(t)

Ãi(t− 1)
< dLi , (9)

Di,j = lim
T→∞

1

T

T∑
t=1

Hi,j(t)

z̃i(t− 1)
< dOi,j , (10)

where the time-average data arrival rates of local and remote
task buffers denoted by Ãi(t− 1) = 1

t

∑t−1
m=0 Ai(m) and

Z̃i,j(t− 1) = 1
t

∑t−1
m=0 xi,j(m)zi,j(m), respectively. The

local and remote task buffers have corresponding queuing delay
bounds dLi and dOi,j , respectively. Focusing solely on the average
queuing delay may result in the occurrence of extreme events
where the queuing delay surpasses the upper bound, which is
undesirable for URLLC. Therefore, in order to elaborate on the
restrictions, we need to quantify these extreme events. We define
excess values as: SL

i (t) = max{QL
i (t)− Ãi(t− 1)di, 0} for

Qi(t) and SO
i,j(t) = max{SO

i,j(t)− z̃i,j(t− 1)di,j , 0} for
Hi,j(t). Then, we can define indicators for the occurrence
of these extreme events as Ii = I{SL

i (t) > 0} for Qi(t) and
Ii,j = I{SO

i,j(t) > 0}.
Naturally, the long-term URLLC constraint is self-evidently

characterized by constraints on the probability of extreme event
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occurrence which can be formulated as follows:

P̄L
i = lim

T→∞

1

T

T∑
Pr

(
SL
i (t) > 0

)
≤ εLi , (11)

P̄O
i,j = lim

T→∞

1

T

T∑
t=1

Pr
(
SO
i,j(t) > 0

)
≤ εOi,j , (12)

where εLi � 1 and εOi,j � 1 are the tolerable probabilities of
bound violation. Moreover, it is imperative to consider the
statistical properties of SL

i (t) and SO
i,j(t). To achieve this, we

employ the EVT and leverage the Pickands-Balkman-de Haan
Theorem [14] to characterize the tail distribution and statistical
features of Ii and Ii,j .

Specifically, the conditional excess distribution function
(CEDF) of SiL and Si, jO can be approximated using a Gener-
alized Pareto Distribution (GPD). In this regard, we assume a
GPD with parameters σ and ξ. The first and second moments of
the aforementioned GPD can be expressed as Mf (σ, ξ) =

σ
1−ξ

and Ms(σ, ξ) =
2σ2

(1−ξ)(1−2ξ) , respectively.
The CEDF for ui can be denoted as follows:

F̄ (sLi ) =
P (SL

i (t) > sLi )

P (SL
i (t) > 0)

, (13)

where σL
i ≤ σL,th

i and ξLi ≤ ξL,th
i , to ensure the reliability and

latency restrictions.
The statistical properties of GPD and the relationship between

its two parameter thresholds can be leveraged to establish con-
straints on the long-term time-average conditional expectations
for both the first and second moment of the excess value, as
follows:

E(SL
i ) = lim

T→+∞

1

T

T∑
t=1

E
[
SL
i (t) | SL

i (t) > 0
]

≤Mf (σ
L,th
i , ξL,th

i ), (14)

E(WL
i ) = lim

T→+∞

1

T

T∑
t=1

E
[
WL

i (t) | SL
i (t) > 0

]
≤Ms(σ

L,th
i , ξL,th

i ), (15)

where WL
i (t) = [SL

i (t)]
2.

The CEDF for Hi,j(t) can be written as:

F̄ (sOi,j) =
P (SO

i,j(t) > sOi,j)

P (SO
i,j(t) > 0)

, (16)

which follows the GPD G(sOi,j ;σ
O
i,j , ξ

O
i,j). The thresholds σO

i,j ≤
σO,th
i,j and ξOi,j ≤ ξO,th

i,j . We enforce the constraints on the time-
average conditional first and second moment as:

E(SO
i,j) = lim

T→+∞

1

T

T∑
t=1

E
[
SO
i,j(t) | SO

i,j(t) > 0
]

≤Mf (σ
O,th
i,j , ξO,th

i,j ), (17)

E(WO
i,j) = lim

T→+∞

1

T

T∑
t=1

E
[
WO

i,j(t) | SO
i,j(t) > 0

]

≤Ms(σ
O,th
i,j , ξO,th

i,j ), (18)

where WO
i,j(t) = [SO

i,j(t)]
2.

F. Problem Formulation

Maximizing throughput alone cannot guarantee satisfactory
performance, even if the queuing delay on the IoHT point side is
reduced. Focusing solely on average queuing delay is insufficient
for meeting the strict URLLC requirements, and may result in
frequent occurrences of extreme events.

As far as we know, IoHT applications rely heavily on the
availability of high throughput and low latency in time-varying
network conditions. Therefore, we seek task offloading and
resource allocation to formulate the problem for maximizing
the long-term throughput of all IoHT points while satisfying
long-term URLLC constraints, as follows:

P1 : max
{x,f}

lim
T→∞

1

T

T∑
t=1

N∑
i=1

I+J∑
j=1

xi,j(t)zi,j(t), (19)

s.t.
I+J∑
j=1

xij(t) = 1, ∀ui ∈ U , ∀t ∈ T , (19a)

N∑
i=1

fij(t) ≤ fj,max(t), ∀sj ∈ S, ∀t ∈ T , (19b)

xij(t) ∈ {0, 1}, fij(t) ≥ 0, ∀ui ∈ U,∀sj ∈ S, (19c)

Constraints (8), (11)− (18), (19d)

where constraints in (19a), (19b), and (19c) ensure that each
IoHT point can only select one BS for remote execution in
each time slot and that the selected BS’s CPU-cycle frequency
is within the available frequency and power limits. Constraint
(19d) places bounds on the long-term violation probability, as
well as the conditional mean and second moment of the excess
values of local and remote task queues. Directly solving problem
P1 is challenging due to the long-term constraints. Therefore,
we employ Lyapunov optimization.

IV. PROBLEM TRANSFORMATION AND SOLUTIONS

A. Problem Transformation

Based on Lyapunov optimization, we decompose P1, which
has tight URLLC constraints, into several sub-problems. These
sub-problems can be optimized for sure in each time slot, while
satisfying long-term objectives. Virtual queues are employed
to transform the long-term URLLC constraints into stability
restrictions. Specifically, we introduce three virtual queues as
state variables that measure the behavior of local systems with
respect to (11), (14), and (15), respectively.

Q
L,(P )
i (t+ 1) = max

{
Q

L,(P )
i (t) + I

{
SL
i (t) > 0

}
− εLi , 0

}
,

(20)

Q
L,(S)
i (t+ 1) = max

{
Q

L,(S)
i (t) + I

{
SO
i (t) > 0

}
×,(

SL
i (t+ 1)−Mf (σ

L,th
i , ξL,th

i )
)
, 0
}

(21)
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Q
L,(W )
i (t+ 1) = max

{
Q

L,(W )
i (t) + I

{
SL
i (t) > 0

}
×,(

WL
i (t+ 1)−Ms(σ

L,th
i , ξL,th

i )
)
, 0
}

(22)

where Q
L,(P )
i (t), QL,(S)

i (t), and Q
L,(W )
i (t) denote the devi-

ations from the tolerable probabilities of bound violation, the
long-term time-average conditional expectations for the first
and second moment of the excess value of the local task queue,
respectively.

Similarly, for constraints (12), (17), and (18), we respectively
introduce three virtual queues as follows:

H
O,(P )
i,j (t+ 1) = max

{
H

O,(P )
i,j (t)+I

{
SO
i,j(t)>0

}
−εLi , 0

}
,

(23)

H
O,(S)
i,j (t+ 1) = max

{
H

O,(S)
i,j (t) + I

{
SO
i,j(t) > 0

}
×

(
SO
i,j(t+ 1)−Mf (σ

O,th
i,j , ξO,th

i,j )
)
, 0
}

(24)

H
O,(W )
i,j (t+ 1) = max

{
H

O,(W )
i,j (t) + I

{
SO
i,j(t) > 0

}
×

(
WO

i,j(t+ 1)−Ms(σ
O,th
i,j , ξO,th

i,j )
)
, 0
}

(25)

where HO,(P )
i,j , HO,(S)

i,j and H
O,(W )
i,j denote the deviations from

the tolerable probabilities of bound violation, the time-average
conditional expectations for the first and second moment of the
excess value of the remote task queue, respectively.

According to [20], it is proven that if the virtual queues satisfy
mean rate stability, then their corresponding constraints are also
satisfied. For instance, for the virtual queue HO

i,j(t), its mean
rate stability requires that if limT→∞ E[HO

i,j(t)]/T = 0, then
the constraint (12) is satisfied.

For each BS, we build the power queue:

Pj(t+ 1) = max {Pj(t)− γj + pj(t)}, ∀sj ∈ S (26)

Thus, problem P1 can be transformed into problem P2:

P2 : max
{x,f}

lim
T→∞

1

T

T∑
t=1

N∑
i=1

I+J∑
j=1

xi,j(t)zi,j(t) (27)

s.t. Constraints (19a)− (19c) (27a)

Constraints (1), (6), (20)− (26)

stay mean rate stable (27b)

Using the drift-plus-penalty algorithm of Lyapunov optimiza-
tion [20], P2 transformed into a sequence of deterministic
sub-problems in the short term that can be solved by each device.
We can further decouple P2 into two sub-problems based on the
involved variables:

SP1 : max
{xi,j(t)}

F (xi,j(t)) (28)

s.t. Constraints (19a), (19c) (28a)

SP2 : max
{fi,j(t)}

K (fi,j(t)) (29)

s.t. Constraint (19b) (29a)

where K(fi,j(t)) and F (xi,j(t)) are written as:

K (fi,j(t)) = αH

N∑
i=1

Yi,j(t) (xi,j(t)zi,j(t)

+Hi,j(t))− αPPj(t)pj(t)γj ,

F (xi,j(t)) = (α+ αL,QτAi(t) + αL,QQi(t))

×
I+J∑
j=1

xi,j(t)zi,j(t)− αL,P

(
Q

L,(P )
i (t)−εLi

)
I
(
SL
i (t)>0

)
−αL,SQ

L,(S)
i (t)·

(
SL
i (t+ 1)

−Mf (σ
L,th
i , ξL,th

i )
)
I
(
SL
i (t) > 0

)
− αL,WQ

L,(W )
i (t) · I

(
SL
i (t) > 0

)
(
WL

i (t+ 1)−Ms(σ
L,th
i , ξL,th

i )
)

− αO,H

I+J∑
j=1

Hi,j(t)xi,j(t)zi,j(t)

− αO,P

I+J∑
j=1

(
Q

O,(P )
i,j (t)− εOi,j

)
I
(
SO
i,j(t) > 0

)

− αO,S

I+J∑
j=1

Q
O,(s)
i,j (t)

(
SO
i,j(t+ 1)−Mf (σ

O,th
i,j , ξO,th

i,j )
)
· I

(
SO
i,j(t) > 0

)
− αo,W

I+J∑
j=1

Q
o,(W )
i,j (t)

(
WO

i,j(t+1)−Mf (σ
O,th
i,j , ξO,th

i,j )
)

× I
(
SO
i,j(t)>0

)
.

Our objectives are to maximize the throughput of all IoHT
points and minimize the overall energy consumption of BSs.
However, traditional approaches cannot be used to solve P2

due to its complexity. It involves both continuous variables (f )
and discrete variables (x) and typically involves multiple IoHT
points. Apparently, it is naive to traverse all possible (x) for
terrible time complexity O(TN I+J)

B. MASACDUA Scheme

The proposed MASACDUA scheme is depicted in Fig. 2,
which is comprised of MASAC-based task offloading and CPU
resource allocation.

1) Resource Allocation: We propose a heuristic algorithm
for resource allocation [28], as summarized in Algorithm 1.

In Algorithm 1, equal computational resources fpre
i,j (t) are

first allocated to all available IoHT points, whereas the remain-
ing resources fre

i,j are reassigned based on the remote queue
backlog Hi.j(t) and power consumed by the BSs pj(t). At
first, we initialize the Uj(t), numj(t) and Δfj,max(t). Then,
we allocate pij(t)fj,max(t) evenly to all IoHT points in Uj(t)
(line 2∼4), then select the IoHT point with the ui∗ on the
strength of maximum target value K(κi,j(t)) (line 9∼10),
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Fig. 2. Overall structure of the MASACDUA framework.

Algorithm 1: Computation Resource Allocation.

1: Initialize Uj(t) = {ui ∈ U|Hi,j(t) > 0}, numj(t) =
size(UJ(t)), and Δfj,max(t) = (1− pj(t))fj,max

2: for IoHT point i ∈ U do
3: fpre

i,j (t) = pj(t)fj,max(t)/numj(t)
4: end for
5: for sj in Uj(t) do
6: while Uj(t) �= 0 and Δfj,max(t) > 0 do
7: κi,j(t) = min{Δfj,max(t),

λi

τ [Hi,j(t)]}
8: ui∗ = argmaxu∈Uj(t) K(κi,j(t))

9: if κi∗,j(t) � fpre
i∗,j (t) then

10: fre
i∗,j(t) = κi∗,j(t)− fpre

i∗,j (t)

11: Δfj,max(t) = Δfj,max(t)− fpre
i∗,j (t)

12: else
13: fpre

i∗,j (t) = 0

14: Δfj,max(t) = Δfj,max(t) + fpre
i∗,j (t)− κi,j(t)

15: fpre
i∗,j (t) = κi,j(t)

16: end if
17: fi∗,j(t) = fpre

i∗,j (t) + fre
i∗,j(t)

18: Uj(t) = Uj(t) \ ui∗

19: end while
20: end for

where κi,j(t) is the largest computation resources wanted by
ui. And we get the fi∗,j(t) based on whether κi∗,j(t) ex-
ceeds the κi∗,j(t). If κi∗,j(t) exceeds fpre

i∗,j (t), then we set
fre
i∗,j(t) = κi∗,j(t)− fpre

i∗,j (t) (line 9∼11). On the contrary, we
set fre

i∗,j(t) = 0 and fpre
i∗,j (t) = κi∗,j(t) (line 13∼15). In the two

situations, we regenerate Δfj,max(t) and fpre
i∗,j (t) (line 11∼14).

Finally, ui∗ is removed from Uj(t) (line 18). The iteration halts
when Uj(t) = ∅ or fj,max(t) = 0. Apparently, the allocation of
computing resources is based on fi,j(t), which means a larger
queue backlog or lower power consumption by the BSs receives
computation resources more probably. The worst-case scenario
involves M ×N iterations.

2) MAMDP Model: The problem SP1 can be represented
as an observable MAMDP with the following components:
〈n,S,A1, . . . ,An,O1, . . . ,On,R1, . . . ,Rn, π1, . . . , πn, P 〉.
We assume that N agents interact with the environment
characterized by a set of statesA = A1 ×A2 . . .×An. In each
time slot, each agent receives its own private observation Oi

and takes its own action πi : Oi → Ai, and receives a reward
Ri : S ×Ai × S′ → R′i. Then, the environment transitions to
a new state with probability P : S ×A× S′ → [0, 1].

Thus, we define the observation, action space, and reward
function for each IoHT point in the t-th time slot as follows:

� Observation Space Oi(t): The network state at the be-
ginning of each time slot is determined by the queue
information, which is represented by:

Oi(t) =
[
Qi(t), Q

L,(P )
i (t), Q

L,(S)
i (t), Q

L,(W )
i (t),

Hi,j(t), H
O,(P )
i,j (t), H

O,(S)
i,j (t), H

O,(W )
i,j (t)

]
,

(30)

which consists of the queue information, along with the
virtual queue information. It should be noted that the
power queue is excluded from the queue information in
the MDP model, as we believe it is not relevant for the
offloading decision.

� Action SpaceAi(t): It is defined as the set of servers from
which the IoHT point Ui can choose for task offloading.
Therefore, the action space is represented by the vector
[xi,1(t), . . . , xi,I+J (t)], where xi,j(t) = 1 if server Sj is
selected by device Ui for offloading in the t-th time slot,
and xi,j(t) = 0 otherwise.

� Reward FunctionRi(t): The reward Γ(xi,j(t)) of device
Ui selecting BS Sj in the t-th time slot is set to maximize
the optimization objective of P1.

Unlike the previous methods, this approach does not require
the mean and variance of a certain action. Additionally, the archi-
tecture of the Q-network has been modified to output Q-values
for all possible actions with only states as input, instead of the
previous approach where one Q-value was calculated for input
including states and all actions.

3) Masac-Discrete: Each IoHT point is controlled by a ded-
icated agent, which is equipped with an actor network repre-
sented by ai(t) = πi(oi(t)), two critic networks (Qi

j(st), where
j = 1, 2), and their corresponding target networks (Qi−

j (st+1),
where j = 1, 2). Additionally, the agent is equipped with an
experience replay buffer Bi. Following the CTDE structure,
IoHT points can get the state for the training of their critic
network, after that, each point executes their action based on
the actor network with their local information.

The CTDE process is simply demonstrated as follows: During
the training process, each agent shares its private observation
oi(t) and action ai(t) with the environment, and the resulting
state st is returned to all agents. This enables the simultaneous
exchange of private information among all agents. The critic
network of each agent is trained with the joint states and actions
that include the observations of all agents. During the action-
choosing process, each agent uses only its private observation
oi(t) to execute its chosen action.

The pseudo-code of the proposed algorithm is listed in Al-
gorithm 2. This algorithm encompasses two distinct phases,
namely, the initialization phase (line 1 ∼ 8) and the DRL phase
(line 6 ∼ 29), which can be further subdivided into the step
process (line 9 ∼ 19) and the training process (line 20 ∼ 29).

� The initialization phase: All networks’ parameters are set
with the truncated uniform random numbers. The experi-
ence replay buffer’s size is set to 10,000. At the beginning
of each episode, the state and each observation oi(t) are
initialized as all zero.
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� The step process: Based on the first phase, each IoHT point
attains its action and observations next time. Founded
on each IoHT point’s action and observation, we ob-
tain each reward at time t. At last, we concatenate
the ai(t) and oi(t+ 1) to get the a(t) and s(t+ 1)
correspondingly.

� The training process: If it is time to train the network, like
collecting enough data in the replay buffer, then a random
mini-batch of transitions consisting of the current state,
action taken by the agent, resulting reward, and next state
{sk, aki , rki , sk+1}, k = 1, 2, . . . , B is sampled from the
experience replay buffer Bi, where B denotes the batch
size. These transitions are fed to the neural network for
calculating the gradient.
The parameters of each critic network are updated in line
23, by minimizing the loss function LQi,j

of critic i from
the transition.

LQi,j
=

1

B

B∑
k=1

[
yki −Qi,j

(
sk | δQi,j

)]2
, j = 1, 2,

(31)
where yki is the value function target of the agent and can
be defined as:

yki = sk + γ ×
[
πθπ

i
(aki ) min

j=1,2

(
Qi−,j(s

k+1 | δQi−,j)
)

−α log
(
πθπ

i

(
ak+1
i | sk+1

))]
, (32)

where Qi−,j(· | δQi−,j) represents the j-th target critic
function of agent i, and γ is the discount factor.
The parameters of each actor network are updated in line
24, by minimizing the loss function Lπi of actor i from
the transition.

E
[
πθπ

i

(
aki

) [
α log πθπ

i

(
aki | oki

)
−Qi,j

(
sk | θQi,j

)]]
,

(33)
where a suitableαhas a prodigious impact on our scheme’s
performance, which can be adjusted by the algorithm itself
rather than by hand.
The parameters of eachα coefficient are updated in line 25,
according to [16], [17], by minimizing the loss function
Lαi:

Lαi = πθπ
i
(aki )[−α(log πθπ

i

(
aki | oki

)
+ H̄)]. (34)

Finally, following three successive updates, we have
reached a point where we can effectively implement soft
updates on the parameters of the target networks, specif-
ically in line 26. By employing the soft update method,
we are able to achieve a relatively smoother estimation of
Qi−,j(s

k+1 | δQi−,j), thereby contributing to the stabiliza-
tion of our scheme.

Based on the analysis presented, the time complexity of
Algorithm 2 can be expressed as O(ETM), as it involves
carrying out three types of loops and multiplying their respective
lengths. Additionally, the space complexity can be expressed
as O(M(I + J)), since there are M IoHT points and I + J
ESs.

Algorithm 2: MASAC-Discrete.
1: for IoHT point i in U do
2: Initialize actor network πi(·), critic network Qi(·)

with parameters θπi and θQi ;
3: Initialize target network Qi−(·) with parameters θQi−;
4: Initialize experience replay buffer Bi;
5: end for
6: for episode from 1 to E do
7: Initialize state s(t)
8: Initialize observation oi(t) for IoHT point in U
9: for t from 1 to T do

10: for IoHT point i in U do
11: Get action ai(t) according to ai(t) = πi(oi(t))
12: Get reward rki (t) according to (30)
13: Get observation oi(t+ 1)
14: end for
15: Get joint action a(t) by concatenate ai(t) together
16: Get state s(t+ 1) by concatenate oi(t+ 1)

together
17: for IoHT point i in U do
18: Store transition {s(t), ai(t), sk(t), s(t+ 1)} into
19: experience replay buffer Bi

20: if training process begins then
21: Sample a mini-batch of M transitions from Bi

22: Update critic network according to:
θQi,j ← θQi,j − lrc∇θQ

i,j
LQi,j

(θQi,j), j = 1, 2

23: Update actor network according to:
θπi ← θπi − lra∇θπ

i
Lπi(θ

π
i )

24: Update temperature according to:
θαi ← θαi − lrα∇αi

Lαi(αi)
25: Update target networks according to:

θQi,j− ← rθQi− + (1− r)θQi,j−, j = 1, 2.
26: end if
27: end for
28: end for
29: end for

V. PERFORMANCE EVALUATION

A. Parameter Setting

We maintain a fixed number of 2 BS with larger computa-
tion resources and 4 BS with smaller ones in our system. The
available computational resources of ESs in the BS for IoHT
points fluctuate irregularly within a limited range during 200
time slots with 0.1 s intervals. Specifically, we set the number
of IoHT points to 6, and the data arrival rate ai(t) varies within
the interval [7.5, 8.5] Mbits/s. We configure the transmission
power to 20 dBm, sub-channel bandwidth to 1 MHz, and channel
gain to 3.4× 10−12. The data is randomly generated based on
the formulations outlined in Section III. Our simulations are
conducted on both laptops equipped with NVIDIA 4 G GeForce
RTX 3050 and a workstation equipped with 11 G GeForce RTX
2080 Ti. The parameter values mentioned above, along with
others, are summarized in Table III. To evaluate the perfor-
mance of our algorithms, we adjust the number of IoHT points
(Scene I), computation density (Scene λ), the length of data
arrival rates interval (Scene A) and the sub-bandwidth interval
(Scene W).
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Fig. 3. Comparison of Hi,j(t), H
O,(P )
i,j (t) and H

O,(S)
i,j (t) and power consumption of BS(w) over time slots.

Fig. 4. TV, BVP, RAEV and TQD over time slots.

TABLE III
SIMULATION PARAMETERS

B. Baselines

In this study, we compare our proposed MASAC-discrete
with three other algorithms, namely, Random, MAA2C, and
MAPPO, the latter two are both fine-tuned Actor-Critic-based
DRL algorithms. When considering the computation resources,
they all use the Algorithm 1.

� Random: Each IoHT point randomly chooses its offload-
ing decisions without knowing the state and decisions of
other IoHT points.

� MAPPO [46]: It is similar to our proposed algorithm,
MASAC-discrete, as it employs the CTDE structure and
interacting PPO algorithms between IoHT points.

� MAA2C: It combines the CTDE structure with widely-
used Advantage Actor-Critic (A2C).

C. Temporal Characteristics of the System

We compare MASAC-discrete with three other algorithms
from the long-term perspective of remote queues and system
performance. The corresponding results can be seen in Figs. 3
and 4, and a detailed numerical analysis is provided in Table IV.

For remote queues, the MASAC-discrete is effective in re-
ducing Hi,j(t), with a minimum reduction of 28.61% and a

TABLE IV
THE AVERAGE REDUCTION OF MASAC-DISCRETE OVER OTHER THREE

ALGORITHMS OVER TIME SLOT

maximum reduction of 68.78%. This indicates a significant
reduction in congestion during the transmission process. Our
MASAC-discrete algorithm demonstrates superior performance
in reducingHO,(P )

i,j (t), achieving reductions of 21.08%, 20.65%
and 21.64% for Random, MAA2C and MAPPO, respectively.
As for HO,(S)

i,j (t), MASAC-discrete outperforms the other three
algorithms by 90%. This indicates that MASAC-discrete effec-
tively reduces the extent of bound violation as well as transmis-
sion congestion and probability of bound violation.

In terms of system performance, it is evident that MASAC
achieves reductions of 23.24%, 58.52% and 28.98% in the total
queuing delay (TQD), which is defined as the combined value
of the local queuing delay and the remote queuing delay, when
compared to the Random, MAA2C, and MAPPO approaches,
respectively. MASAC also exhibits a remarkable reduction in
training variance (TV), exceeding 85% compared to the other
three algorithms. Furthermore, MASAC-discrete achieves sub-
stantial improvements in remote average excess value (RAEV)
compared to Random, MAA2C, and MAPPO, with lifts of
28.58%, 69.25%, and 47.31% respectively. It is noteworthy that
MASAC-discrete outperforms all three algorithms by more than
20% in terms of bound violation probability (BVP), highlighting
its ability to effectively reduce the occurrence of extreme events
and their impact.
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Fig. 5. TV, BVP, RAEV and TQD over time slots with different data arrival rates interval.

Fig. 6. TV, BVP, RAEV and TQD over time slots with different bandwidth changing intervals.

It is noticeable that the widely-used MAPPO algorithm strug-
gles to effectively search within the large action spaces in our
system. Additionally, the performance of MAA2C falls short
of expectations when compared to Random. However, our al-
gorithm outperforms Random with superior stability and effi-
ciency. This success can be attributed to our algorithm’s ability
to explore a diverse range of action policy choices compared to
Random. By optimizing both entropy and rewards over a long
period.

D. Impact of Data Arrival Rates

We narrow the data arrival rates interval gradually, while their
mean remains constant. As depicted in Fig. 5, the wider the
data arrival rates interval, roughly the worse the performance
for all four algorithms. MASAC exhibits significant reductions
compared to the other four algorithms in these four indexes.
This indicates that MASAC-discrete can perform still well even
when the data arrival rates change. The outstanding impact
is observed in BVP, TQD, RAEV, and especially TV, where
all reductions exceed 19%, and the top is more than 60%,
suggesting that MASAC can reduce the probability and extent
of bound violation occurrence however the data arrival rates
change. Similarly, our algorithm is the most stable compared to
the other three algorithms.

E. Impact of Sub-Channel Bandwidth

We gradually narrow the sub-channel bandwidth interval from
[0.8, 1.2] to [0.9, 1.1] Mbits, ultimately settling on a channel
bandwidth of 1 Mbit. As depicted in Fig. 6, the wider the sub-
channel bandwidth interval, the higher the training variance. Our
algorithm remains the stablest. our scheme exhibits significant
improvements compared to other four algorithms across all three
performance indexes. The outstanding impact is observed in
BVP by 19.04%, 17.79%, and 18.99% compared to Random,
MAA2C, and MAPPO, respectively. In TQD, the reduction com-
pared to Random, MAA2C and MAPPO is 25.29%, 29.81% and
22.40%, respectively. In RAEV, the reduction exceeds 33%. All
these three comparisons confirm that MASAC can effectively

TABLE V
THE AVERAGE REDUCTION OF MASAC-DISCRETE OVER OTHER THREE

ALGORITHMS UNDER DIFFERENT SCENARIOS

TABLE VI
COMPARISON OF ALGORITHM 1 WITH (35) AND (36)

reduce the probability and extent of bound violation occurrence,
regardless of changes in data arrival rates.

F. Impact of IoHT Points

As illustrated in Fig. 7 and Table V, with the increase in
the number of IoHT points, all these algorithms demonstrate a
decline in performance within the system due to the diminished
availability of resources for each IoHT point. However, it is
remarkable that MASAC-discrete continues to exhibit strong
performance. For instance, when compared to the other three
algorithms, MASAC-discrete achieves a reduction of over 10%
in TQD, and over 15% in both BVP and RAEV. In terms of TV,
MASAC-discrete only experiences a decrease of 54.36% and
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Fig. 7. TV, BVP, RAEV and TQD over time slots with different IoHT points.

Fig. 8. TV, BVP, RAEV and TQD over time slots with different computation density.

31.80% when compared to MAA2C and MAPPO, respectively.
We attribute this success to the fact that as the number of
IoHT points increases, the state spaces and action complexity
expand significantly, thereby making the search process more
challenging.

G. Impact of Computation Density

As depicted in Fig. 8 and Table V, we observe that as the
computation density increases, the remote congestion (Hi,j(t))
decreases. This is because the BSs process less data transmit-
ted from IoHT points, resulting in a decrease in the model’s
performance. Specifically, when compared to the Random,
MAA2C, and MAPPO approaches, our proposed model ex-
hibits a reduction of 15.47%, 19.82%, and 16.57%, respec-
tively, in terms of BVP. For TQD, the reduction is 12.46%,
24.53%, and 17.25%, respectively. In terms of RAEV, the re-
duction is 16.02%, 48.88%, and 32.60%, respectively. These
results highlight the superior performance of our proposed
model in mitigating congestion and improving various perfor-
mance metrics compared to the alternative approaches under
consideration.

H. Impact of Resource Allocation Algorithm (RAA)

We conduct a comparative study between Algorithm 1, and
two alternative algorithms for CPU cycle frequency allocation.
The selection of these alternative algorithms will be based on the
ratio of non-zero elements present in the matrix Hi.j(t), which
can be determined as follows:

fi,j(t) =

[
I {Hi,j(t) > 0}∑N
i=1 I {Hi,j(t) > 0}

]
fj,max, (35)

or allocate the resources proportionally by Hi.j(t) as follows:

fi,j(t) =

[
Hi,j(t)∑N
i=1 Hi,j(t)

]
fj,max. (36)

As depicted in Table VI, when employing the easily under-
stood RAA, both the BVP and H

O,(P )
i,j increase by approxi-

mately 2.5 times. This suggests a significant increase in the
occurrence of bound violation events. Additionally, the excess
value at the queue (RAEV) increases by 84.58% and 56.38%
according to (35) and (36), respectively. Moreover, Algorithm 2
demonstrates a remarkable improvement in TQD, reducing it
by 60.01% and 42.09% compared to (35) and (36), respec-
tively, Furthermore, Hi,j(t) is reduced by 85.49% and 57.96%
compared to (35) and (36), respectively. Although Algorithm 2
can incur a little instability for the entire system, and power
consumption has raised by 15.43% and 9.84%, our Power Vari-
ance (PV) has significantly decreased by 52.09% and 52.67%
compared to (35) and (36), respectively. This indicates that
Algorithm 2 can significantly improve the system performances.

VI. CONCLUSION

In this article, we propose a novel MASACDUA scheme
specifically designed for IoHT scenarios, which leverages the
MASAC-discrete algorithms to effectively tackle task offload-
ing problems while considering the constraints imposed by
URLLC requirements. Extensive simulation results demonstrate
that MASACDUA yields substantial reductions in remote con-
gestion Hi,j(t), RAEV, TQD, and BVP, while maintaining the
same level of data throughput and power consumption in BSs.
These findings serve as compelling evidence for the efficiency
of the MASACDUA scheme in enhancing system performance
within IoHT scenarios. Furthermore, a comparative evaluation
of our scheme across four fluctuated scenarios highlights the
superior performance and robustness of MASACDUA in han-
dling varying conditions and further validates its effectiveness
as compared to alternative methods.
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