
IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 18, 15 SEPTEMBER 2024 29557

Load Balancing in SDN-Enabled WSNs Toward 6G
IoE: Partial Cluster Migration Approach

Vikas Tyagi , Samayveer Singh , Member, IEEE, Huaming Wu , Senior Member, IEEE,
and Sukhpal Singh Gill

Abstract—The vision for the sixth-generation (6G) network
involves the integration of communication and sensing capabil-
ities in Internet of Everything (IoE), toward enabling broader
interconnection in the devices of distributed wireless sensor
networks (WSNs). Moreover, the merging of software-defined
networking (SDN) policies in 6G IoE-based WSNs i.e., SDN-
enable WSN improves the network’s reliability and scalability
via integration of sensing and communication (ISAC). It consists
of multiple controllers to deploy the control services closer to
the data plane (DP) for a speedy response through control
messages. However, controller placement and load balancing are
the major challenges in SDN-enabled WSNs due to the dynamic
nature of DP devices. To address the controller placement
problem, an optimal number of controllers is identified using
the articulation point method. Furthermore, a nature-inspired
cheetah optimization algorithm is proposed for the efficient
placement of controllers by considering the latency and syn-
chronization overhead. Moreover, a load-sharing-based control
node (CN) migration (LS-CNM) method is proposed to address
the challenges of controller load balancing dynamically. The
LS-CNM identifies the overloaded controller and corresponding
assistant controller with low utilization. Then, a suitable CN is
chosen for partial migration in accordance with the load of the
assistant controller. Subsequently, LS-CNM ensures dynamic load
balancing by considering threshold loads, intelligent assistant
controller selection, and real-time monitoring for effective partial
load migration. The proposed LS-CNM scheme is executed on
the open network operating system (ONOS) controller and the
whole network is simulated in the ns-3 simulator. The simulation
results of the proposed LS-CNM outperform the state-of-the-art
in terms of frequency of controller overload, load variation of
each controller, round trip time, and average delay.

Manuscript received 29 December 2023; revised 22 April 2024; accepted
14 May 2024. Date of publication 17 May 2024; date of current version
6 September 2024. This work was supported in part by the National Natural
Science Foundation of China under Grant 62071327, and in part by the Tianjin
Science and Technology Planning Project under Grant 22ZYYYJC00020.
(Corresponding author: Huaming Wu.)

Vikas Tyagi is with the Department of CSE, Dr B R Ambedkar National
Institute of Technology Jalandhar, Jalandhar 144027, India, and also with the
School of Computer Science Engineering and Technology, Bennett University,
Greater Noida 201310, India (e-mail: itengg.vikas@gmail.com).

Samayveer Singh is with the Department of CSE, Dr B R Ambedkar
National Institute of Technology Jalandhar, Jalandhar 144027, India (e-mail:
samays@nitj.ac.in).

Huaming Wu is with the Center for Applied Mathematics, Tianjin
University, Tianjin 300072, China (e-mail: whming@tju.edu.cn).

Sukhpal Singh Gill is with the School of Electronic Engineering and
Computer Science, Queen Mary University of London, E1 4NS London, U.K.
(e-mail: s.s.gill@qmul.ac.uk).

Digital Object Identifier 10.1109/JIOT.2024.3402266

Index Terms—Control node (CN) migration, controller place-
ment problem (CPP), load balancing, multiple controllers,
SDN-enabled wireless sensor network (WSN).

I. INTRODUCTION

IN THE sixth generation (6G) network, the fusion of
Internet of Everything (IoE) and wireless sensor networks

(WSN) promises to revolutionize data collection, analysis,
and dissemination, unlocking unparalleled potential across
diverse real time applications. This revolutionary paradigm
promises transformative advancements in connectivity, intro-
ducing unparalleled speeds, massive device connectivity, and
seamless integration of new technologies [1]. With terabit-
per-second data rates and the ability to connect a vast
range of devices, 6G IoE envisions a highly integrated
and interconnected network where everything from smart
appliances to autonomous vehicles communicates effortlessly.
A distinctive feature of 6G IoE is its commitment to
sustainability, emphasizing green technologies to minimize
environmental impact and ensure energy-efficient practices.

However, the convergence of the IoE with WSN in the
6G network introduces a complex and dynamic landscape of
the integration of sensing and communication (ISAC) that
necessitates innovative approaches to the network management
and optimization [2]. ISAC stands as a pivotal advancement in
IoE with WSN, bridging the gap between the efficient resource
utilization and optimal performance [3]. It also addresses
the demanding need for seamless coordination between the
sensing and communication functions, ensuring that the sensor
nodes (SNs) capture data and effectively transmit it. However,
ISAC faces major challenges, such as resource constraints
and potential tradeoffs between the sensing accuracy and
communication efficiency [4]. In this context, the integration
of software-defined networking (SDN) emerges as a pivotal
solution to address the challenges and grasp the opportuni-
ties presented by this transformative paradigm. SDN enables
programmability, centralized resource management, and faster
policy implementation in WSN. In such an SDN-enabled
WSN, SDN separates the network functions of data forwarding
devices from the data plane (DP) by transferring them to
a centralized controller in the control plane (CP) [5], [6].
However, when the SNs in SDN-enabled WSN exceed the
threshold, the centralized controller may fail to respond to
the control messages (Ctrl_Msg) from the DP devices [7].

2327-4662 c© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on September 01,2024 at 03:29:17 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4067-6251
https://orcid.org/0000-0002-4199-721X
https://orcid.org/0000-0002-4761-9973
https://orcid.org/0000-0002-3913-0369

29558 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 18, 15 SEPTEMBER 2024

Fig. 1. Distributed SDN-enabled WSN.

Additionally, an overload situation in the SDN controller
occurs when the number of Ctrl_Msg requests exceeds the
maximum processing capacity of the controller. Furthermore,
the SDN controller can bring down the entire network due to
being a single point of failure [8], [9].

To overcome the aforementioned limitations inherent to the
6G IoE, the logical centralization of SDN-enabled WSN archi-
tecture is upgraded with the physical distribution of CP [10].
It provides a scalable and reliable distributed architecture
while preserving the importance of logically centralized SDN
policies as shown in Fig. 1. The local controllers (LC) are
placed near the DP devices under the global controller’s
(GC) supervision. The communication among controllers is
managed via an east-west application programming interface
(API). The end user is allowed to control and manage the
SDN policies in CP from the application plane through the
southbound API, however, the communication between CP to
DP is managed by the northbound API [11].

Distributed SDN-enabled WSN allows multiple controllers
to collaborate in coordinating the network functionalities
during ISAC in the 6G IoE [12]. Specifically, each controller
manages clusters of SNs called control domain. However,
all SNs in a cluster report to the cluster head, namely
the control node (CN), and these CNs are responsible for
sharing the cluster data with the corresponding controller. The
allocation of clusters to each controller will be optimized to
distribute network load evenly, also known as the controller
placement problem (CPP) [13]. Additionally, the controller
placement considers, identifying the minimum controllers and
their optimal location. However, more controllers cause a high
synchronization overhead in CP [14], [15].

The multiple controller architecture suffers from uneven
load distribution in CP due to the dynamic nature of SDN-
enabled WSN. Moreover, GC monitors each control domain
periodically and migrates CN from any overloaded controller
to neighboring controllers [16], [17]. However, this migration
process may exceed the threshold load of the neighbor-
ing controller, leading to a change in the controller state
to overload. Consequently, the migrated CN returns to the
previous control domain. This phenomenon is considered as
the CN Zig–Zag problem. The above issue of CN migration

occurs due to CN migration as a whole. To overcome this
problem, we present the load sharing-based CN migration (LS-
CNM) technique, allowing the partial share of the load of
an overloaded controller. LS-CNM associates an overloaded
controller with an assistant controller capable of sharing the
load of others. Subsequently, it selects a partial load of CNs
from the overload controller domain and migrates them with
the assistant controller.

This work is motivated by the need to overcome the
uneven load distribution challenges in the CP of a multiple-
controller architecture in the dynamic SDN-enable WSN.
However, the technical challenges include the development
of dynamic load balancing approaches, managing thresh-
old load to prevent migration issues, intelligently selecting
assistant controllers, designing a strategy for partial load
migration, ensuring continuous load monitoring and decision
making, preventing load oscillations, integrating with existing
SDN infrastructure, and addressing scalability concerns. The
proposed LS-CNM approach is successfully implemented
to resolve the above-mentioned challenges for SDN-enabled
WSNs.

To the best of our knowledge, LS-CNM is the first pioneer-
ing study that introduces dynamic management of controller
workloads through the partial CN migration within distributed
SDN-enabled WSNs. The main contributions of this article are
summarised as follows.

1) An efficient distributed CP is devised for SDN-enabled
WSN, aligning with the optimal number of controllers
using the articulation point (APs) method.

2) A metaheuristic approach, referred to as CP_CO,
is proposed to place the optimal number of con-
trollers through cheetah optimization (CO), effectively
addressing the CPP challenge. To refine the controller
placement, a well-constructed fitness function is formu-
lated, considering latency and synchronization overhead
parameters.

3) A load sharing-based CN migration method is proposed
to address the issue of load imbalance among con-
trollers during ISAC. It examines the overloaded control
domain, identifies the low-utilized assistant controller,
and then chooses a suitable CN for migration based on
the load of the identified assistant controller.

4) The proposed methodology is implemented on the
open network operating system (ONOS) controller, and
the network is simulated within the ns-3 simulator
to validate its feasibility. Simulation results indicate
that the LS-CNM has the capability to significantly
reduce instances of controller overload while effectively
achieving equitable distribution of the workload across
all controllers.

The remainder of this article is organized as follows.
Section II presents a summary of related work. The system
model and problem formulation are presented in Section III.
Section IV shows the proposed techniques. The experiment
setup and simulation results of the proposed LS-CNM are
discussed in Sections V. Finally, the conclusion is summarized
with future directions in Section VI.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on September 01,2024 at 03:29:17 UTC from IEEE Xplore. Restrictions apply.

TYAGI et al.: LOAD BALANCING IN SDN-ENABLED WSNS TOWARD 6G IoE 29559

TABLE I
COMPARISON WITH OTHER RELATED WORKS

Work
Identify
Optimal

Controller

CPP
(Metaheuristic
Optimization)

Load
Balancing

Controller

#

II. RELATED WORK

This section provides an overview of recent advancements
in load balancing techniques for ISAC in 6G IoE-based
distributed SDN-enabled WSNs, which serve as the foundation
for the research background. A comparison between the
previous load-balancing methods and the proposed LS-CNM
scheme is discussed in Table I.

Kobo et al. [16] presented the fragmentation-based dis-
tributed control system to improve the efficiency and
scalability of the software-defined WSN by bringing control
services closer to the DP. It focuses on controller place-
ment and re-election in case of failure and reduces the
propagation latency. However, the controller load is not con-
sidered during controller re-election. In successive research
of Kobo et al. [12], a consistent data model based on the
best effort and anti-entropy strategy is considered to minimize
the load during cluster switching. However, cluster switching
migrates the whole cluster to another controller, overloading
the controller.

Wang et al. [18] proposed a consistent load-balancing
hashing algorithm using multiple controllers in underwater
SDN-enabled WSNs. This approach considers an equal prob-
ability distribution process for cluster migration. However,
a cluster is migrated as a whole which creates a con-
troller Zig–Zag problem. Tahmasebi et al. [14] presented a
multiobjective optimization approach for the optimal place-
ment of SDN controllers in WSNs. This approach improves
the network performance by balancing the tradeoff between
the synchronization overhead and development cost. However,
cluster migration is not performed for controller load bal-
ancing. Babbar et al. [19] presented two approaches for
efficient cluster migration in the SDN-enabled intelligent trans-
portation systems. The first approach detects the imbalance
load among various domains, while the second approach
migrates the imbalance load to another controller. However,
the controller load is not managed dynamically. Whereas,
this article [20] resolved this issue efficiently in SDN-enable
vehicular networks by reducing cluster migration delay and
cost. However, the act of cluster switching results in the
complete migration of the entire cluster to another controller,
leading to an overloaded state of the controller.

Salam and Bhattacharya [22] optimized CPP by minimiz-
ing both the number of controllers and network latency.
This method determines the optimal number of controllers

and chooses the optimal positions to place them efficiently.
However, the fault tolerance approach may overload another
controller in case of controller failure. Sahoo et al. [21]
presented an efficient load migration technique to balance the
controller load. It recognizes the under utilized controller for
migration based on a selection probability. To choose the target
controller, a decision analysis method ranks the under utilized
controllers based on the memory, CPU load, bandwidth, and
hop count. However, the cluster is migrated as a whole to
another controller. Li et al. [23] optimized the CPP based on
network delay and load optimization. It balances controller
load by reducing network congestion and outperforms existing
methods in propagation delay and load balancing in large-
scale networks. However, cluster migration is not performed
for load balancing.

Cheng et al. [27] presented a nested tensor-based framework
that enhances ISAC using a reconfigurable intelligent sur-
face. This structure enables joint sensing and communication
without specialized pilot signals, improving detection and
localization accuracy by merging the dimensions of sensing
and communication signals. Li et al. [28] explored physical–
layer authentication (PLA) for the user identification and
security in the AmBC-based NOMA symbiotic networks,
taking into account channel estimation errors when assess-
ing false alarms and detection probabilities for distant and
nearby users. Gill et al. [29] introduced a classification
framework for modern computing based on performance and
impact, categorizing it by paradigms, technologies, and trends.
Montazerolghaem [30] discussed a method that managing
resources optimally in the Internet of Medical Things (IoMT)
networks, considering both the energy and load constraints.
Then, the author introduced a system that manages energy
and load in IoMT by leveraging network softwarization and
virtual resources. This system dynamically modifies resource
allocations based on the real-time size of the IoMT network.
Montazerolghaem and Yaghmaee [31] introduced a new
framework that utilizes SDN to meet the QoS demands of
diverse IoT services while also managing traffic distribution
among IoT servers. The authors suggest a forward-looking
heuristic approach, which integrates time-series analysis and
fuzzy logic to predict and manage network conditions.
Montazerolghaem introduced a framework for data centers
utilizing SDN to evenly distribute server loads and prevent
server overloads [32]. The framework also delivers services
quickly with minimal computational complexity. Alhilali and
Montazerolghaem [33] discussed an SDN architecture and
explored load balancing challenges within it. They also catego-
rize artificial intelligence (AI)-based load balancing methods,
evaluating them based on the algorithms used, the problems
addressed, and their pros and cons.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, the characteristics of a multicontroller-based
SDN-enabled WSN model are introduced for ISAC among the
network devices. Then, the CPP and CN migration problems
are formulated.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on September 01,2024 at 03:29:17 UTC from IEEE Xplore. Restrictions apply.

29560 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 18, 15 SEPTEMBER 2024

TABLE II
SYMBOLS AND EXPLANATION

Symbols Explanation

and Set of CNs and Controller respectively
and The th controller and control node, respectively

Set of CNs which are managed by the
Set of overloaded and assistant Controller
Average latency between CN and Controller
Average latency between Controller to Controller
Average latency between Controller to Global
Controller
Synchronization delay between and
Current load of th controller in time period
Control messages sent by th CN in time period
Threshold value of controller load

, Position of cheetah and prey in dimension
The step size of cheetah
Turning factor and Interaction factors of cheetah

A. Characteristics of Proposed Network Model

The proposed 6G IoE-based SDN-enabled WSN model is
considered as an undirected graph G = (V, E), where V
represents the set of CNs and controllers, and E represents
the set of links between the CNs and controllers as shown in
Fig. 1. Let ̂Q = {cn1, cn2, . . . , cnn} and ̂C = {c1, c2, . . . , cm}
are the set of n CNs and m controllers, respectively, where
̂Q, ̂C ∈ V . However, the CPP is an optimization problem,
which focuses on finding the optimal controller positions
among a large number of potential options. The following
list of presumptions pertains to dynamic controller placement
based on latency and load balancing.

1) The SNs are deployed randomly and CS is placed at the
centre of the target-sensing region in the DP.

2) All the devices, participating in ISAC are stationary in
the network scenario and the network load is dynamic
in nature.

3) GC is connected with DP using the LCs and all SNs are
capable of performing the responsibilities of a CN.

4) Each ci is capable of acting as the master controller of
any CN where each ci can respond to requests of one or
more CNs in accordance with its processing capacity.

5) The proposed method enables the clusters to migrate
partially/completely with another ci to distribute the load
evenly. Each control domain is assigned one ci and
multiple CNs.

The symbols used in this article with their explanation are
presented in Table II.

B. Controller Placement Problem

The CPP is optimized by determining the optimal con-
trollers and their locations using the minimal controllers,
latency, and synchronization overhead. It balances the network
load that ensures efficient communication among SNs and
controllers in the ISAC process.

1) Optimal Number of Controllers: The networks equipped
with more controllers, decrease the overall latency but
increase the communication overhead between the controllers.
Therefore, it is essential to determine the optimal number of

Algorithm 1: Optimal Number of Controllers Module
Input: Network Graph G = (V, E)

Output: Number of articulation points (Controllers)

1 Initially all vertices ← not visited
2 Create function

Art_Point (vert, Nvisited[], Nparent[], Art_P[])
3 Call the function Art_Point, recursively
4 Child_node← 0
5 Nvisited[u]← Set True
6 Visit all the vertices adjacent to Nvisited[u] // Calculate

the depth of the selected vertex
7 if Nvisited[v] is not True
8 Childnode ← Childnode + 1
9 Nparent[v]← Set u

10 if (subtree has any connection with any of the
ancestors is True)

11 no articulation points // u is root of DFS tree and
has two or more children

12 else if
13 (N_parent [u]==NILL and Childnode>1)

Art_P[u]← Set True
14 End
15 Else
16 Call the function Art_Point
17 End
18 return Art_P[]

controllers. The optimal number of controllers is called m, i.e.,
elected using Algorithm 1, based on AP to balance tradeoff
between the latency and communication overhead.

2) Latency: The latency between a CN and its respective
controller is the average distance that a data packet (P) travels
from the cnn to cm. It is represented by LatAvgcn, c(P) as
given in

LatAvgcn, c(P) = 1

n

∑

cn ε ̂Q

min D(cn, c). (1)

The intercontroller latency is the average distance that a
packet travels from one controller to another (local or global).
It is represented as LatAvgc, c(P) and LatAvgc, GC(P) as given
in (2) and (3) for LC to LC and LC to GC, respectively.

LatAvgc, c(P) = 1

m

m
∑

i,j=0

min
c∈̂c

D
(

ci, cj
)

(2)

LatAvgc, GC(P) = 1

m

m
∑

i=0

min
c∈̂c

D(ci, GC). (3)

The total latency (AVG_Lat(P)) is the sum of
LatAvgcn, c(P), LatAvgc, c(P) and LatAvgc, GC(P) latencies as
given in

AVG_Lat(P) = LatAvgcn, c(P)

+ LatAvgc, c(P)+ LatAvgc, GC(P). (4)

3) Synchronization Overhead: The synchronization over-
head represents the additional communication required to

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on September 01,2024 at 03:29:17 UTC from IEEE Xplore. Restrictions apply.

TYAGI et al.: LOAD BALANCING IN SDN-ENABLED WSNS TOWARD 6G IoE 29561

coordinate with multiple controllers. It includes tasks, such as
exchanging status updates, coordinating actions, and resolving
conflicts. The extent of synchronization overhead depends on
the specific system and the complexity of the controllers. To
measure the synchronization overhead between each pair of
controllers (ci, cj), a matrix M_Syn is defined as the number
of synchronization messages exchanged between ci and cj.
Thus, the synchronization overhead is denoted by Syn_o, and
formulated as follows:

Syn_o =
∑

ci εC

∑

cj εC

Syn_dci,cj
∗ M_Synci,cj

(5)

where Syn_dci,cj
and M_Synci,cj

represent the synchronization
delay and messages between ci and cj, respectively.

C. Load Balancing

In a multicontroller SDN-enabled WSN, the network load
balancing involves the systematic distribution of traffic among
multiple controllers. This strategic approach aims to optimize
resource utilization and enhance overall network performance
in ISAC approach among network devices. This is achieved
by considering both the capacity of the controllers and the
migration of CNs.

1) Controller Capacity: It refers to the highest number of
requests that a controller can handle at a specific time period
t. The maximum capacity of a controller indicates how many
Ctrl_Msg can be processed in t, i.e., represented as Max_L(c).
All LCs have a similar capacity and the current load CrtLt(ci)

of ci at time t is given as follows:

Crt_Lt(ci) =
k

∑

j=0

CM_cnt
j (6)

where CM_cnt
j represents the (Ctrl_Msg) sent by CN that exist

in the control domain of ci. When the current load is exceeded
to Max_L(c), the performance of any controller may degrade,
and initiate the cluster/CN migration to maintain the stability
of the network.

2) Cluster/CN Migration: The process of moving a CN
from one controller domain to another to balance the load of
an overloaded controller is called CN migration. CN migration
is triggered by various factors, such as network congestion,
changes in traffic pattern, and network failures. The decision
to migrate a CN to a particular controller is based on the
current load of the neighboring controller. Additionally, the
neighboring controller immediately eliminates the migrated
CN if its CrtLt(ci) is exceeded due to the migrated CN.
Subsequently, the CN returns its original domain and initiates
another CN migration process due to the overloaded state of
the controller. This situation gives rise to the CN migration
problem, which occurs as a consequence of CN migration as
a whole.

An example is illustrated in Fig. 3(a), which shows a
scenario of the CN migration problem and its solution. Assume

is the threshold load of the ci where < Max_L(c) and
controller ci is considered as overloaded if CrtLt(ci) > . In
Fig. 3(a), there are two controllers c1 and c2 with 1 = 2 =
70 and three CN, namely cn1, cn2 and cn3 in a network.

Fig. 2. Illustrate CN Zig–Zag problem and how LS-CNM solves it. (a) CN
migration problem. (b) Load sharing-based CN migration solution.

Fig. 3. Control Domains at (a) 1 s. (b) 10 s.

Moreover, cn1, cn2 and cn3 produce 40, 50 and 40 Ctrl_Msg,
respectively, in period t. Controller c1 takes the charges of
cn1 & cn2 and cn3 is controlled by c2. Now, controller c1
is overloaded because CrtLt (c1) is 90 Ctrl_Msg, i.e., greater
than , and thus CN migration is required. In the current
state of the load balancing mechanism [12], an overloaded
controller c1 asks c2 to take responsibility for some of its
CNs as a whole for an entire period t as shown in Fig. 3(a).
Furthermore, cn1 migrates to the control domain of c2 at t+1.
Since, the CrtLt(c2) > 70 due to newly migrated CN. Now,
c2 asks c1 to take charge of cn1 for period t+2. Accordingly,
the current situation at c1 is the same as period t, and this is
called the CN Zig–Zag problem.

Besides the scenario mentioned above, the proposed LS-
CNM performs CN migration in a partial load sharing manner
for specific period t. During this period, the load of a CN
is split between the two controllers, as shown in Fig. 3(b).
At period t + 1, the load of cn1 is shared between c1
and c2 to ensure that the load remains below the threshold
i.e., CrtLt+1(ci) < . This approach helps in keeping the
workloads of both the controllers below their thresholds. In
this way, LS-CNM can effectively address the issue of the CN
Zig–Zag problem during migration.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on September 01,2024 at 03:29:17 UTC from IEEE Xplore. Restrictions apply.

29562 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 18, 15 SEPTEMBER 2024

IV. PROPOSED METHODOLOGY

In this section, CPP is optimized in accordance with an
optimal number of controllers and their best location in the
SDN-enabled WSN during ISAC among the 6G IoE devices.
After that the CN Zig–Zag problem is resolved using a load
sharing-based partial CN migration technique.

A. Controller Placement

The objective of the controller placement phase is to deter-
mine the necessary quantity of controllers and the position
of each controller at an optimized location to maintain the
network stability and efficiency.

1) Optimal Number of Controllers: A method from the
graph theory is employed to calculate the optimum numbers
of controllers and identify initial controller locations within
the given network topology by identifying APs [24]. An AP
is defined as a vertex/node whose removal may result in the
partitioning of the graph. The value of identified APs is used as
the required optimal number of the controller in the proposed
network. The conventional depth-first search (DFS) [25] algo-
rithm is employed to identify the APs within the network. In
Algorithm 1, a vertex or node “u” is considered as the parent
of another vertex “v” if and only if “v” can be discovered by
traversing from “u”. A vertex “u” is classified as an AP if any
of the following criteria are met.

1) Vertex “u” is the root node and has a minimum of two
child nodes.

2) Vertex “u” is not the root node and has a child “v”,
where there is no path of connectivity between “v” and
any of the ancestors of “u” in the DFS tree.

In Algorithm 1, the next visited node is designated as
“u′′i , and a data structure Nvisited is utilized to record the
nodes that have been traversed in the graph. The algorithm
progresses by traversing all the neighboring nodes of the
currently visited node. At each iteration, the values of the
visited nodes are updated. If a neighboring node has not been
visited, it is considered as a Childnode of the current node, and
its connectivity to any ancestors is evaluated. If there is no
connectivity, the node is classified as an AP.

2) Controller Placement Based on Cheetah Optimization:
Once the necessary quantity of controllers has been identified,
synchronization-aware controller placement in SDN-enabled
WSNs is performed by utilizing CO as outlined in
Algorithm 2. CO motivates the selection of the best prey from
multiple prey as CNs for each cheetah acting as controllers.
A cheetah’s decision on the best prey to pursue is represented
by a fitness function and different prey options constitute
the potential solutions. This optimization is based on the
cheetah’s hunting strategies, such as searching, sitting-and-
waiting, attacking, leaving the prey, and going back home
defined as follows.

Searching Strategy: The cheetahs’ searching strategy is
mathematically modeled using the variable Xt

CHi,j
which repre-

sents the current position of the cheetah CHi(i = 1, 2, . . . , n)

in search space dimension (j = 1, 2, . . . , D), where n is the
number of cheetahs in the population and D is the dimension
of the optimization problem. Each cheetah reaches at different

Algorithm 2: CP_CO
Input: Initialize the position of GC, CS and CNs (Prey),

dimension (D), Initial population size (Ps)
Output: Best position for each controller

1 Generate the initial position of search agent
Xt

CHi,j
(i = 1, 2, . . . , n) and (j = 1, 2, . . . , D)

2 Evaluate the fitness of each search agent CHi using (12)
3 Initialize the population’s home, leader, and prey solutions
4 t← 0, IT ← 1, ITMax ← Set as Maximum Iterations
5 Calculate T ← 60× �D/10�
6 while current itertaion IT ≤ ITMax do
7 Select random search agent CH(2 ≤ Ch ≤ n)
8 for each search agent i ∈ m do
9 Define neighbor search agents’ set of CHi

10 for each arbitrary arrangement j ∈ {1, 2, . . . , D} do
11 Calculate H, rCHi,j , ŤCHi,j , St

CHi,j
, Ǐt

CHi,j
, and

12 choose random numbers Rnd1, Rnd2 and
Rnd3 uniformly from 0 to 1

13 if (Rnd2 < Rnd3) then
14 Choose random number Rnd4 from 0 to 3
15 if (H ≥ Rnd4) then
16 Update new position of search agent using

(7) // Searching mode
17 Else
18 Update new position of search agent using

(9) // Attacking mode
19 End
20 Else
21 Update new position of search agent using (8)

// Sit-and-wait mode
22 End
23 End
24 Update the solutions of search agent i and the leader
25 End
26 t← t + 1
27 if t > Rnd2 × T then
28 Xt

CHi,j
← Xt−1

CHi,j
the leader position doesn’t change

// Leave the prey and go back home mode
29 Evaluate the fitness of each search agent CHi
30 t← 0
31 End
32 IT ← IT + 1
33 Update the global best for leader search agent
34 end
35 if (i < n) then
36 Exclude the current leader search agent and go to step 3
37 Else
38 Update the global best for each search agent
39 End

positions when hunting various prey. Using this information,
a random search (7) is utilized to find the new position Xt+1

CHi,j
based on their current position and an arbitrary step size

Xt+1
CHi,j

= Xt
CHi,j + r−1

CHi,j
. St

CHi,j (7)

where rCHi,j represents the random number generated using
the normal distribution method. St

CHi,j
represents the step size

of cheetah in hunt time t. St
CHi,j

is calculated as St
CHi,j

=
0.001 × t/T , where T represents the maximum allowed
hunting duration i.e., calculated as T ← 60× �D/10�.

Sitting-and-Waiting Strategy: The cheetah chooses to sit-
and-wait, in order to get close enough to the prey. In this
mode, the cheetah remains in its current position and waits for

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on September 01,2024 at 03:29:17 UTC from IEEE Xplore. Restrictions apply.

TYAGI et al.: LOAD BALANCING IN SDN-ENABLED WSNS TOWARD 6G IoE 29563

the prey to come within reach. This behavior is represented
as follows.

Xt+1
CHi,j

= Xt
CHi,j . (8)

This approach involves gradually changing the cheetahs in
each group rather than all at once, which improves the chances
of finding a better solution and prevents the algorithm from
reaching a suboptimal solution too quickly.

Attacking Strategy: When a cheetah chooses to hunt, it uses
two critical elements: 1) speed and 2) flexibility. The cheetah
rushes toward its prey at top speed. The cheetah tracks the
position of its prey and alters its path to intercept the prey’s
path at a specific point. The position of the cheetah will be
updated as follows.

Xt+1
CHi,j

= Xt
Pi,j + ŤCHi,j .Ǐt

CHi,j (9)

where Xt
Pi,j

, ŤCHi,j and Ǐt
CHi,j

represent the prey location,
turning factor, and interaction factor associated with cheetah,
respectively. Ǐt

CHi,j
is used to prevent collision during the

attack and denoted as the difference between the cheetah’s
current position Xt

CHi,j
with neighboring group of cheetahs’

Xt
CHk,j

, where k �= i. The turning factor Ǐt
CHi,j

shows the
sudden turn of CHi, j while hunting and it can be formulated as
Ǐt
CHi,j

= |rCHi,j | exp((rCHi,j)/2).sin (2π.rCHi,j). During hunting
period, cheetah switches between the searching, sit-and-wait,
and attacking mode as per the rules expressed in

{

if (Rnd2 ≥ Rnd3), Sit and Wait
if (Rnd2 < Rnd3), H = e2(1−t/T) (2Rnd1 − 1)

(10)
{

if (H ≥ Rnd4), Attack Mode
if (H < Rnd4), Searching Mode

(11)

where Rnd1, Rnd2, and Rnd3 are random numbers in the range
of [0, 1]. H is a switching factor and Rnd4 is a random value
in the range of [0, 3]. If CHi fails multiple hunts, their position
is replaced by the last successfully hunted prey location, this
strategy is called leave the prey and go back home mode.

The CP_CO algorithm is used to determine the optimal
location of controllers for controller placement in the CP. In
the proposed work, the number of CNs and their position
are generated for the clusters similar to those defined in
GMPSO [26]. After that, each cnj ε ̂Q selects their master
controller ci ε ̂C based on the latency factor as in (1). This
process creates ̂Qci as the set of CNs i.e., managed by ci.
Moreover, ̂Qci is updated after each reclustering process.

Fitness Function: The CP_CO is employed to find solutions
quickly i.e., close to optimal during the controller placement.
The latency and synchronization overhead are integrated into
a single fitness function fFit as in (12). This allows to identify
efficient solutions that are near the global optimum while
ensuring that the optimal controller placement constraints are
not violated

fFit = α.AVGLat(P)+ β.Syn_o (12)

where αand β are tuning constant values and considered as α+
β = 1. These values are used to tune the relative significance
of the AVGLat(P) and Syn_o in the network.

Algorithm 3: LS-CNM

Input: ̂Q ̂C,̂Qci, Max_L(c), ,
Output: Balanced control node migration

1 Initially ̂COL and ̂CAst ← { }
2 for each ci ε ̂C do
3 Crt_Lt(ci)← 0
4 for each cnj ε ̂Q do
5 Crt_Lt(ci) = CrtLt(ci)+ CM_cnt

j
6 End
7 if (CrtLt(ci) >) then
8 ̂COL ← ̂COL ∪ {ci}
9 else

10 ̂CAst ← ̂CAst ∪ {ci}
11 End
12 End
13 if (̂COL and ̂CAstis not empty) then
14 SORT(̂COL, CrtLt(ci)−)

15 SORT(̂CAst, − CrttL(ci))

16 End
17 Terminate the process of LS-CNM
18 for each ci ̂COL do
19 SORT(̂Qci, CM_cnt

i)

20 while each CrtLt(ci) > do
21 Choose the nearest controller cj ε ̂CAst // based

on latency (2) synchronization overhead (5)
22 Migrate cni ε ̂Qci with cj subnet till

CrtLt+1(ci) > CrtLt(ci)+ CM_cnt
i

23 Calculate PS_CM_cnt
i = − CrtLt(ci)

24 CrtLt(ci) ← CrtLt(ci)− PSCMcnt
i

25 CrtLt(cj) ← CrtLt(cj)+ PSCMcnt
i

26 end
27 if (CrtLt(cj) >) then
28 ̂CAst ← ̂CAst\ {cj}
29 else
30 SORT(̂CAst, − CrtLt(cj))

31 End
32 if (̂CAst ← { }) then
33 Terminate the process of LS-CNM
34 End
35 End

B. Load Balancing

At the primary stage of the network, each CN chooses
one controller as a master controller and creates an initial
subnet. The load-sharing-based CN migration scheme defined
in Algorithm 3 allows CNs to migrate with controllers using
partial load sharing rather than as a whole CN. It also allows
more flexibility and addresses the issue of CN Zig–Zag during
the migration process.

LS-CNM begins by identifying ̂COL and ̂CAst as the set of
overloaded and assistant controllers from ̂C. According to (6),
step 5 calculates the current load of each controller ci ε̂C.
If the current load exceeds a threshold , ci is classified as
overloaded else classified as an assistant controller. Then, steps

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on September 01,2024 at 03:29:17 UTC from IEEE Xplore. Restrictions apply.

29564 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 18, 15 SEPTEMBER 2024

13 to 17 show if both the sets ̂COL and ̂CAst are not empty, the
migration process is initiated for load-balanced. The migration
starts by sorting the ̂COL and ̂CAst in decreasing order of
overload controllers and the remaining controllers’ capacity,
respectively. Then, it iteratively selects a pair of controllers,
one overloaded and other assistants, and then migrates one
CN from the overloaded controller’s subnet to the assistant’s
in order to reduce the overloaded controller’s current load. In
this process, step 23 identified the number of partial sharing
(Ctrl_Msg) (PS_CM_cnt

i) of migrating CN in accordance with
the CrtLt(cj) will not be exceeded from . This process
continues until either the set of overloaded controllers or the
set of assistant controllers is empty. The module stops if there
are no more assistant controllers available to share the current
load of the overloaded controllers.

C. Complexity Analysis

Algorithm 1 aims to determine the optimal number of
controllers in a network by identifying APs. The initialization
process involves marking all vertices as not visited, which
takes O(v) time, where v is the number of vertices in the
graph. Afterward, DFS traversal is performed to visit all
vertices and calculate the depth of the selected vertex. The
time complexity of a standard DFS is O(v + E), where E
is the number of edges in the graph. The recursive calls to
the Art_Point function occur for unvisited vertices. In the
worst case, each vertex is visited once, leading to a total
time complexity of O(v). Considering the above components,
the overall time complexity of the algorithm is dominated by
the DFS traversal and can be expressed as O(v + E). The
space complexity is influenced by the stack space used in the
recursive calls and can be expressed as O(v).

The proposed CP_CO algorithm, as outlined in
Algorithm 2, is designed for optimizing controller positions.
Initially, the process begins with the initialization phase,
which includes generating the initial positions of the search
agents. The time complexity of the initialization phase is
O(Ps ∗ D), where Ps is the initial population (IP) size, and
D is the dimension. Afterward, the fitness evaluation of each
search agent has a time complexity of O(Ps). The main loop
iterates for a maximum of ITMax iterations. The loop involves
operations, such as selecting random search agents, defining
neighbor sets, and updating agent positions. By considering
these components, the overall time complexity of the CP_CO
algorithm is influenced by the main loop, nested loops, and
update operations. Therefore, the overall time complexity is
approximately O(ITMax ∗ Ps ∗ D). The space complexity
is determined by the storage of search agent positions and
additional variables and can be expressed as O(Ps ∗ D).

The proposed LS-CNM algorithm, as outlined in
Algorithm 3, is designed for CN migration in a network. The
initialization section involves creating two sets, ̂COL and ̂CAst,
and initializing some counters. This part has a time complexity
of O(|̂C|), where |̂C| is the size of the set ̂C. The first loop
iterates through each CN in ̂C. Inside the loop, there is a
nested loop that iterates through each controller in ̂CAst. The
operations inside the nested loop have a time complexity of

O(|̂CAst|). Overall, the time complexity of the first loop is
O(|̂C|) ∗ |̂CAst|). Subsequently, the SORT operations for sets
̂COL and ̂CAst have time complexities of a standard sorting
algorithm i.e., is typically O(n log n), where n is the size
of the set being sorted. Therefore, the time complexity of the
sorting operations is O(|̂COL | ∗ log(|̂COL |)) and O(|̂CAst| ∗
log(|̂CAst|)). Similarly, the time complexity of the second
loop is determined by the operations inside the while loop,
and it depends on the specific input and conditions. In the
worst case, it may be O(|̂COL| ∗ |̂Qci|). Finally, the time
complexity of LS-CNM is primarily influenced by the sizes
of the sets ̂C ̂COL, ̂CAst, and ̂Qci and the sorting operations
within the algorithm. Accordingly, the overall time complexity
is dominated by the sorting operations, and it can be expressed
as O(|̂C|+|̂COL |∗ log(|̂COL |)) +|̂CAst|∗ log(|̂CAst|)+ |̂Qci|∗
log(|̂Qci|)). The space complexity of LS-CNM is influenced
by the sizes of the sets ̂C, ̂COL, ̂CAst, and ̂Qci, as well as the
temporary variables used in the algorithm. Thus, the space
complexity can be expressed as O(̂C + ̂COL+ ̂CAst + ̂Qci).

In conclusion, it is essential to aggregate the complexities
of all algorithms to calculate the overall time and space
complexity of the proposed work. Thus, the overall time
complexity is O(v + E + ITMax ∗ Ps ∗ D+ |̂C| + |̂COL | ∗
log(|̂COL |)) + |̂CAst| ∗ log(|̂CAst|)+ |̂Qci| ∗ log(|̂Qci|)) and
the overall space complexity can be expressed as O(v + Ps ∗
D+̂C + ̂COL + ̂CAst + ̂Qci).

V. PERFORMANCE EVALUATION

This section provides the detailed result and discussion
obtained from the proposed LS-CNM, Kobo et al. [12],
and the OpenFlow protocol. The performance of LS-CNM,
Kobo et al. [12], and the OpenFlow protocol are analysed
using various network performance metrics like frequency of
controller overload (FCO), load on controllers, round trip time
(RTT), and average delay.

A. Experimental Setup

The proposed approach is implemented on the ONOS con-
troller (Junco ver-1.9.2) and the network is simulated within
the ns-3 network simulator ver-3.26. These tools are installed
on Ubuntu OS (16.04-LTS) with an Intel i7 10th generation
processor and 16 GB of RAM. The OpenFlow version 1.3 is
used as the southbound interface to connect ONOS and ns-3.
The network simulator parameters are presented in Table III.

An instance of the proposed network topology used in
our implementation is depicted in Fig. 4, which consists
of 4 controllers ̂C = {c0, c1, c2, c3} and 16 CNs ̂Q =
{cn1, cn2, cn16, }, however, the CNs are dynamic. The hier-
archical paradigm of the distributed architecture is adopted,
where controller c0 serves as the GC. GC coordinates all LC
as well as monitors the load of each one to determine CN
migration.

However, c0 does not participate in CN migration. Each
controller, excluding c0, has a maximum processing capacity
(Max_L(c)) of 100Ctrl_Msg per second and a threshold () is
70% of MaxL(c). If any LC receives more than 70% Ctrl_Msg

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on September 01,2024 at 03:29:17 UTC from IEEE Xplore. Restrictions apply.

TYAGI et al.: LOAD BALANCING IN SDN-ENABLED WSNS TOWARD 6G IoE 29565

TABLE III
SIMULATION PARAMETERS

Fig. 4. Convergence of CP_CO through IP, fitness, and iterations.

in a period (t), the respective controller is considered as
overloaded.

In addition, three types of CNs are considered based on
the frequency (like small, medium, and higher) of Ctrl_Msg
generation as shown in Fig. 4. Each CN with small frequency
(SF), medium frequency (MF), and high frequency (HF)
generates 8 to 10, 10 to 13, and 13 to 16 Ctrl_Msg per
second, respectively. Fig. 4 shows a simulation instance of the
control domain for each LC at 1 sec, where all CNs except for
cn5, cn8, cn10, cn13, and cn16, are SF CNs. After 10 sec, cn9
and cn14 become CNs of HF which can cause CN migration
as depicted in Fig. 4(b).

Moreover, the experimentation is also considered by varying
the IP and the number of iterations within the ranges of 30
to 70 and 5 to 90, respectively, to observe how different
combinations of population sizes and iterations would impact
the convergence of the CP_CO algorithm. Based on the
analysis, it is found that the best population size (IP = 30)
led to convergence after approximately 25 iterations based on
the fitness values in each iteration, as illustrated in Fig. 5.
This indicates that, among the tested various population sizes,
an IP of 30 individuals demonstrated optimal convergence
behavior for the proposed CP_CO algorithm. The next sec-
tion compares the performance of the proposed LS-CNM with
Kobo et al. [12] and the OpenFlow protocol.

B. Frequency of Controller Overload

The FCO determines how many times a controller exceeds
their threshold capacity . Moreover, numerous simulations
are conducted to enhance result realism. The depicted average
in Fig. 6 is accompanied by a 95% confidence interval to
provide a measure of result reliability. Fig. 6 depicts the
frequency of the controller overloaded with respect to each
controller.

Fig. 5. FCO.

Fig. 6. Load evaluation of each controller (a) OpenFlow. (b) Kobo et al. [12]
(C) LS-CNM.

It is evident from Fig. 5 that LS-CNM reports less FCO
in comparison with Kobo et al. [12] and OpenFlow. The LS-
CNM not only selects the most appropriate CN for migration
but also elects partial load during migration. Moreover, it
allows neighboring controllers to handle the process of the

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on September 01,2024 at 03:29:17 UTC from IEEE Xplore. Restrictions apply.

29566 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 18, 15 SEPTEMBER 2024

Fig. 7. Average RTT.

overloaded controller during the same time period. This leads
to a further decrease in the FCO of all controllers as compared
to Kobo et al. [12] and OpenFlow.

C. Load on Controllers

Load on the controller represents how many Ctrl_Msg are
processed per unit of time. Fig. 7 shows a comparative analysis
of the number of Ctrl_Msg received by each controller with
respect to time for proposed LS-CNM, Kobo et al. [12] and
the OpenFlow protocol. In Fig. 7, the values of some points
are greater than the threshold, indicating that the current load
of the specific controller has surpassed the threshold, leading
to a situation of controller overloading in the network.

In Fig. 7(a), the simulation result of OpenFlow shows
that the controller c3 remains in the overloaded state for a
long period because neighboring controllers also reached their
thresholds frequently. In Fig. 7(b), Kobo et al. [12] show the
long period of overloaded states of controllers when c2 and
c3 are overloaded simultaneously due to the absence of load
balancing.

Fig. 7(c) depicts that the instance at 11 s when the controller
C3 is identified as overloaded and controller C3 changes its
state to normal within 5 s due to the partial load-sharing
migration in LS-CNM. It enables two controllers to jointly
handle the processing of Ctrl_Msg of HF of CN which leads
to a better distribution of workloads. During the simulation
period, the load of each controller becomes very similar to
each other which ensures LS-CNM can effectively balance the
load among all controllers.

D. Average Round Trip Time

It refers to the average time taken by a Ctrl_Msg to be
processed from end to end. In addition, the average time in
which the Ctrl_Msg to be sent from the CN to the controller, is
processed by the respective controller, and then returned to the
CN. Fig. 8 depicts the RTT of Ctrl_Msg transmitted over time.
A high RTT can result in significant delays in the processing
of packets, leading to slow network performance. The efficient
controller placement based on the latency and synchronization
overhead in LS-CNM reports less RTT in Fig. 8 compared
with Kobo et al. [12] and OpenFlow.

E. Average Delay

It refers to the average time taken for a data packet to
be transmitted from an SN to a control server. This delay

Fig. 8. Average delay versus number of nodes.

includes the time required for the data to be processed at
SN, transmitted over the network and processed at the control
server. Fig. 8 presents a comparison of the average delay with
respect to the increasing number of nodes in the DP. LS-CNM
outperforms as compared to Kobo et al. [12] and OpenFlow
because it provides the optimized placement of the controller
to reduce the latency of flow rule generation. Moreover,
the transmission time from the source to the destination is
decreased because intermediate devices in the DP forward the
data packets quickly based on the flow rules provided by the
controllers frequently.

VI. CONCLUSION

The proposed work focuses on solving the controller place-
ment and load imbalance problem in the distributed CP of the
6G IoE-based SDN-enabled WSN. LS-CNM is proposed to
reduce the load of an overloaded controller using partial CN
migration during ISAC among the 6G IoE devices. However,
the latency is reduced using optimal placement of controllers
inspired by CO whereas the initial controllers are identified
using the graph theory-based AP method. The simulation
result shows the effectiveness of LS-CNM by reducing the
FCO by 84% and 71% in comparison with OpenFlow and
Kobo et al. [12], respectively. Also, the partial CN migration
maintains the load of controllers below the threshold value.
The optimal placement of controllers improves the RTT of the
proposed LS-CNM. Moreover, LS-CNM reports less delay in
transmitting the data from source to destination as compared
to the state-of-the-art approaches.

In the future, LS-CNM can be merged with AI in 6G IoE
to predict and prevent potential issues like fault tolerance, and
overloaded controllers in the network for reducing downtime
of the CP. Additionally, there is room for further research in
assessing the influence of dynamic network conditions and
exploring the energy efficiency implications of the proposed
method.

REFERENCES

[1] X. Fang, W. Feng, Y. Chen, N. Ge, and Y. Zhang, “Joint com-
munication and sensing toward 6G: Models and potential of using
MIMO,” IEEE Internet Things J., vol. 10, no. 5, pp. 4093–4116,
Mar. 2023, doi: 10.1109/JIOT.2022.3227215.

[2] S. Verma, S. Kaur, M. A. Khan, and P. S. Sehdev, “Toward green
communication in 6G-enabled massive Internet of Things,” IEEE
Internet Things J., vol. 8, no. 7, pp. 5408–5415, Apr. 2021,
doi: 10.1109/JIOT.2022.3227215.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on September 01,2024 at 03:29:17 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/JIOT.2022.3227215
http://dx.doi.org/10.1109/JIOT.2022.3227215

TYAGI et al.: LOAD BALANCING IN SDN-ENABLED WSNS TOWARD 6G IoE 29567

[3] F. Liu et al., “Integrated sensing and communications: Toward dual-
functional wireless networks for 6G and beyond,” IEEE J. Sel. Areas
Commun., vol. 40, no. 6, pp. 1728–1767, Jun. 2022.

[4] C. Ouyang, Y. Liu, and H. Yang, “Performance of downlink and uplink
integrated sensing and communications (ISAC) systems,” IEEE Wireless
Commun. Lett., vol. 11, no. 9, pp. 1850–1854, Sep. 2022.

[5] V. Tyagi and S. Singh, “GM-WOA: A hybrid energy efficient cluster
routing technique for SDN-enabled WSNs,” J. Supercomput., vol. 79,
pp. 14894–14922, Apr. 2023.

[6] V. Tyagi and S. Singh, “Network resource management mechanisms
in SDN enabled WSNs: A comprehensive review,” Comput. Sci. Rev.,
vol. 49, Aug. 2023, Art. no. 100569.

[7] S. S. G. Shiny, S. S. Priya, and K. Murugan, “Control mes-
sage quenching-based communication protocol for energy management
in SDWSN,” IEEE Trans. Netw. Serv. Manag., vol. 19, no. 3,
pp. 3188–3201, Sep. 2022.

[8] S. Moazzeni, M. R. Khayyambashi, N. Movahhedinia, and F. Callegati,
“On reliability improvement of software-defined networks,” Comput.
Netw., vol. 133, pp. 195–211, Mar. 2018.

[9] T. Abu-Ain, R. Ahmad, R. Wazirali, and W. Abu-Ain, “A new SDN-
handover framework for QoS in heterogeneous wireless networks,” Arab.
J. Sci. Eng., vol. 48, pp. 10857–10873, Mar. 2023.

[10] F. Bannour, S. Souihi, and A. Mellouk, “Distributed SDN control:
Survey, taxonomy, and challenges,” IEEE Commun. Surveys Tuts.,
vol. 20, no. 1, pp. 333–354, 1st Quart., 2018.

[11] A. Narwaria and A. P. Mazumdar, “Software-defined wireless sensor
network: A comprehensive survey,” J. Netw. Comput. Appl., vol. 215,
Jun. 2023, Art. no. 103636.

[12] H. I. Kobo, A. M. Abu-Mahfouz, and G. P. Hancke, “Fragmentation-
based distributed control system for software-defined wireless sensor
networks,” IEEE Trans. Ind. Informat., vol. 15, no. 2, pp. 901–910,
Feb. 2019.

[13] A. Shirmarz and A. Ghaffari, “Taxonomy of controller placement
problem (CPP) optimization in software defined network (SDN):
A survey,” J. Ambient Intell. Humaniz. Comput., vol. 12, no. 12,
pp. 10473–10498, 2021.

[14] S. Tahmasebi, N. Rasouli, A. H. Kashefi, E. Rezabeyk, and H. R.
Faragardi, “SYNCOP: An evolutionary multi-objective placement of
SDN controllers for optimizing cost and network performance in
WSNs,” Comput. Netw., vol. 185, Feb. 2021, Art. no. 107727.

[15] G. Li, J. Wu, S. Li, W. Yang, and C. Li, “Multitentacle federated
learning over software-defined Industrial Internet of Things against
adaptive poisoning attacks,” IEEE Trans. Ind. Informat., vol. 19, no. 2,
pp. 1260–1269, Feb. 2023.

[16] H. I. Kobo, A. M. Abu-Mahfouz, and G. P. Hancke, “Efficient controller
placement and reelection mechanism in distributed control system for
software defined wireless sensor networks,” Trans. Emerg. Telecommun.
Technol., vol. 30, no. 6, 2019, Art. no. e3588.

[17] W. Wang, M. Dong, K. Ota, J. Wu, J. Li, and G. Li, “CDLB: A cross-
domain load balancing mechanism for software defined networks in
cloud data centre,” Int. J. Comput. Sci. Eng., vol. 18, no. 1, pp. 44–53,
2019.

[18] J. Wang, S. Zhang, W. Chen, D. Kong, X. Zuo, and Z. Yu, “Design and
implementation of sdn-based underwater acoustic sensor networks with
multi-controllers,” IEEE Access, vol. 6, pp. 25698–25714, 2018.

[19] H. Babbar, S. Rani, A. K. Bashir, and R. Nawaz, “LBSMT: Load
balancing switch migration algorithm for cooperative communication
intelligent transportation systems,” IEEE Trans. Green Commun. Netw.,
vol. 6, no. 3, pp. 1386–1395, Sep. 2022.

[20] N. Aljeri and A. Boukerche, “An efficient heuristic switch migration
scheme for software-defined vehicular networks,” J. Parallel Distrib.
Comput., vol. 164, pp. 96–105, Jun. 2022.

[21] K. S. Sahoo et al., “ESMLB: Efficient switch migration-based load
balancing for multicontroller SDN in IoT,” IEEE Internet Things J.,
vol. 7, no. 7, pp. 5852–5860, Jul. 2020.

[22] R. Salam and A. Bhattacharya, “Efficient greedy heuristic approach
for fault-tolerant distributed controller placement in scalable SDN
architecture,” Cluster Comput., vol. 25, no. 6, pp. 4543–4572, 2022.

[23] C. Li, K. Jiang, and Y. Luo, “Dynamic placement of multiple controllers
based on SDN and allocation of computational resources based on
heuristic ant colony algorithm,” Knowl.-Based Syst., vol. 241, Apr. 2022,
Art. no. 108330.

[24] L. Tian, A. Bashan, D. N. Shi, and Y. Y. Liu, “Articulation points in
complex networks,” Nat. Commun., vol. 8, no. 1, pp. 1–9, 2017.

[25] H. L. Bodlaender, “On linear time minor tests with depth-first search,” J.
Algorithms, vol. 14, no. 1, pp. 1–23, 1993.

[26] R. Ramteke, S. Singh, and A. Malik, “Optimized routing technique
for IoT enabled software-defined heterogeneous WSNs using genetic
mutation based PSO,” Comput. Stand. Interfaces, vol. 79, Jan. 2022,
Art. no. 103548.

[27] Y. Cheng, J. Du, J. Liu, L. Jin, X. Li, and D. B. da Costa, “Nested
tensor-based framework for ISAC assisted by reconfigurable intelligent
surface,” IEEE Trans. Veh. Technol., vol. 73, no. 3, pp. 4412–4417,
Mar. 2024.

[28] X. Li et al., “Physical-layer authentication for ambient backscatter
aided NOMA symbiotic systems,” IEEE Trans. Commun., vol. 71, no. 4,
pp. 2288–2303, Apr. 2023.

[29] S. S. Gill et al., “Modern computing: Vision and challenges,” Telematics
Informat. Rep., vol. 13, Mar. 2024, Art. no. 100116.

[30] A. Montazerolghaem, “Software-defined Internet of Multimedia Things:
Energy-efficient and load-balanced resource management,” IEEE
Internet Things J., vol. 9, no. 3, pp. 2432–2442, Feb. 2022.

[31] A. Montazerolghaem and M. H. Yaghmaee, “Load-balanced and QoS-
aware software-defined Internet of Things,” IEEE Internet Things J.,
vol. 7, no. 4, pp. 3323–3337, Apr. 2020.

[32] A. Montazerolghaem, “Software-defined load-balanced data center:
Design, implementation and performance analysis,” Clust. Comput.,
vol. 24, no. 2, pp. 591–610, 2021.

[33] A. H. Alhilali and A. Montazerolghaem, “Artificial intelligence based
load balancing in SDN: A comprehensive survey,” Internet Things,
vol. 22, Jul. 2023, Art. no. 100814.

Vikas Tyagi received the Ph.D. degree from the
Department of Computer Science and Engineering
from the Dr B R Ambedkar National Institute of
Technology, Jalandhar, India, in 2024.

He is currently an Assistant Professor with
the School of Computer Science Engineering and
Technology, Bennett University, Greater Noida,
India. His research interests include wireless sen-
sor networks, software-defined wireless sensor
networks, Internet of Things, cryptography, and
information security.

Samayveer Singh (Member, IEEE) received the
B.Tech. degree in information technology from
Uttar Pradesh Technical University, Lucknow, India,
in 2007, the M.Tech. degree in computer sci-
ence and engineering from the National Institute
of Technology, Jalandhar, India, in 2010, and the
Ph.D. degree from the Department of Computer
Engineering, Netaji Subhas Institute of Technology
(University of Delhi), Dwarka, India, in 2016.

He is currently working as an Assistant Professor
with the Computer Science and Engineering

Department, National Institute of Technology. He has published more than
100 research articles in various international journals and conferences. His
research interest includes wireless sensor networks, Internet of Things, data
hiding, and information security.

Dr. Singh has been included in the list of Top 2% Scientists in the
world ranking of 2021, which is released by Stanford University and
Elsevier BV. He is serving as reviewer/member of editorial board for many
journals/conferences.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on September 01,2024 at 03:29:17 UTC from IEEE Xplore. Restrictions apply.

29568 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 18, 15 SEPTEMBER 2024

Huaming Wu (Senior Member, IEEE) received the
B.E. and M.S. degrees in electrical engineering from
Harbin Institute of Technology, Harbin, China, in
2009 and 2011, respectively, and the Ph.D. degree
(Hons.) in computer science from Freie Universität
Berlin, Berlin, Germany, in 2015.

He is currently a Professor with the Center for
Applied Mathematics, Tianjin University, Tianjin,
China. His research interests include wireless
networks, mobile edge computing, Internet of
Things, and complex networks.

Sukhpal Singh Gill received the Ph.D. degree in
computer science from Thapar University, Patiala,
India, in 2016.

He has been an Assistant Professor of
Cloud Computing with the School of Electronic
Engineering and Computer Science, Queen Mary
University of London, U.K., since 2019. He has
published in prominent international journals and
conferences, such as IEEE/ACM TRANSACTIONS,
IEEE INTERNET OF THINGS JOURNAL, IEEE/ACM
UCC, and IEEE CCGRID. His research interests

include cloud computing, edge computing, IoT, and energy efficiency.
Dr. Gill is serving as an Editor-in-Chief for IGI Global International

Journal of Applied Evolutionary Computation, an Area Editor for Cluster
Computing Journal (Springer), and an Associate Editor for IEEE INTERNET

OF THINGS JOURNAL, Internet of Things Journal (Elsevier), Transactions on
Emerging Telecommunications Technologies (Wiley), and IET Networks. For
further information, see http://www.ssgill.me.

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on September 01,2024 at 03:29:17 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

