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Abstract—The advent of vehicular edge computing (VEC) has
generated enormous attention in recent years. It pushes the
computational resources in close proximity to the data sources
and thus, caters for the explosive growth of vehicular applica-
tions. Owing to the high mobility of vehicles, these applications
are of latency-sensitive requirements in most cases. Accordingly,
such requirements still pose a great challenge to the comput-
ing capabilities of VEC, when these applications are outsourced
and executed in VEC. Against this backdrop, we propose a
new mathematical model, which, respectively, generalizes the
computation and communication models, and applies application-
oriented caching into VEC in this article. Based on this model,
a new strategy is further proposed to optimize the average
response time of applications over an infinite time-slotted hori-
zon for VEC. A long-term energy consumption constraint is
imposed to guarantee the stability of the VEC system, and the
Lyapunov optimization technology is adopted to tackle this con-
straint issue. Two greedy heuristics are put forward to help
find the approximate optimal solution in the drift-plus-penalty-
based algorithm. Extensive experiments have been conducted
to evaluate the response time and energy consumption in the
caching-assisted VEC. The simulation results have shown that
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the proposed strategy can dramatically optimize the average
response time while satisfying the long-term energy consumption
constraint.

Index Terms—Caching, greedy heuristics, Lyapunov
optimization, service provisioning, vehicular edge computing
(VEC).

I. INTRODUCTION

THE RAPID development of information and communi-
cation technology gives rise to the prosperities of smart

vehicles [1], [2]. In addition to the ability to communicate
with each other, smart vehicles are also equipped with com-
puter facilities to perform vehicular applications. However,
a large number of vehicular applications have created enor-
mous pressure on such “computers with the wheels.” On
the other hand, the advent of vehicular edge computing
(VEC) [3] has generated enormous attention recently. In com-
parison with the limited capabilities of the onboard computers,
there are more computational resources in VEC. Furthermore,
VEC pushes these resources in close proximity to the data
sources. For instance, the edge servers in VEC are usually
deployed at the logical edge of networks, e.g., roadside unit
(RSU). Vehicles can outsource their applications to RSU via
vehicle-to-infrastructure (V2I) communication technologies.
Hence, this computing paradigm caters for the increasingly
complicated requirements of vehicular applications.

Additionally, VEC can alleviate traffic congestion in the
network core and lays profound foundation for the develop-
ment of vehicular applications in smart transportation. Despite
the benefits brought for vehicular applications, VEC is still
confronted with a big challenge. Most of the vehicular appli-
cations are time sensitive such as route navigating [4], owing
to the high mobility of vehicles. However, it is very challeng-
ing for VEC to satisfy the strict latency requirements, due to
the fact that the computational resources in VEC are not inex-
haustible compared to cloud computing. The response latency
reduction comes at the expense of the computational resource
constraint in VEC.

Therefore, significant efforts are still needed to improve
the performance of VEC systems. For this purpose, we
propose to combine the application-/service-oriented caching
with VEC in this article. By caching the most frequently
outsourced applications in VEC, the response time can be
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tremendously reduced. In our view, caching-assisted VEC can
greatly improve the efficiency of application outsourcing and
task performing, and thus, fulfill the key requirements of
the computationally intensive and time-sensitive applications.
However, different from content delivery in caching-enabled
information centric networks [5], [6], application outsourc-
ing in the caching-assisted VEC is much more complicated
in terms of response time and energy consumption [7]–[10].

For example, virtual machine (VM) and lightweight con-
tainer Docker [11] are the two most widely used frameworks
in the provision of application outsourcing at the edge. Both
of them will temporarily initialize virtual environments for
the offloaded applications. If the applications are cached at
the server, it will be better to maintain the running state of
virtual environments for a certain period of time, with the aim
to avoid additional time overheads on virtual initialization.
This way, however, will incur additional energy consump-
tions. Since the energy consumption can serve as an important
performance indicator to evaluate the VEC systems, the trade-
off between the energy consumption and application caching
strategies should be carefully considered. On another hand,
the evaluation of the caching-assisted VEC system, such as the
response time optimization, usually needs a long-term process.
Therefore, it becomes significant and yet very challenging to
design an appropriate application/service caching strategy in
VEC.

In this article, we focus on the response time minimization
while considering the energy consumption for application out-
sourcing in the caching-assisted VEC. In particular, we list the
major contributions of this article as follows.

1) We propose a generic approach to improve the
performance of application outsourcing in the caching-
assisted VEC. Specifically, we mathematically formulate
the optimization problem, with the aim to minimize the
average response time of the outsourced applications
over a long time-slotted horizon in this article.

2) Owing to the difficulty of solving the optimization
problem while satisfying the energy consumption over
an infinite time-slotted horizon, we introduce the
Lyapunov optimization technology in this article. By
doing so, the long-term energy constraint can be con-
verted into per-slot ones. Furthermore, a dynamic algo-
rithm based on the drift-plus-penalty term is proposed
to obtain the approximate optimal solution over the
accumulated time slots.

3) Extensive experiments are carried out to evaluate the
response time and energy consumption of the proposed
caching strategy in VEC. Simulation results show that
the proposed application outsourcing strategy in the
caching-assisted VEC can achieve better performance
while satisfying the time slot spanned energy constraint.

The remainder of this article is organized as follows.
Representative works are studied and discussed in Section II.
In Section III, we apply application-oriented caching into VEC
and formally establish a mathematical model to minimize the
response time while considering the energy consumption in the
caching-assisted VEC. In Section IV, we apply the Lyapunov
optimization technology to tackle the time slot spanned energy

constraint, and further put forward a drift-plus-penalty-based
algorithm that leverages two greedy heuristics to find the
approximate optimal solution in the caching-assisted VEC.
The simulation results are reported and discussed in Section V,
followed by a conclusion in Section VI.

II. RELATED WORKS

With the advent of smart transportation and its corre-
sponding subecosystems, such as smart vehicle and RSU, the
vehicle-loaded computers have gained rapid development. For
example, the computational resources can be extended to such
entities, enabling various applications and services running at
the vehicles and RSUs, while satisfying the strict response
time requirement. VEC has been considered as a promis-
ing and efficient approach to relieve the burden of backbone
networks [12], because a vast amount of data generated by
numerous smart terminals can be processed locally or at the
logical edge of networks, with no need for task offloading to
the remote cloud center via the core networks.

Recently, the task offloading and service outsourcing in
VEC have indeed attracted increasing attention by virtue of
its advantages [13]–[15]. We plan to investigate the existing
literature on VEC from two aspects in what follows.

A. Caching-Based VEC

Inspired by the content-centric mobile edge caching,
researchers turn their attention to the cache-enabled task
offloading in VEC [7], [8], with a purpose of further opti-
mizing energy consumption, response time, and so on. For
instance, if the tasks are cached in VEC, vehicles do not need
to offload the tasks any longer and hence, the transmission
delay and execution time in the edge can be omitted [9], [10].

Xu et al. [7] suggested that a small number of services
can be cached in size-limited edge server so as to improve
QoS with regards to (w.r.t.) response time. To investigate
the performance of the caching strategies, the optimization
problem is formulated to minimize the energy consumption
in the long run, i.e., across different time slots. An efficient
online algorithm is proposed to tackle these issues in mobile-
edge computing systems, which tries to jointly optimize the
dynamic service caching and task offloading.

The computation-intensive and time-sensitive tasks are
becoming dominating recently, which benefits from increas-
ingly popular applications, such as augment reality and in-car
gaming. Hao et al. [8] considered the task caching as a promis-
ing solution to satisfy the low-latency requirement. In this
regard, they propose to cache the completed task applica-
tion and corresponding data in the edge cloud, and try to
jointly optimize the task caching and offloading with multiple
constraints. An alternating iterative algorithm is proposed to
tackle this problem and simulation results prove that it indeed
outstands other approaches.

To realize efficient information dissemination,
Qin et al. [16] constructed a hierarchical end-edge framework,
which combines data delivery, computation offloading, and
content caching. The network overhead is selected as the
performance indicator to evaluate this framework and the
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related strategy. In particular, they model the optimization
problem as a mixed-integer nonlinear programming problem
and solve it based on the deep deterministic policy gradient.
Simulation results have revealed its advantages compared to
other benchmark approaches.

A mass of vehicles can serve as the intermediate nodes
to provide caching services for the requests in proximity.
However, several issues should be addressed, which include
the QoS, incentives, and privacy. To this end, Dai et al. [17]
combined the deep reinforcement learning with the permis-
sioned blockchain to achieve an intelligent and secure content
caching in the VEC system and network. Simulation results
have indicated that the approach is much better than two other
benchmark methods.

B. Response Time and Energy Consumption About VEC

Vehicles can serve as the computing nodes to provide the
computational resources to cater for the time-sensitive appli-
cations in the vicinity [8], [18]–[20]. For example, with the
increasing number of applications, various computational enti-
ties are welcome with the aim to mitigate the high demands
of computing resources in smart city. Hou et al. [18] first
proposed that vehicles with idle computing resources should
act as the infrastructures to perform multiple functionalities
such that vehicles can play more important roles in commu-
nication and computation. Specifically, they have discussed
several kinds of communication and computational infrastruc-
tures where either moving or parked vehicles can serve as
the computing entities for response latency optimization or
improving the throughput of the computing paradigm.

Similar works can also be found in [19] where authors sug-
gest that the ride-share taxis can serve as the infrastructure to
provide both communication and computation resources for
the time-sensitive applications. To be specific, terminal users
can leverage these taxis to support live video streaming, e.g.,
taxis can proactively receive video chunks. Furthermore, they
formulate the problem as a coverage optimization problem
and solve it by the strategy that is applied to the set cover
problem (SCP). Simulation results have proven its advantages
compared to other strategies.

On the other hand, the resource-hungry and time-sensitive
in-car applications have put huge pressure on the limited com-
puting capabilities of vehicles. Meanwhile, VEC has shown
great potentials to tackle such an issue, e.g., by outsourcing the
vehicular applications to the ubiquitous vehicular edge servers
such as RSU [14], [20], [21].

A multiuser multiserver VEC system is considered in [21]
where the load balance-aware resource allocation is studied
when tasks are offloaded. Authors have regarded this problem
as a mixed-integer nonlinear programming problem for the
system utility optimization. In particular, they divide it into
two subproblems and design efficient algorithms for them.

Ning et al. [22] strived to establish an offloading system
in VEC with the help of a deep reinforcement learning tech-
nology. Specifically, the finite Markov chains are applied to
modeling the communication and computation states. The
optimization problem is modeled mathematically in the hope

Fig. 1. Application scenario.

to improve the Quality of Experience (QoE) of users. Similar
to [21], the problem is also decoupled into two suboptimization
problems, and solved by a low-complexity algorithm.

Owing to the resource-hungry feature of the tasks, a certain
portion of tasks pertaining to the strict latency requirement
is encouraged to offload to the external entities for execu-
tion. VEC can play an important role in assisting such kinds
of task execution. To predict the resource consumption in
the edge nodes more accurately, Chen et al. [23] tried to
achieve an adaptive selection of machine learning algorithms,
by using a two-stage metalearning-based approach and extract-
ing metafeatures on the database. Multiple offloading decisions
are considered in [15] where tasks are offered three options for
the execution, i.e., local host, cloudlet, and cloud center. To
achieve better performance of the cloudlet-cloud offloading, a
mathematical problem is proposed that aims to optimize the
energy consumption in the long run.

For the same task with different task-input parameters, the
computational result could be of great difference. Accordingly,
the cached computational result may not benefit the following
requestors even if the tasks are the same. Few of the afore-
mentioned works have considered this case. Compared to these
works, we, respectively, generalize the computation, communi-
cation, and caching model to accommodate this case, and aim
to minimize the response time with the consideration of the
energy consumption constraint in the caching-assisted VEC.

III. PROPOSED CACHING-ASSISTED VEC MODEL

We consider a VEC scenario consisting of one edge server
S and multiple moving vehicles, as shown in Fig. 1. The
edge server can be deployed at a RSU, which directly con-
nects to the cloud server on the one hand, and communicates
with nearby vehicles using the vehicle-to-infrastructure (V2I)
communication technology on the other hand [24]. Due to
the limited computing capabilities, vehicles can outsource the
in-car applications to S for execution, with the aim to allevi-
ate the high demand of computing resources. We assume that
the offloaded applications belong to a set of K applications,
indexed by A = {a1, a2, . . . , aK}, and each application ak can
be described as ak = (dk, sk) where dk denotes the average
task-input size (e.g., the processing codes and user related
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Fig. 2. Sketch of caching-assisted service outsourcing in VEC.

parameters), which need to be offloaded over the wireless
channels, and sk denotes the average number of CPU cycles
for accomplishing ak.

We consider a caching-assisted service outsourcing in VEC
in this article, and expect that the response time can be dras-
tically reduced by caching those most frequently requested
services/applications at the edge server. For instance, when an
application ak that a vehicle wants to offload is already cached
in S, the vehicle does not need to transmit dk any longer, but
to wait for the result to be returned from S. It usually takes
a long-term process to evaluate the overall performance of
the caching-enabled VEC system. To this end, time is divided
into a set of discrete time slots, indexed by {0, 1, . . . , T − 1}
and each time slot has a duration π . The service caching
strategy can be updated within each time slot. Note that we
use the three words “applications,” “services,” and “tasks”
exchangeably hereafter.

Owing to the stochastic nature of vehicles, we assume that
the arrival of the application offloading requests for ak in time
slot t follows a Poisson process with arrival rate λt

k [25]. We
define δt

k ∈ {0, 1} as a binary variable to denote whether ak is
cached at S in the tth time slot. If ak is cached at S, δt

k = 1,
and 0, otherwise. Thus, the caching decision profile in time
slot t can be expressed as δt = (δt

1, δ
t
2, . . . , δ

t
K). We have

∑K
k=1 δt

kdk ≤ C ∀t(∈ [0, T − 1]) where C denotes the cache
size of S.

Specifically, Fig. 2 shows the sketch of caching-assisted ser-
vice outsourcing in VEC. For the vehicles with the offloading
requests in the vicinity, they can disseminate such requests
to VEC (RSU) together with the beacon information. RSU
gathers the offloading requests and decides which services
should be cached according to the evaluation metric (illustrated
later). The caching profile determined by RSU is then sent

back to the vehicles. Based on the caching decision, vehicles
will perform different offloading operations. For example, if
the requested service has been cached in VEC, the vehicle
only needs to offload the context information (e.g., the user
related parameters). In this case, the time taken to offload the
context information is negligible compared to the task itself.
On the other hand, if the requested service is not cached in
VEC, the vehicle will offload the task to RSU for the execu-
tion. Our work in this article focuses on the caching decision
making after the information on the requested services is gath-
ered. It shall be noted that at the beginning of each time
slot, the caching decision profile can be updated based on
the beacon information disseminated from vehicles. For con-
venient discussion, some key notations to be used are shown in
Table I.

A. Service Caching Model

Intuitively, the more the number of services that are cached,
the more the response time can be reduced. However, due to
the limited cache size of S, it is impractical to cache all the
services at the same time. On another hand, from the viewpoint
of response latency reduction, it is better for the edge server to
maintain the virtual environment for a while after a service is
cached. However, the corresponding energy consumptions at
S will substantially increase as the number of cached services
increases. Therefore, we should judiciously determine which
services to be cached at S, for the purpose of response latency
reduction while considering the energy consumption.

If application ak is not cached at S in time slot t, vehicles
should offload it to S and wait for the execution result. In
this case, the average response time lt,no

k,rl consists of the trans-
mission response lt,no

k,trs and execution response lt,no
k,exe, each of
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TABLE I
NOTATIONS

which cannot be neglected. However, the time taken to return
the result from S can be omitted due to the negligible result
size [26]. We need to calculate lt,no

k,trs and lt,no
k,exe, respectively.

The average transmission delay dt,no
k,trs for ak over the wireless

channel in slot t can be expressed as

dt,no
k,trs = dk

β t
krt

k
(1)

where β t
k denotes the number of channels assigned to ak and

rt
k denotes the average transmission rate over the channel. To

simplify the discussion, we assume that rt
k is a constant, which

can be obtained based on the historical statistics. The arrival
of tasks at the transmission channel also follows a Poisson
process based on the aforementioned assumption. The arrival
rate at the transmission queue is λt

k and the service rate is
πβ t

krt
k/dk. Based on the M/M/1 queueing model, the average

queuing delay in the transmission channel can be calculated
as [27]

dt,no
k,q = λt

kd2
k

πβ t
krt

k

(
πβ t

krt
k − λt

kdk
) . (2)

Since the average transmission response consists of the aver-
age queuing delay in the transmission channel and the
following average transmission delay, we have:

lt,no
k,trs = dt,no

k,q + dt,no
k,trs. (3)

The execution delay of ak at S can be calculated as

dt,no
k,exe = dt,no

k,init + sk

f t
e

(4)

where f t
e is the average processing frequency of S in time slot

t and dt,no
k,init is the time taken to initialize the VM for ak in

time slot t.
To obtain the queueing delay of ak, information about other

applications A\{ak} in time slot t is also required. Based
on the queueing model, the arrival rate of all the services
λ̃t = ∑K

k=1 λt
k at the task queue of S also follows a Poisson

process. Thus, the average execution time (i.e., service time)
for a service is

∑K
k=1 λt

ksk/π f t
e λ̃

t. Thus, the service rate for

each VM is π f t
e λ̃

t/
∑K

k=1 λt
ksk. The number of VMs in S is

assumed to be m. According to the M/M/s queueing theory,
the average queueing delay for ak is given as

dt,no
k,aq = mρ

λ̃t
+ mmρm+1P0

λ̃tm!
(5)

where ρ = λ̃t ∑K
k=1 λt

ksk/(mπ f t
e λ̃

t) and P0 =
1/(

∑m−1
k=0 (mρ)k/k! + (mρ)m/(m!(1 − ρ))). Thus, the

average execution response time lt,no
k,exe can be expressed as

lt,no
k,exe = dt,no

k,aq + dt,no
k,exe. (6)

Furthermore, the average energy consumption for ak at S
can be given as

et,no
k = κεsk

(
f t
e

)2 (7)

where κ and ε represent the effective switched capacitance
coefficient and the number of cycles required for one task-
input bit performing at S, respectively.

If ak is cached at S in time slot t, it is unnecessary for
vehicles to offload the corresponding tasks to S. In this case,
the average response time of ak denoted by lt,ck,rl is directly
equal to the execution response time lt,ck,exe. In most of the
existing works, lt,ck,exe = 0 holds, as long as the service is
cached. The assumption behind it is that the computational
result is applicable to any offloading request irrespective of
context information and user related parameters. As a con-
trast, we allow for the diversity of context information and
user parameters. As a result, lt,ck,exe needs to be recalculated
even if the corresponding service is cached. The execution
delay of ak in time slot t is: dt,c

k,exe = sk/f t
e . Since the running

state of the virtual environment is maintained when the ser-
vice is cached, the initialization time can be omitted, which is
different from dt,no

k,exe. The average queueing delay for ak, i.e.,
dt,c

k,aq, is the same as dt,no
k,aq. Thus, when the corresponding ser-

vice is cached, the average execution response consisting of
the average queueing delay and average execution delay can
be expressed as

lt,ck,exe = dt,c
k,aq + dt,c

k,exe. (8)

The corresponding energy consumption can be calculated
as

et,c
k = γk + κεsk

(
f t
e

)2 (9)

where γk is the static power consumption caused by the
maintenance of the virtual environment for ak regardless
of the workloads. Therefore, we have the expected energy
consumption Et in time slot t as follows:

Et
(
δt) =

K∑

k=1

(
1 − δt

k

)
et,no

k + δt
ket,c

k . (10)

B. Problem Formulation

Our goal in this article is to minimize the average response
time over a long time-slotted horizon while keeping the energy
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consumption at S below the given threshold. Accordingly, the
optimization problem is formulated as follows:

(P1) min
δt ∀t

lim
T→∞

1

T

T−1∑

t=0

K∑

k=1

[(
1 − δt

k

)
lt,no
k,rl + δt

klt,ck,rl

]
(11)

s.t. lim
T→∞

1

T

T−1∑

t=0

Et
(
δt) ≤ Q (12)

K∑

k=1

δt
kdk ≤ C ∀t ∈ [1, T] (13)

Et
(
δt) ≤ Emax

t ∀t ∈ [1, T] (14)
K∑

k=1

[(
1 − δt

k

)
lt,no
k,rl + δt

klt,ck,rl

]
≤ Lmax

t ∀t ∈ [1, T]

(15)

where Lmax
t and Emax

t denote the maximum response time
and energy consumption allowed for time slot t, respec-
tively. Specifically, conditions (14) and (15) place Lmax

t and
Emax

t on the per-slot response time and energy consumptions,
respectively. Condition (12) represents that the average energy
consumption over the accumulated time slots should not go
beyond the energy consumption constraint Q. Constraint (13)
ensures that the amount of services to be cached should not
exceed the cache size of S.

Challenges: Exhaustive search over the potential solution
space is prohibitively costly, since it takes the exponential
time to determine the best caching profile for each time slot.
Furthermore, to optimally solve problem P1 requires the future
information (e.g., service distributions in all time slots). Based
on these information, the optimal solution can be obtained in
an offline way. However, it is highly difficult to predict such
information beforehand in reality. Accordingly, these chal-
lenges necessitate an online approach, which can efficiently
make service caching decisions without the future information.

IV. RESPONSE TIME MINIMIZATION STRATEGY

CONSIDERING ENERGY CONSUMPTION IN

CACHING-ASSISTED VEC

A. Lyapunov-Based Online Caching Decision Algorithm

Directly solving problem P1 is challenged by not only the
prediction on the future information but also the entire energy
consumption constraint across the time slots. Accordingly, the
Lyapunov optimization framework is adopted in this article
to tackle such challenges. We construct a dynamic energy
migration queue to assist the caching decision making while
satisfying the long-term energy constraint. Let q(0) = 0, and
this queue can be recursively defined as

q(t + 1) = max
[
q(t) − Q, 0

] + Et
(
δt) (16)

where q(t) is the queue backlog in time slot t that reflects
the deviation of current energy consumption from the energy
constraint Q. Hence, the larger the value of q(t), the sharper
the deviation.

Lemma 1: Given the queue backlog q(t), the following
inequality holds:

1

T

T−1∑

t=0

E
[
Et

(
δt) − Q

] ≤ 1

T
E[q(T)].

Proof: We can briefly prove it as follows. If q(t) ≥ Q,
according to the definition of q(t), we have q(t + 1) =
max [q(t)−Q, 0]+Et(δ

t) = q(t)−Q+Et(δ
t); thus, Et(δ

t)−Q=
q(t + 1) − q(t). If q(t) < Q, we have q(t + 1) = max [q(t) −
Q, 0] + Et(δ

t) = Et(δ
t) and Et(δ

t) − Q < q(t + 1) − q(t).
Accordingly, Et(δ

t)− Q ≤ q(t + 1)− q(t) ∀t ∈ {0, . . . , T − 1}.
Taking the expectation of this inequality and further summa-
rizing it over ∀t ∈ {0, . . . , T − 1}, we have

T−1∑

t=0

E
[
Et

(
δt) − Q

] ≤
T−1∑

t=0

E
[
q(t + 1) − q(t)

]

= E[q(T)].

Thus

1

T

T−1∑

t=0

E
[
Et

(
δt) − Q

] ≤ 1

T
E[q(T)].

The Lyapunov function can be defined as L(q(t)) =
(1/2)q2(t). To ensure the strong stability of this migration
queue, the increment between two consecutive states should be
as small as possible. To this end, we define the Lyapunov drift
as 
(q(t)) � E[L(q(t + 1)) − L(q(t))|q(t)]. We can determine
the upper bound of 
(q(t)), based on the Lemma from [28],
given as follows.

Lemma 2: Assuming A, B, C, and m are non-negative real
numbers and C = max{B − m, 0} + A, then C2 ≤ A2 + B2 +
m2 − 2B(m − A).

Based on this lemma, we have


(q(t)) = E
[
L(q(t + 1)) − L(q(t))|q(t)

]

= 1

2
E

[[
max

[
q(t) − Q, 0

] + Et
(
δt)]2 − q2(t)|q(t)

]

≤ 1

2
E

[
Q2 + E2

t

(
δt) + 2q(t)

(
Et

(
δt) − Q

)|q(t)
]

= 1

2
Q2 + E

[
E2

t

(
δt)

2
− Qq(t) + q(t)Et

(
δt)|q(t)

]

= D − Qq(t) + E
[
q(t)Et

(
δt)|q(t)

]
(17)

where D = (Q2/2) + E[([E2
t (δ

t)]/2)|q(t)] ≤ (Q2/2) +
E[([(Emax

t )2]/2)|q(t)] = (Q2/2) + ([(Emax
t )2]/2) � B. As a

result, 
(q(t)) ≤ B − Qq(t) + E[q(t)Et(δ
t)|q(t)]. It is easily

observed that the upper bound of 
(q(t)) does not need the
future information such as q(t + 1) at time slot t. Therefore,
we can convert the time slot spanned energy constraint into
per-slot ones by means of the Lyapunov optimization technol-
ogy. Specifically, the drift-plus-penalty term in each time slot
is given as


(q(t)) + VE
[
Lt

(
δt)|q(t)

]

≤ B − Qq(t) + E
[
q(t)Et

(
δt)|q(t)

] + VE
[
Lt

(
δt)|q(t)

]

= B − Qq(t) + E
[
q(t)Et

(
δt) + VLt

(
δt)|q(t)

]
(18)
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where Lt(δ
t) �

∑K
k=1 [(1−δt

k)l
t,no
k,rl +δt

klt,ck,rl] is the response time
at time slot t given the caching decision δt. V(> 0) is a control
parameter to adjust the tradeoff between energy consumption
control and response time minimization. Now, our attention
has shifted from P1 to the minimization of the supremum of
the drift-plus-penalty term, i.e., the right-hand side of (18).
Namely, the caching decision δt can be determined for time
slot t by solving the following problem P2:

(P2) min
∀t,δt

{
q(t)Et

(
δt) + VLt

(
δt)} (19)

s.t. (13)−(15). (20)

It is worth mentioning that the constraint (12) in P1 has
been incorporated into problem P2 itself by means of 
q(t).

Theorem 1: Based on the drift-plus-penalty term, the
caching decisions obtained by solving P2 over time slots
t ∈ {0, . . . , T−1} are approximately optimal caching decisions
w.r.t. P1.

Proof: If there is a solution to P1, then there exists a
caching decision δt∗ and l∗, while satisfying: 1) Et(δ

t∗) ≤
Q and 2) l∗ = minδt ∀t limT→∞(1/T)

∑T
t=1

∑K
k=1 Lt(δ

t),
based on [29]. Therefore, we have


(q(t)) + VE
[
Lt

(
δt)|q(t)

]

≤ B − Qq(t) + E
[
q(t)Et

(
δt)|q(t)

] + VE
[
Lt

(
δt)|q(t)

]

= B + E
[
q(t)

(
Et

(
δt) − Q

)|q(t)
] + VE

[
Lt

(
δt)|q(t)

]

= B + q(t)E
[(

Et
(
δt) − Q

)|q(t)
] + VE

[
Lt

(
δt)|q(t)

]

‡≤ B + Vl∗.

Since 
(q(t)) + VE[Lt(δ
t)|q(t)] ≤ B + q(t)E[(Et(δ

t) −
Q)|q(t)] + VE[Lt(δ

t)|q(t)], for ∀t ∈ {0, . . . , T − 1} and valid
caching decision δt, the inequality still holds when substituting
δt by δt∗, i.e., B+q(t)E[(Et(δ

t∗)−Q)|q(t)]+VE[Lt(δ
t∗)|q(t)].

Owing to Et(δ
t∗) − Q ≤ 0, the inequality (‡) holds.

Then, we calculate the expectation of the above inequality
and then perform a sum of the expectation over the time slots
t ∈ {0, . . . , T − 1}, namely

T−1∑

t=0

E
[

(q(t)) + VE

[
Lt

(
δt)|q(t)

]]

=
T−1∑

t=0

E
[
E

[
L(q(t + 1)) − L(q(t))|q(t)

] + VE
[
Lt

(
δt)|q(t)

]]

=
T−1∑

t=0

E
[
L(q(t + 1)) − L(q(t))

] + VE
[
Lt

(
δt)]

= E
[
L(q(T)) − L(q(0))

] +
T−1∑

t=0

VE
[
Lt

(
δt)]

= E[L(q(T))] +
T−1∑

t=0

VE
[
Lt

(
δt)] ≤

T−1∑

t=0

E
[
B + Vl∗

]

= (
B + Vl∗

) ∗ T.

Since E[L(q(T))] ≥ 0, we have

T−1∑

t=0

VE[Lt(δ
t)] ≤ (B + Vl∗) ∗ T.

Then

1

T

T−1∑

t=0

E[Lt(δ
t)] ≤ l∗ + B

V
.

Namely

1

T

T−1∑

t=0

Lt(δ
t) ≤ l∗ + B

V
.

This is because Lt(δ
t) is the expected response time, and

according to the law of iterated expectations, E[Lt(δ
t)] =

Lt(δ
t). Thus, the caching decision obtained by solving P2

can be infinitely close to the solution of P1 by adjusting the
variable V .

Remark: Let G(V) represent the optimality gap, which
denotes the difference between l∗ and the solution of P2.
The supremum of P2 is l∗ + B/V , so G(V) = B/V and
O(G(V)) = O(l∗ + B/V) = O(1/V). As a consequence, if
problem P2 can be solved within each time slot, G(V) can be
bounded by O(1/V).

Theorem 2: The caching decisions obtained by solving
problem P2 over time slot t ∈ {0, . . . , T − 1} make inequal-
ity (12) always true.

Proof: Let δt∗ denote the caching decision obtained by
solving problem P2, i.e., the right-hand side of drift-plus-
penalty inequality (18) in time slot t. Thus, we have


(q(t)) + VE
[
Lt

(
δt∗)|q(t)

]

≤ B − Qq(t) + E

[
q(t)Et

(
δt‡

)
|q(t)

]
+ VE

[
Lt

(
δt‡

)
|q(t)

]

≤ B − Qq(t) + VL‡
t + q(t)(Q − ε)

= B − εq(t) + VL‡
t

where δt‡ is any other valid caching decision in time slot t
except δt∗. L‡

t is the corresponding response time with caching
decision equal to δt‡. Since E[Et(δ

t∗)] = Et(δ
t∗) ≤ Q [15],

there exists a small enough ε > 0, satisfying Et(δ
t∗)−Q ≤ −ε,

namely, Et(δ
t∗) ≤ Q − ε.

By taking expectations of the above inequality, we have:
E{
(q(t)) + VE[Lt(δ

t∗)|q(t)]} ≤ B − εE[q(t)] + VL‡
t , namely

E
[
L(q(t + 1))

] − E[L(q(t))] + VE
[
Lt

(
δt∗)]

≤ B − εE[q(t)] + VL‡
t .

By summing this inequality over t ∈ {0, . . . , T − 1}, we have

E
[
L(q(T))

] − E
[
L(q(0))

] + V
T−1∑

t=0

E
[
Lt

(
δt∗)]

≤ BT + VL‡
t T − εE[q(t)]T

≤ BT + VL‡
t T = B′T

where B′ = B + VL‡
t . Since V

∑T−1
t=0 E[Lt(δ

t∗)] ≥ 0, thus
E[L(q(T))] − E[L(q(0))] ≤ BT + VL‡

t T . Substituting L(q(T))

by L(q(T)) = (1/2)q2(T), we have

1

2
E

[
q2(T)

]
≤ B′T + 1

2
E

[
q2(0)

]
= B′T.
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Algorithm 1: LOCD
Input: q(0), Q, C, A, V , T
Output: Optimum solution to P1

1 L = 0;
2 for t = 0 to T − 1 do
3 Observe and record λt, rt;
4 Set Lmax

t and Emax
t ;

5 Obtain δt∗ by solving problem P2;
6 L = L + Lt(δ

t∗);
7 Calculate Et(δ

t) based on Eq. 10;
8 q(t + 1) = max [q(t) − Q, 0] + Et(δ

t);
9 end

10 avg = L/T;
11 return avg;

According to the Cauchy inequality, i.e.,
(
∑n

i=1 xiyi)
2 ≤(

∑n
i=1 x2

i )(
∑n

i=1 y2
i ), we have

(E[q(T)])2 ≤ E

[
q2(T)

]
≤ 2B′T.

Thus, E[q(T)] ≤ √
2B′T , so

1

T
E[q(T)] ≤

√
2B′
T

.

Based on Lemma 1, we have

1

T

T−1∑

t=0

E
[
Et

(
δt) − Q

] ≤ 1

T
E[q(T)] ≤

√
2B′
T

.

Therefore

lim
T→∞

1

T

T−1∑

t=0

E
[
Et

(
δt) − Q

] ≤ lim
T→∞

√
2B′
T

= 0.

Namely,

lim
T→∞

1

T

T−1∑

t=0

[
Et

(
δt) − Q

] ≤ 0.

As a consequence, we can see that: 1) the queue backlog
is mean rate stable and 2) the caching decision obtained by
solving P2 can solve P1 without constraint violation.

Based on the above descriptions, we have proposed a
Lyapunov-based online caching decision (LOCD) algorithm
to obtain approximately optimum solution to problem P1, as
shown in Algorithm 1. Specifically, LOCD seeks the optimal
solution along each time slot. Within each time slot, given
per-slot constraints on the expected response time and energy
consumption (i.e., Lmax

t and Emax
t ), respectively, we strive to

achieve approximately optimum solution by solving problem
P2 (lines 3–5). Then, the per-slot best caching decision can be
obtained, i.e., δt∗. LOCD calculates the optimal response time
based on δt∗ and then the per-slot response time is accumu-
lated (lines 7 and 8). Finally, the mean value of the objective
function (i.e., avg = L/T) can be retrieved.

B. Algorithm Design for Solving P2

Let δt∗ = arg minδt ∀t{q(t)Et(δ
t)+ VLt(δ

t)} while satisfying
the constraints (13)–(15). Then, δt∗ can be viewed as the best
caching decision in time slot t in terms of Lt(δ

t). Given q(t)
and V , the problem P2 is actually a 0-1 knapsack problem.
Owing to its well-known NP-hardness, exhaustive search takes
exponential time and thus, makes itself infeasible in reality.
Evolutionary algorithms, such as GA and PSO [14], [20] can
be adopted to solve it. However, these iteration-based methods
are usually time consuming and thus, impracticable in time-
sensitive scenarios. Accordingly, a heuristic algorithm suitable
for the time-sensitive scenario is required to solve P2. Let
F = q(t)Et(δ

t)+VLt(δ
t) and by substituting Et(δ

t) and Lt(δ
t),

respectively, we have

F(
δt) = q(t)Et

(
δt) + VLt

(
δt)

=
K∑

k=1

[
q(t)et,no

k + Vlt,no
k,rl

]

−
K∑

k=1

δt
k

[
q(t)γk + V

(
lt,no
k,rl − lt,ck,rl

)]

� P − G (21)

where P = ∑K
k=1 [q(t)et,no

k + Vlt,no
k,rl ], independent of the

caching decision δt, can be determined within each time slot,
and G = ∑K

k=1 δt
k[q(t)γk + V(lt,no

k,rl − lt,ck,rl)] depends upon δt.
To minimize F means to maximinze G in essence, since P is
unchangeable given the time slot t.

To meet the strict response time requirement, a greedy
algorithm is proposed to minimize F . In particular, a greedy
heuristic is given in what follows. Let gt

k = q(t)γk + V(lt,no
k,rl −

lt,ck,rl), and the applications in A are sorted in the descending
order of gt

k/dk. The corresponding greedy algorithm is shown
in Algorithm 2. A list L is used to store the sorted applications.
S0 and S1 store the indexes of tasks that are cached and not
cached, respectively. Therefore, the caching decision profile δt

can be easily constructed based on S0 and S1. Initially, S1 = ∅
and S0 = {0, 1, . . . , K −1}, respectively. We check application
ak in L one by one. If the sum of input data of all already
cached applications plus current ak does not exceed the con-
straint C, we tend to cache ak. However, the per-slot energy and
latency constraints are examined, respectively, before updating
the decision caching profile (lines 12–15). In the meanwhile,
the accumulated energy consumption and response time are
obtained, respectively, (lines 10 and 11). If the sum of input
data of all already cached applications plus current ak exceeds
the constraint C, the algorithm checks the application after ak

in L. In the meanwhile, the accumulated energy consump-
tion and response time are also calculated. Based on (21), the
minimal F can be retrieved. Finally, S0 and S1 are returned.

Remark: The time of GASP is mainly taken to sort the appli-
cations in A. Various sort algorithms can be utilized to achieve
this goal with the time complexity of O(K log K), where K
is the number of applications. In addition, the time taken to
check applications in A is O(K). Thus, the time complex-
ity of GASP is O(K log K) + O(K) = O(K log K), which is
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Algorithm 2: Greedy Algorithm for Solving P2 (GASP)

Input: q(t), et,no
k , lt,ck,rl, lt,no

k,rl , C, A, V ,γk

Output: S0 and S1
1 S0 = {0, 1, ..., K − 1};
2 S1 = ∅;
3 gt

k = q(t)γk + V(lt,no
k,rl − lt,ck,rl), for ∀k ∈ [1, K];

4 L stores the applications in descending order of gt
k/dk;

5 s = 0, L = 0, E = 0;
6 for each ak in L do
7 s = s + dk;
8 if s ≤ C then
9 Calculate lt,ck,rl and et,c

k ;
10 L = L + lt,ck,rl;
11 E = E + et,c

k ;
12 if L ≤ Lmax

t and E ≤ Emax
t then

13 δt
k = 1;

14 S1 = S1 ∪ {k};
15 S0 = S0\{k};
16 else
17 L = L − lt,ck,rl;
18 E = E − et,c

k ;
19 end
20 else
21 s = s − dk;
22 Calculate lt,no

k,rl and et,no
k ;

23 L = L + lt,no
k,rl ;

24 E = E + et,no
k ;

25 end
26 end
27 Fmin = q(t)E + VL;
28 return S0 and S1;

much better than the evolutionary algorithms. GASP endeav-
ors to obtain the approximate optimal solution according to the
greedy heuristic. However, similar to the general 0-1 knapsack
problem solved by greedy algorithms, the drawback of GASP
is that the vacant part of knapsack can depreciate the value
of knapsack if the knapsack is not fully occupied. Therefore,
GASP needs to be enhanced for the performance improvement.

C. Enhanced Algorithm for Solving Problem P2

To narrow down the optimality gap between the approx-
imate optimal value and true optimal value, in this section,
we apply two other greedy rules to the approximate solution
obtained by GASP.

Definition 1: 1-D increment 
k(δ
t) is defined as


k(δ
t) = G(δt

1, . . . , 1(k), . . . , δ
t
K) − G(δt

1, . . . , 0(k), . . . , δ
t
K) =

q(t)(et,no
k − et,c

k ) + V(lt,no
k,rl − lt,ck,rl) = q(t)γk + V(lt,no

k,rl − lt,ck,rl).

k(δ

t) can be used to evaluate the optimum increment to
the objective function G by unilaterally changing δt

k from 0 to
1 while keeping other caching decisions {δt

i |1 ≤ i ≤ K, i �= k}
unchanged.

Definition 2: 2-D increment 
kl(δ
t) is defined

as 
kl(δ
t) = G(δt

1, . . . , 1(k), . . . , 0(l), . . . , δ
t
K) −

Algorithm 3: EnGASP

Input: Fmin, δt, S0, S1
Output: δt

1 while S0 �= ∅ do
2 Obtain k∗ by solving: k∗ = arg max{
k(δ

t)|k ∈ S0} ;
3 if

∑
i{di|i ∈ S1} + dk∗ ≤ C then

4 Update Fmin;
5 δt

k∗ = 1;
6 S1 = S1 ∪ {k∗};
7 S0 = S0\{k∗};
8 else
9 S0 = S0\{k∗};

10 end
11 end
12 S0 = {1, ..., K}\S1;
13 while S0 �= ∅ and S1 �= ∅ do
14 Obtain (k∗, l∗) by solving:

(k∗, l∗) = arg min{
kl(δ
t)|k ∈ S1, l ∈ S0};

15 if 
k∗l∗(δt) < 0 and
∑

i{di|i ∈ S1\{k∗} ∪ {l∗}} ≤ C
then

16 Update Fmin;
17 δt

k∗ = 0 and δt
l∗ = 1;

18 S1 = S1\{k∗};
19 S0 = S0\{l∗};
20 end
21 end
22 return δt;

G(δt
1, . . . , 0(k), . . . , 1(l), . . . , δ

t
K) = q(t)(γk − γl) + V(lt,no

k,rl −
lt,ck,rl − lt,no

l,rl + lt,cl,rl).

kl(δ

t) can denote the optimum increment to G by swapping
the caching decisions of two services (e.g., service k from S1
and l from S0, respectively), with one varying from 0 to 1 and
the other from 1 to 0. If 
kl(δ

t) < 0, the objective function F
can be further optimized by exchanging the caching decisions
of two tasks from S1 and S0, respectively.

Accordingly, we can improve the performance of GASP
with the aid of 
k(δ

t) and 
kl(δ
t). To be specific, given a

decision profile δt obtained by GASP, i.e., S0 and S1, the
procedure of enhancing GASP, denoted by enhanced GASP
(EnGASP), is shown in Algorithm 3. EnGASP mainly consists
of two steps, with one called the filling stage (lines 1–11) and
the other called the swapping stage (lines 13–21). The filling
stage, targeted at the vacant part of knapsack, strives to fill
the knapsack with uncached applications from S0. The swap-
ping stage on the other hand aims to find a better caching
decision profile by swapping two applications from S1 and
S0, respectively. For example, 
k∗l∗(δt) smaller than 0 means
that G can be increased by exchanging the caching decisions
of applications ak∗ and al∗ . In the meanwhile, if the caching
size constraint can be satisfied after the exchanging, F can be
further optimized by increasing G.

Remark: It is worth mentioning that EnGASP attempts
to enhance GASP rather than replacing it, since the input
parameters of EnGASP are the output parameters of GASP.
Intuitively, the performance of EnGASP is at least as good as
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TABLE II
PARAMETER SETTINGS

GASP. However, as for the time complexity of EnGASP, we
can see that the main two loops (i.e., lines 1 and 13) take O(K)

and O(K), respectively. To obtain k∗ usually needs to traverse
the set S0, which takes the time of O(K). On the other hand,
to obtain (k∗, l∗) usually requires to find the pair of (l, k) by
traversing S0 and S1, which takes time of O(|S1|) and O(|S0|),
respectively. Thus, the time to find (k∗, l∗) is O(|S0| · |S1|).
Since O(|S0| · |S1|) ≤ O(((|S0| + |S1|)/2)2) = O(K2/4) =
O(K2), the time complexity of EnGASP can be derived as
O(K) · O(K) + O(K) · O(K2) = O(K3). Compared to the
iteration-based evolutionary algorithms [14], [20], both GASP
and EnGASP are of polynomial time. Therefore, both are
really appropriate for time-sensitive scenarios in VEC systems.
In addition, extensive simulation is still needed to evaluate
EnGASP and GASP w.r.t. efficiency and effectiveness.

V. NUMERIC EVALUATION

Extensive experiments have been carried out to evaluate
the proposed caching strategy in terms of response time and
energy consumption in this section. In what follows, we
will report the experimental settings and simulation results,
respectively.

A. Experimental Settings

The involved parameters with the corresponding values are
shown in Table II. Although the involved parameters in the
simulation are given manually, our previous works [14], [20]
can bring rich experience to the parameter settings, includ-
ing the duration for each time slot π , κε, f t

e , and so on. For
instance, π should be set appropriately such that on the one
hand, the edge server S has enough time to make caching
decisions, and on the other hand, tasks offloaded to S can be
completely accomplished by the end of time slot. The number
of time slots varies from 0 to 1000 and the number of appli-
cations is set to 20. Within each time slot, these vehicular
applications are randomly generated according to dk and sk.
For the caching-related parameters, the global energy con-
straint Q across different time slots is set to 1.2. For simplicity,
we assume that the maximal per-slot energy consumption con-
straint is the same for each time slot (i.e., 20) in the simulation.
The control parameter for the drift-plus-penalty term V ranges
from 300 to 1000.

Fig. 3. Performance comparison with different time slots.

Fig. 4. Response time comparison with different time slots.

B. Simulation Results

First, we evaluate the performance of GASP and EnGASP
with different time slots, respectively. The experimental result
is shown in Fig. 3, where the x-coordinate denotes the time
slots and the y-coordinate denotes the objective values cor-
responding to the problem P2. From this figure, several
observations can be revealed as follows. First, as theoretically
analyzed earlier, the performance of EnGASP is at least as
good as GASP. The experimental result conforms to the the-
oretical analysis. Second, the performance of GASP at time
slot 0 is the worst compared to other cases, which, however, is
comprehensible and explicable as follows. According to (16),
the calculation of q(t + 1) at time slot t depends on q(t) and
Et(δ

t). At the beginning of time slot (i.e., t = 0), we assume
that all the vehicular applications are not cached at S. Thus,
the objective value can be very large. Third, EnGASP helps
improve the performance of GASP by two main stages (i.e.,
the filling step and the swapping step). Across different time
slots, the two steps further optimize GASP to a certain extent.

Fig. 4 shows the change of the running time of GASP and
EnGASP as the number of time slots increases. First, it is very
clear that the running time of EnGASP is much larger than
that of GASP. Most of the time, GASP can make a caching
decision in real time, while EnGASP can make it within tens
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Fig. 5. F minimization with two heuristic rules.

of milliseconds. It is understandable since EnGASP needs the
output of GASP as input parameters, i.e., EnGASP runs based
on the caching decision obtained from GASP. As a result, the
response time of EnGASP includes that of GASP, and thus, it
is of polynomial time. Second, both GASP and EnGASP need
complete accomplishment within each time slot. Furthermore,
the tasks are generated randomly within each time slot, which
means they are independent at different time slots. Therefore,
the running time of both GASP and EnGASP do not increase
as the number of time slots increases. Third, both GASP and
EnGASP can make a caching decision in almost real time. It is
of important significance to satisfy the strict time requirement
of the vehicular applications.

Long-term energy constraint Q is converted into the per-slot
energy constraint by the Lyapunov optimization technology,
so we can pay attention to the per-slot problem optimization.
GASP and EnGASP try to obtain the best caching deci-
sions w.r.t. problem P1 by minimizing F . The experiment has
been conducted to evaluate the performance when minimizing
F , and the simulation result is shown in Fig. 5, where the
x-coordinate represents the number of time slots and the y-
coordinate represents the values of F . It can be easily observed
that EnGASP is better than GASP when the number of time
slots is the same. Generally speaking, no matter how the num-
ber of time slots varies, EnGASP is better than GASP in most
cases. On the other hand, the situation similar to the case
shown in Fig. 3 happens when the time slot t = 0 and the
reason is also the same as that in Fig. 3.

The metric hit ratio is an important performance indicator
to evaluate the performance of the caching strategies in the
information-centric networks. Furthermore, it is still applicable
for evaluating the application-oriented caching strategies. In
particular, Fig. 6 shows the variation of the hit ratio when
GASP and EnGASP are applied under different caching sizes.
In this experiment, the caching sizes range from 110 to 200
with a step of 10. It is obvious that the hit ratio increases for
both GASP and EnGASP, as the caching sizes increase, this is
because larger caching capabilities will enable more services
to be cached. As expected, EnGASP is slightly better than
GASP w.r.t. the hit ratio in most cases.

Fig. 6. Hit ratio comparison with different caching sizes.

Fig. 7. Average energy consumption compared to the global energy
constraint.

Another set of experiments is conducted to evaluate the
average energy consumption at S across different time slots.
More importantly, we need to check whether there are any
constraint violations of energy consumption at different time
slots. The simulation results are shown in Fig. 7. First, no
matter how the number of time slots increases, the energy
consumptions at S vary roughly from 0.5 to 1.2. The global
energy constraint Q is 1.2, so there is no energy violation at all
for the arbitrary number of time slots. Therefore, the exper-
imental results accord with the theoretical analysis. Second,
the energy consumption at S within each time slot depends
upon the current caching decision profile. Generally, the more
the number of applications, which are cached at S, the more
the energy consumptions at S, for the reason that given a cer-
tain period of time, the running state of virtual environments
should be maintained so as to avoid additional time overheads
on the virtual initialization. The difference in the caching deci-
sion profile at different time slots leads to the different energy
consumptions at different time slots.

As discussed earlier, some iteration-based evolutionary
algorithms can also be adopted to obtain the optimal values
of F . In particular, we investigate the performance of these
algorithms (e.g., GA and PSO) w.r.t. the capabilities to obtain
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Fig. 8. Performance comparison with different number of time slots.

Fig. 9. Running time comparison with different number of time slots.

Fig. 10. Performance comparison with different number of applications.

the optimal values of F and the time complexity. The sim-
ulation results are shown in Figs. 8–11, respectively. Figs. 8
and 9 show the optimal values and the running time of the
four approaches, respectively, when the number of time slots
increases. Obviously, at least two conclusions can be drawn
based on the observations. First, GA and PSO indeed have
better capabilities to obtain the optimal values of F compared
to our approaches GASP and EnGASP. Since the offloading

Fig. 11. Running time comparison with different number of applications.

requests are generated randomly in each time slot, and thus,
they are independent in different time slots. The optimization
gap between the evolutionary algorithms and our approaches
is not becoming wider as the number of time slots increases.
Second, the running times of GA and PSO are much longer
than GASP and EnGASP. For example, it averagely takes
about 2 s for GA to obtain the optimal value of F , while
it averagely tasks about 1.65 s for PSO to obtain the value
of F . GASP and EnGASP, on the other hand, can achieve the
real-time response no matter how the number of time slots
changes.

When we compare the four approaches under different num-
bers of applications, GASP and PSO are hardly acceptable
despite the advantages over our approaches. As denoted in
Fig. 11, both of GA and PSO take seconds to obtain the better
values of F . As a result, we can carefully draw a conclu-
sion that the evolutionary algorithms are not as good as our
approaches in the time-sensitive application scenario empha-
sized by this article. Our heuristic rules cater for the strict
time requirements of vehicular applications at the expense of
the precision of the solution, which, however, is acceptable
to a great extent. In contrast, GA and PSO may display bet-
ter performance with regards to precision, but they usually
take subseconds or even seconds to achieve this goal. Such
amount of time is unacceptable for the time-sensitive vehicular
applications.

Next, we investigate the effect of V on the objective val-
ues obtained in LOCD. To be specific, GASP and EnGASP
are adopted to solve problem P2 (line 5 in LOCD), respec-
tively. As shown in Theorem 1, the caching decision obtained
by solving P2 can be infinitely close to the solution to P1 by
adjusting the variable V . The value of V varies from 800 to
1000, and the simulation results are shown in Fig. 12. From the
figure, we can observe that LOCD with EnGASP has signif-
icant advantages over LOCD with GASP. On the other hand,
owing to the random generation of tasks at different time slots,
the best objective values are independent of each other across
different time slots. Accordingly, it makes sense that the best
objective values fluctuate a lot across different time slots.

The last set of experiments has been carried out to evalu-
ate the performance of LOCD with the increasing number of
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Fig. 12. Effect of V on the objective values.

Fig. 13. Convergence investigation with different number of time slots.

time slots. As shown in Fig. 13, due to the global energy con-
straint Q, LOCD reveals its convergence either with GASP or
EnGASP no matter how the number of time slots increases.
For example, when the number of time slots is equal to 1000,
the corresponding objective value is about 6.03. In spite of
the fluctuation of these values across different time slots,
this fluctuation has been confined to a limited interval (e.g.,
between 5.7 and 6.35). Furthermore, LOCD with EnGASP still
outstands that with GASP all the time.

VI. CONCLUSION

VEC brings considerable benefits for vehicular applica-
tions in smart transportation. However, the performance of
VEC is still challenged by high mobility of vehicles and
limited communication resources, especially considering that
the response time acts as the optimization objective during
application outsourcing. In this article, we applied application
caching to VEC to optimize the response time for the out-
sourced applications while satisfying the time slot spanned
energy consumption. The Lyapunov optimization technology
is adopted to convert the global energy constraint into per-
slot energy constraints, so as to facilitate the response time
optimization. Furthermore, two greedy heuristics are incorpo-
rated into the drift-plus-penalty-based algorithm for helping
find the approximate optimal solution. We have evaluated the

approach via a series of experiments. The simulation results
reveal the advantages of our algorithms in terms of response
time and energy consumption.
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