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Abstract—Community structure analysis in dynamic net-
work is widely concerned in various fields, which main-
ly focus on temporal community detection and community
evolution analysis. Most of the related works usually fist
detect communities and then analyze evolution. This leads
to a loss of evolution information on temporal community
detection because block structures and evolution characteristics
coexist in dynamic networks. Even thought a few model-
based approaches consider the evolution characteristics into
community detection, they need to know the number of
communities in advance and ignore automatic determination
of the number of communities, which is a model selection
problem. In the paper, we propose an model, Evolutionary
Bayesian Non-negative Matrix Factorization (EvoBNMF), to
model community structures with evolution characteristics for
boosting the performance of temporal community detection.
In detail, EvoBNMF introduces evolution behaviors, which
quantify the transition relationships of communities between
adjacent snapshots, to describe the evolution characteristics of
community structure. Innovatively, EvoBNMF can catch the
most appropriate number of communities autonomously by
shrinking the corresponding evolution behaviors. Experimental
results from synthetic networks and real-world networks over
several state-of-the-art methods show that our approach has
superior performance on temporal community detection with
the virtue of autonomous determination of the number of
communities.

Keywords-Bayesian Non-negative Matrix; community detec-
tion; evolution analysis; dynamic networks

I. INTRODUCTION

Dynamic network analysis draws great attention recently
for studying complex systems in lots of fields, such as
physics science , biological science, information science and
so on [1]. A most important research problem of dynamic

network analysis is community structure analysis including
temporal community detection [1] and community evolution
analysis [2]. Temporal community detection helps to mine
the meaningful groups or functional modules hiding in net-
works. Community evolution analysis exposes the evolution
behaviors which quantify the transition relationships of com-
munities between adjacent snapshots, and helps to tracing
the change trends of dynamic networks. Most of the related
works usually fist detect communities and then analyze
evolution by matching the communities between adjacent
snapshots, which lead to a loss of evolution information
on temporal community detection because block structures
and evolution characteristics coexist in dynamic networks.
Therefore, it is very necessary to model the community
structures with evolution characteristics for boosting the
performance of temporal community detection.

Temporal community detection can be mainly summa-
rized as two types: two-stage approaches [3] and evolu-
tionary clustering based approaches [4]. Firstly, two-stage
approaches first detect clusters at each snapshot using a static
method and then match them across different snapshots.
These approaches detect the communities of the current
snapshot ignoring the historical community structures from
last snapshots, which take away the evolution characteristics
of temporal community structures and are usually sensitive
to noise. Evolutionary clustering based approaches effective-
ly make up for this shortcoming, which detect communities
at the current snapshot using not only the current topolo-
gy but also the previous community structures. However,
most of these approaches ignore determining the number
of communities at each snapshot automatically and need to
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be specified in advance. This is a model selection problem
which is a common challenge for community detection. In
addition, most of these approaches just focus on identifying
temporal communities accurately but ignore analyzing the
corresponding evolution.

Community evolution analysis, which is usually used to
tracing the evolution behavior of community structures, is
as important as temporal community detection. The existing
research is mainly divided into heuristic based [3], feature
engineering based approaches [5] and generative model
based approaches [6]. Heuristic based approaches usually
summarize the changing laws over time for analyzing the
evolution after detecting communities. Feature engineering
based approaches extract the evolution feature based on
the detected temporal communities with machine learning
algorithm. The first two types of methods tend to analyze the
evolution laws after detecting communities, so that the re-
sults of the evolution analysis rely too much on the results of
community detection. They ignore that community structures
and evolution characteristics coexist in dynamic networks.
Fortunately, generative model based approaches, which mod-
el the generative mechanism of community structure and
community evolution synchronously, is able to make up
for that shortcoming. However, most of these approaches
just describe the evolution behaviors qualitatively but not
quantitatively. And few of these approaches can deal with
model selection problem automatically.

For addressing the above issues, we focus on how to
model community structures with evolution characteristics
for boosting temporal community detection and determining
autonomously the number of communities at each snap-
shot of dynamic networks synchronously. In this paper, we
propose an Evolutionary Non-negative Matrix Factorization
(EvoBNMF) model based on a Bayesian probabilistic model.
In detail, we introduce the evolution behaviors to model
the evolution characteristics of community structures with
Bayesian non-negative matrix factorization (BNMF) [7] in
an evolutionary clustering framework [4]. Then we derive
a gradient descent algorithm to maximize the posterior
estimate for optimizing the parameters of our proposed
model. Innovatively, our proposed EvoBNMF catches the
most appropriate number of communities autonomously by
shrinking the corresponding evolution behaviors of each
snapshot network. Last but not least, experimental results
from synthetic networks and real-world networks over sev-
eral state-of-the-art methods show that our approach has
superior performance on temporal community detection with
the virtue of autonomous determination of the number of
communities. It is worthwhile to highlight several contribu-
tions of this work here:

• We propose an Evolutionary Non-negative Matrix Fac-
torization (EvoBNMF) model by modeling commubity
detection with evolution characteristics for improving
temporal community detection.

• The proposed EvoBNMF catches the most appropriate
number of communities autonomously by shrinking
the corresponding evolution behaviors of each snapshot
network.

• An effective algorithm is developed to optimize the
objective function of EvoBNMF, of which the time
complexity can be degraded to be linear.

• Extensive experiments from synthetic and real-world
dynamic networks demonstrate that our method has
superior performance on temporal community detection
in comparison with state-of-art methods.

II. METHODOLOGY

A. Notations

We set a dynamic network as a series of network snap-
shots. Let G = (V (t), E(t)), t ∈ [1, 2, ..., T ] be a dynamic
undirected network, where V (t)) = {1, ..., N (t)} is entity
or node sets, E(t) is edge sets at snapshot t and T is the
number of snapshots. Network snapshot t is represented with
a N (t) ×N (t) adjacency matrix A(t), where the element at
snapshot t

A
(t)
ij =

{
1 (i, j) ∈ E(t)

0 (i, j) /∈ E(t).

In addition, we summarize the main notations in table I.

Table I
TABLE OF NOTATIONS

Symbol Definition
t the snapshot label, and t ∈ [1, T ];

V (t) the node sets of snapshot t,
and V (t) = {1, 2, · · · , N(t)};

E(t) the edge sets of snapshot t;
A(t) the adjacent matrix at snapshot t,

and A(t) ∈ RN(t)×N(t)

+ ;

W (t) the basis matrix at t, and W (t) ∈ RN(t)×K(t)

+ ;
H(t) the community membership matrix at t,

and H(t) ∈ RK(t)×N(t)

+ ;
Z(t) the evolution behavior matrix at snapshot t,

and Z(t) ∈ RK(t)×K(t−1)
;

C(t) the community label matrix of snapshot t;
K(t) the number of communities of snapshot t.

B. EvoBNMF Model

Figure 1. Graphical model of the proposed EvoBNMF.
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Inspired by BNMF [7] in static networks, we use a
Bayesian probabilistic model to design the generative graph-
ical model of EvoBNMF considering the core idea of evolu-
tionary clustering (see as Fig. 1). For snapshot 1, the graphi-
cal model can be constructed similarly according to the static
BNMF because there is no historical structure information.
Similar to Ref. [7], we assume that Â(1)

ij is drawn from

a Poisson distribution with rate Â
(1)
ij =

∑K(1)

k=1 W
(1)
ik H

(1)
kj .

And W
(1)
ik and H

(1)
kj are both drawn from a half normal

distribution with scale parameters β(1) = {β(1)
k }. In addi-

tion, we consider the conjugate prior of half normal distri-
bution is Gamma distribution. Therefore β(1) is drawn from
Gamma distribution with two hyper-parameters a(1) and
b(1). According to the graphical model in Fig.1, the model
of snapshot 1 is same as Ref. [7], and the corresponding
objective function of snapshot 1 is as follows:

L(1) =−
N(1)∑
i=1

N(1)∑
j=1

(A
(1)
ij log

A
(1)
ij

Â
(1)
ij

+ Â
(1)
ij −A

(1)
ij )

+
1

2

K∑
k=1

(

N(1)∑
i=1

β
(1)
k W

(1)2
ik +

N(1)∑
j=1

β
(1)
k H

(1)2
kj

+

K∑
k=1

(β
(1)
k b(1) − (a(1) − 1) log β

(1)
k )

− 2N log β
(1)
k ) + C,

(1)

where C denotes a constant.
For the case of snapshot t (2 ≤ t ≤ T ), similiarly,

the observed adjacency matrix A(t) is influenced by an
unobserved expectation snapshot network Â(t), of which
element Â(t)

ij denotes the expected expected link weight that
take place between i and j at snapshot t. The expecta-
tion snapshot network can be composed of a basis matrix
W (t) ∈ RN(t)×K(t)

+ and a community membership matrix
H(t) ∈ RK(t)×N(t)

+ so that A(t)
ij ≈ Â(t) = W (t)H(t), where

H
(t)
kj captures the propensity that node j belonging to com-

munity k and K(t) is the unknown number of communities.
Differently, we consider the historical structure information
into the model of current snapshot according to the core
idea of evolutionary clustering. In addition, we introduce
an evolution matrix Z(t) to model the evolution behaviors
of communities synchronously. The element Z(t)

lk denotes
the propensity that nodes of community l of snapshot t− 1
transfer into community k of snapshot t. Here, we think
the current community membership H(t) is evolved from
H(t−1) by modeling some evolution behaviors Z(t), and
introduce a penalty term to force that H(t) ≈ Ĥ(t) =

Z(t)TH(t−1). In detail, we assume H
(t)
jk is drawn from a

Poisson distribution with rate Ĥ(t)
kj =

∑K(t−1)

l=1 Z
(t)
lk H

(t−1)
lj .

And W
(t)
ik and Z

(t)
lk are both drawn from a half normal

distribution with scale parameters β(t) = {β(t)
k }. And β(t) is

drawn from Gamma distribution with two hyper-parameters
a(t) and b(t). According to the graphical model in Fig.1,
the joint distribution at snapshot t can be represented as
follows:
P (A(t),H(t−1),W (t), H(t), Z(t),β(t), α)

= P (A(t)|W (t), H(t)) · P (H(t)|H(t−1), Z(t), α)

· P (Z(t)|β(t)) · P (W (t)|β(t)) · P (β(t)),

(2)

where α is a balance parameter. The corresponding posterior
is
P (W (t),H(t), Z(t),β(t)|A(t), H(t−1), α)

=
P (A(t), H(t−1),W (t), H(t), Z(t),β(t), α)

P (A(t), H(t−1), α)
.

(3)

The task of minimizing the negative log posterior, which
is equivalent to maximize the posterior, can be regarded as
the objective function of snapshot t, and its specific form is
as follows:
L(t) = − logP (A(t)|Â(t))− logP (H(t)|H(t−1), Z(t), α)

− logP (Z(t)|βt))− logP (β(t)).
(4)

We assume that A(t)
ij is drawn from a Poisson distribution

with rate Â(t) =
∑K(t)

k=1 W
(t)
ik H

(t)
kj , H(t)

jk is drawn from a

Poisson distribution with rate Ĥ(t)
kj =

∑K(t−1)

l=1 Z
(t)
lk H

(t−1)
lj ,

W
(t)
ik and Z(t)

lk are both drawn from a half normal distribution
with scale parameters β(t) = {β(t)

k }, and β(t) is drawn from
Gamma distribution with a(t), and b(t), then L(t) can be
rewritten as

L(t) =

N(t)∑
i=1

N(t)∑
j=1

(A
(t)
ij log

A
(t)
ij∑Kinitial

k=1 W
(t)
ik H

(t)
kj

+

Kinitial∑
k=1

W
(t)
ik H

(t)
kj −A

(t)
ij )

+ α

N(t)∑
i=1

Kinitial∑
k=1

(H
(t)
ki log

H
(t)
ki∑K(t−1)

l=1 H
(t−1)
li Z

(t)
lk

+

K(t−1)∑
l=1

H
(t−1)
li Z

(t)
lk −H

(t)
ki )

+

K(t−1)∑
l=1

Kinitial∑
k=1

(
1

2
β
(t)
k Z

(t)2
lk )− K((t−1))

2
log β

(t)
k

+

N(t)∑
i=1

Kinitial∑
k=1

(
1

2
β
(t)
k W

(t)2
ik )− N (t)

2
log β

(t)
k

+

Kinitial∑
k=1

(β
(t)
k b(t) − (a(t) − 1) log β

(t)
k ) + C,

(5)

where C is a constant.

C. Updating Rules

For snapshot 1, the updating rules of the objective function
L(1) are the same as Ref. [7], in detail,
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H(1) ←(
H(1)

W (1)T1 + diag(β(1))H(1)
)

� (W (1)T A(1)

W (1)H(1)
),

(6)

W (1) ←(
W (1)

1H(1)T +W (1)diag(β(1))
)

� (
A(1)

W (1)H(1)
H(1)T ),

(7)

β
(1)
k ← N (1) + a(1) − 1

1
2 (
∑

iW
(1)2
ik +

∑
j H

(1)2
kj ) + b(1)

. (8)

Similarly for snapshot t (t ∈ [2, T ]), we optimize Eq.5 for
W (t), H(t), Z(t) and β(t) with a gradient descent algorithm,
and the updating rules is as follows:

H(t) ←(
H(t)

W (t)T1 + α
)

� (W (t)T A(t)

W (t)H(t)T
+ α

Z(t)TH(t−1)

H(t)
)

(9)

W (t) ←(
W (t)

1H(t)T +W (t)diag(β(t))
)

� (
A(t)

W (t)H(t)
H(t)T )

(10)

Z
(t)
lk ←(

Z(t)

Z(t)diag(β(t) + αH(t−1)1
)

� (αH(t−1)(
H(t)

Z(t)TH(t−1)
)T )

(11)

β
(t)
k ←

K(t−1) +N (t) + 2a(t) − 2∑K(t−1)

l Z
(t)2
lk +

∑N(t)

l=1 W
(t)2
ik + 2b(t)

(12)

We update iteratively W (t), H(t), Z(t) and β(t) according
to the above rules until converges. We determine automati-
cally the most appropriate number of communities of each
snapshot with a statistical model selection method. In detail,
we set a large value (e.g., K(t)

initial = N (t)/4) as the ini-
tial number of communities. After parameter optimization,
we shrink W (t), H(t), Z(t) to W (t)∗, H(t)∗, and Z(t)∗ by
remove the irrelevant rows or columns of which sum is
zero or very close to zero. The pseudocode of the solving
algorithm of EvoBNMF is presented in Algorithm 1. The
returned community label vectors C(t)(t ∈ [1, T ]) are the
results of temporal community detection. And the returned
evolution matrices Z(t)∗ are the results of quantifying evo-
lution behaviors.

According to the Algorithm 1, the iteratively updating of
H(t) is most time-consuming. The time complexity of each

Algorithm 1 EvoBNMF

1: Initialize W (t), H(t), Z(t), β(t), where t ∈ [1, T ];
2: while not converge do
3: Update W (1), H(1), β(1) according to Eq.6 ∼ 8;
4: for t ∈ [2, T ] do
5: while not converge do
6: W (t), H(t), Z(t), β(t) according to Eq.9 ∼ 12;
7: for t ∈ [1, T ] do
8: shrink W (t), H(t), and Z(t) to W (t)∗, H(t)∗, and
Z(t)∗;

9:
10: C

(t)
i = arg max

k
(H

(t)∗
ik );

11: return C(t), Z(t)∗.

iterative is O(N2Kinitial + NK2
initial). Here, we set the

the average number of iterations as ρ, and the whole time
complexity is about O(ρT (N2Kinitial + NK2

initial)). As
we know, dynamic networks are ususally very sparse in real
cases. Then N2 can be replaced with the average number
of edges Ê approximatively at each snapshot. In addition,
Kinitial can be ignored as it is usually much less than N .
Naturally, the time complexity of the optimization algorithm
of EvoBNMF can degrade to O(ρT (Ê +N)).

III. EXPERIMENTS

A. Settings

1) Datasets: We test the performance of our EvoBNMF
on the eight dynamic networks. Four networks are generated
according to SYN-FIX [8], and the other four networks are
from real-world KIT-mail [9]. We show their statistical in-
formation including the number of snapshots T , the average
number of nodes |V̄ |, the average number of edges |Ē| and
the average number of K̄ in Tab.II.

Table II
STATISTICAL INFORMATION OF DYNAMIC NETWORKS

Datasets Networks T |V̄ | |Ē| K̄

SYN-FIX [8]

Net.1 10 128 2048 4
Net.2 10 128 2374 4
Net.3 10 128 1977 4
Net.4 10 128 2419 4

LFR [10]

Net.5 10 128 2048 4
Net.6 10 128 2374 4
Net.7 10 128 1977 4
Net.8 10 128 2419 4

KIT-mail [9]

Net.9 24 138 29481 23
Net.10 16 170 29963 25
Net.11 12 195 29788 25
Net.12 8 231 27883 27

2) Evaluation Metrics: The performance of community
detection is evaluated with two widely-used indexes: the
Normalized Mutual Information (NMI) and Error Rate (ER)
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[8]. And the accuracy of the autonomous determination of
the number of communities is evaluated with Accuracy in
the number of communities (KA) [11].

B. Experimental Results

Figure 2. An illustration of EvoBNMF on Network 1.

1) Illustrative example: To clarify the working principle
of EvoBNMF, we take an illustrative example on the results
of Net.1 in Fig.2. Due to space constraints, we just show
the results of snapshot 1 − 3. At snapshot 1, the learned
matrices W (1) and H(1) are decomposed from the observed
A(1). Obviously, there are just four columns of W (1) and
four rows of H(1) have high value. And the number of rows
of H(1)∗ is the targeted number of communities after the
adaptive compression of the rows with a low value. Then the
compressed H(1)∗ and the observed A(2) are both the input
of model at snapshot 2. For snapshot t(t ≥ 2), the matrices
W (t) and H(t) are decomposed from the observed A(t) and
the matrix H(t−1)∗ and Z(t) are decomposed from the H(t)

synchronously in a unified model. It’s worth noting that we
can obtain the evolution matrices Z(t)∗ after the adaptive
compression of the rows of Z(t). And the evolution matrices
correspond to quantitative results of evolution behavior of
communities.

2) Overall Performance: To investigate the effectiveness,
we compare the performance of our proposed EvoBNMF
with four state-of-the-art methods, including Dyluvain [3],
PisCES [12], DYNMO [8], ESPRA [13]. We set the hyper-
parameter α = 0.2, a = 8, and b = 5 in experiments.

Tab. 4 shows the results over NMI, ER, and KA of the
five methods on Net.1−4 of SYN-FIX. The best results are
bolded out and demonstrate that Dyluvain and our proposed
EvoBNMF are comparable in performance and both better
than others. The reason is that Dyluvain optimizes the
temporal modularity with a greedy heuristic method and is
suitable to the synthetic data SYN-FIX.

Furthemore, we shows the results over NMI, ER, and KA
of the five methods on network 5 − 8 from top to bottom
in Fig. 3 respectively. These results are the average results
of ten repetitions including the corresponding variance bar.
In addition, the x-axis is the snapshot label t, the y-axis

Table III
THE COMPARISON RESULTS OF FIVE METHODS ON NET.1− 4

Net. Index Dyluvain PisCES DYNMO ESPRA EvoBNMF

1
NMI 1 0.98 0.59 0.97 0.99

ER 0 229.94 3256.91 138 61.56
KA 1 1 0.38375 1 1

2
NMI 1 0.97 0.56 0.39 1

ER 0 244.34 3340.43 4125 0
KA 1 1 0.375 0.5625 1

3
NMI 0.44 0.30 0.23 0.28 0.45

ER 3630.99 7615.98 4436.61 4467.8 3576.38
KA 0.54 0.75 0.069 0.7125 0.69

4

NMI 0.97 0.92 0.41 0.29 0.92
ER 128.96 559.14 4024.73 4942.2 500.3
KA 1 1 0.31 0.61 0.99
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Figure 3. The comparison result of five methods on Net.5− 8.

is NMI or ER or KA values. From all the subfigures,
DyLouvain and EvoBNMF have higher NMI and ER values,
and DYNMO and EvoBNMF have higher KA values. This is
a strong indication that the proposed EvoBNMF has superior
performance not only on temporal community detection
but also on autonomous determination of the number of
communities.

Similarly, the subfigures in Fig.4 show the results over
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Figure 4. The comparison result of five methods on Net.9− 12.
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NMI, ER, and KA of the five methods on network 9 − 12
from top to bottom respectively. From all the subfigures, we
found that the results over NMI, ER and KA of EvoBNMF
has the highest accuracy in most cases, but not at the first
snapshot. The main reason is that there is has no historical
structure information for the first snapshot, and EvoBNMF
degenerates to BNMF. In additon, there is significantly
improved accuracy from snapshot 1 to snapshot 2, which
fully demonstrates the effectiveness of EvoBNMF.

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

N
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I

(a)

Net.9

Net.10
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n
iter
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L
(t

)

10
4 (b)

t=2

t=3

t=4

t=5

t=6

t=7

t=8

Net. 12

Figure 5. (a) Parameter analysis of the balance parameter α on Net.
9− 12; (b) the convergence analysis of L(t) on Net.12.

3) Parameter Sensitivity and Algorithm convergence: we
test the sensitivity of the balance parameter α of EvoBNMF
on Net.9 − 12 over NMI by ranging α ∈ [0, 0.5] with
steplength of 0.02. As shown in Fig. 5(a), the performance
of EvoBNMF is not sensitive when parameter α ≥ 0.1, of
which is best on about 0.2.

In addition, we verify the convergence of EvoBNMF on
Net. 12 with α = 0.2. Fig.5 (b) shows the convergence of
L(t) at snapshot 2− 5 of Net.12. We find that the value of
L(t) always tends to converge when the times of iterations
niter are no more 50, which demonstrates the convergence
rate is relatively fast.

IV. CONCLUSION

We propose EvoBNMF modeling temporal community
structure with evolution characteristics for boosting com-
munity detection and tracing the corresponding evolution
behaviors synchronously in dynamic networks. Meanwhile,
we develop a gradient descent algorithm to optimize our
model. The numbers of communities could be determined
automatically by shrinking the evolution behavior in EvoB-
NMF. Finally, experimental results on synthetic and real-
world networks demonstrate the effectiveness of EvoBNMF.
In the future, we will do some predictive tasks of dynamic
networks (e.g., links or community structures prediction).
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