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A B S T R A C T

With the rapid development of urbanization, increasingly more data are being acquired by intelligent trans-
portation systems (ITSs), which is of great significance for traffic flow forecasting. Efficient intelligent traffic
management systems (TMSs) depend on accurately forecasting traffic flows as well as reasonably researching
and judging traffic states. However, the current prediction models used in transportation forecasting tasks
are traditional temporal- and spatial-dimensional prediction approaches. Especially when faced with road
channelization, the numbers of lanes and lane types increase significantly, causing significant increases
in the dimensionality and complexity of traffic data, and research models utilizing the cross-interaction
relationships among multiple dimensions have not been considered. This has led to unsatisfactory prediction
results in complex traffic environments. Therefore, it is very important to explore the exchange–correlation of
complex dimensional data and the mining of hidden attributes. This paper presents a method for performing
multidimensional cross-attention and spatiotemporal graph convolution. This method fully considers cross-
information and constructs an attention cross-view between every pair of dimensions among the channel, time
and space domains to model the cross-dimensional dependencies of traffic data. We innovatively propose a
triple cross-attention and graph convolutional network (TC-GCN), which can achieve further improved traffic
forecasting performance. The TC-GCN is verified on two real-world traffic datasets, namely, METR-LA and
PEMS-BAY, and the experimental results are compared with those of multiple advanced baselines, showing
that the proposed approach outperforms most of these baselines, which proves the effectiveness of the method
proposed in this paper.
. Introduction

With the continuous advancement of social change and develop-
ent, the construction of urban transportation infrastructure, com-
rising expressways, transportation hubs and high-speed railways, has
naugurated an era characterized by accelerated advancement. To al-
eviate the traffic congestion problem that follows, intelligent trans-
ortation systems (ITSs) have become an indispensable comprehensive
echnology for the development of urban transportation [1]. ITS is an
mportant development direction in the field of transportation, as the
roblems of traffic congestion and frequent accidents become increas-
ngly prominent with the growth in the number of vehicles and the
opulation. Therefore, traffic flow condition prediction, road network
ptimization, and traffic management have become extremely impor-
ant. An accurate traffic forecasting model helps with route planning
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and scheduling when traveling in daily life and assists traffic managers
in adjusting their traffic strategies, which can reduce the burden of
traffic congestion [2]. In response to the traffic pressure imposed on
modern transportation, different lanes are usually designated in an
actual road network.

Furthermore, at critical intersections and pivotal road junctures,
it becomes imperative to incorporate intersection-channel interaction
data. This inclusion introduces additional dimensions and intricacies
to the already complex traffic data landscape. As a result, prediction
models must exhibit heightened accuracy, possess the capacity to dis-
cern insights from multiple dimensions, and demonstrate adeptness
in managing substantial volumes of sparsely available data. For the
purpose of enhancing the overall traffic efficiency of urban trunk roads
and optimizing their road capacity, the implementation of synchronized
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traffic signal patterns, referred to as ‘‘green waves’’, emerges as a
potent solution. During periods of low road utilization, the traffic signal
lights situated at adjacent intersections along the urban trunk road
are interlinked, facilitating unified dispatching and cohesive linkage
control. As traffic flows converge upon each intersection, the duration
spent waiting at red signals diminishes, and green lights expediently
illuminate. This achievement is made possible by meticulously config-
uring the time intervals between the activation and deactivation states
of the signal lights. However, achieving seamless signal light control
necessitates proficient traffic flow forecasting and comprehensive state
analysis. These prerequisites underscore the crucial role of effective
traffic forecasting and state assessment in enabling the harmonized
regulation of signal lights.

The prevailing approaches for traffic prediction can be catego-
rized into two distinct groups based on the underlying technologies
employed, namely, non-learning methods and learning methods. More-
over, within the domain of learning methods, a further bifurcation
can be made, distinguishing between traditional learning approaches
and deep learning techniques [1]. Non-learning methods are mainly
based on statistics. Their core idea is usually to assume that the future
forecasting data have the same distribution as the past data, and they
use mathematical statistics techniques and multiple linear regression
models to study multiple random variables. The correlations between
the variables are established, as is a functional relationship model
between the variables [3]. For example, in the historical average (HA)
method, support vector regression (SVR) [4] and other methods, the
model parameters mainly depend on the settings provided by experts
in related fields and are not suitable for dealing with complex dynamic
time series data. Therefore, these methods often fail to achieve satis-
factory results in the face of nonlinear data such as traffic flow data.
Due to the popularity of machine learning, traditional machine learning
methods are also widely used in traffic flow forecasting. The feature
representations between the data obtained in this manner exhibit a
better nonlinear fitting effect. However, it is difficult for traditional ma-
chine learning methods to establish the spatiotemporal dependencies
in traffic, and their ability to mine complex spatiotemporal patterns is
still limited [5]; thus, their prediction results still have much room for
improvement.

In recent years, deep learning-based methods have emerged as
mainstream approaches for traffic flow prediction [6]. Their core idea
typically involves the utilization of various deep learning techniques
to learn the temporal and spatial characteristics inherent in traffic
forecasting. For instance, graph convolutional networks (GCNs) [7]
excel at capturing the spatial topologies within traffic networks, while
recurrent neural networks (RNNs) [8] are better at capturing features
in the temporal dimension. Studies have shown that hybrid models can
compensate for the shortcomings of individual models, enabling them
to better handle high-dimensional data, capture complex nonlinear
relationships, and achieve improved prediction accuracy. These aspects
make them more suitable for short-term traffic flow prediction at this
stage [9]. For instance, Li et al. [10] proposed a diffusion convolutional
RNN (DCRNN) model, wherein an RNN is employed to encapsulate the
temporal features of traffic data, while diffuse convolution is utilized
to capture the spatial features. The spatiotemporal GCN (ST-GCN)
model [11] preserves the topology of traffic by means of spatiotemporal
graph convolution. STTN [12] exploits both dynamic-directed spatial
correlations and long-term temporal correlations, resulting in enhanced
accuracy for long-term traffic prediction. This is accomplished through
the integration of a self-attention mechanism, which effectively cap-
tures bidirectional temporal interdependencies across multiple time
intervals.

Unfortunately, within the context of traffic data processing, post-
channeling lane data tends to possess diminished granularity and more
discrete attributes. This characteristic results in discontinuous spa-
tiotemporal samples within lane data, presenting a challenge in estab-
2

lishing precise spatiotemporal relationships within models. In addition, d
channeled lane data also have complex hidden attributes spanning
multiple dimensions, all intricately interconnected. Therefore, corre-
sponding measures need to be taken during the modeling process to
overcome these obstacles. As illustrated in Fig. 1, the congestion state
caused by traffic accidents at detection point No. 1 during time 𝑡1 can

ield influence over No. 3 at time 𝑡2 in both spatial and temporal
imensions. This necessitates an information exchange not only be-
ween No. 1 and No. 3 simultaneously but also across differing time
oints. In the realm of traffic prediction, it becomes imperative to
odel cross-information dynamics encompassing temporal and feature
imensions, temporal and spatial dimensions, and spatial and feature
imensions. To sum up, acknowledging and effectively incorporat-
ng the cross-influences among the diverse dimensions of traffic data
s of paramount significance during the modeling of spatiotemporal
nd feature dimensions for accurate traffic forecasting. Moreover, the
ross-influence between the various dimensions of the traffic data
ncountered when modeling the spatiotemporal and feature dimensions
s extremely important for traffic forecasting.

To solve the aforementioned challenges, this paper introduces a
omprehensive end-to-end framework termed the Triple Cross-Attention
nd GCN (TC-GCN). This framework operates seamlessly across the
patiotemporal and feature dimensions, addressing both the spatiotem-
oral dependency intricacies inherent in traffic prediction and the
ross-dependence predicament across the three dimensions. By es-
ablishing a cross-information perspective for the spatiotemporal and
eature dimensions, TC-GCN not only captures the intricate spatiotem-
oral dependencies in traffic prediction but also effectively addresses
he cross-dependence intricacies present among these three dimensions.
emarkably, the TC-GCN framework represents the pioneering effort

n modeling the intricate cross-dependencies within traffic data in the
ealm of traffic forecasting. The combination of Cross Attention and
CN aims to extract both cross and spatial information behind traffic

patiotemporal data simultaneously.
The main contributions of this paper are four-fold:

• TC-GCN: A framework capturing time/space/feature dimension
interrelations;

• Addresses spatiotemporal information misalignment in traffic
analysis;

• Features tailored readout for spatiotemporal and time/feature
perspectives;

• Introduces time block mechanism for dynamic temporal data
preservation.

The remainder of this paper is structured as follows: In Section 2, we
oncentrate on the existing research landscape pertinent to our study.
ection 3 outlines the TC-GCN model devised for traffic forecasting. The
xperimental outcomes and their analysis are presented in Section 4.
astly, Section 5 offers concluding remarks.

. Related work

The predicament of traffic prediction holds a significant stature
ithin the domains of spatiotemporal data mining and ITSs. substantial
dvancements have been realized in handling profoundly nonlinear
ata, particularly in the field of deep learning. The traffic data consid-
red in this study is structured in the form of 3D tensors, encompassing
emporal, spatial, and feature dimensions. The principal advancements
ligned with this paper are detailed as follows.

Traffic prediction is a kind of spatiotemporal prediction task [7].
ithin the domain of traffic research, traffic data are typically regarded

s multivariate time series, encompassing diverse metrics like traffic
peed, flow, and capacity across various monitoring points within a
oad network. The traffic flow prediction can be divided into traditional
ethods and deep learning-based methods into large categories, among
hich deep learning-based methods can be further refined into time-

ependent models and spatial-dependent models, as shown in Table 1.



Information Fusion 105 (2024) 102229L. Wang et al.
Fig. 1. The cross-information dependencies in the temporal and spatial dimensions.
Table 1
The summary of the traffic prediction methods.
Category Approaches

Traditional methods [13], [14], [15], [16], [17], [18], [19]

Deep learning-based methods Temporal dimension models [8], [11], [12], [20], [21], [22], [23], [24], [25]

Spatial dependence models [3], [26], [27], [28], [29], [30], [31], [32], [33]
Concurrently, spatial relationships exist among road segments, facili-
tating the representation of inter-road spatial associations as graphs,
where individual road segments assume the role of nodes, and the edges
embody their spatial correlations. This intricate interplay necessitates
the effective capture of both temporal and spatial insights. The specific
overview is as follows.

Firstly, the early research work on traffic flow prediction is tradi-
tional methods, which are mainly based on regression models, such
as the ARIMA model [13] and the non-parametric regression model.
These studies take into account the temporal correlation of future traffic
flows in regions with historical data, but lack consideration of spatial
correlation between regions. In addition, some scholars used machine
learning algorithms, such as support vector machines (SVM) [14], gra-
dient lifting regression trees [15], linear regression models [16], etc.,
to make predictions based on features extracted from multi-source data
(such as POI data [17], weather data, etc.). Although these methods
lack the deep consideration of the relationship between time and space
and have a large room for improvement, they still have a wide range
of applications in practice.

Secondly, the temporal dimension, invariably addressed through
recurrent neural networks (RNNs), holds a pivotal role in influencing
traffic forecasting outcomes [8,11,12,20,21]. Leveraging an extension
of the fully connected LSTM (FC-LSTM) network, the convLSTM archi-
tecture [12] was based on LSTM and convolutional operations, thus
enhancing its efficacy in extracting features from spatiotemporal data.
Time dimension processing essentially involves modeling the trend
and periodicity of spatiotemporal traffic data. In recent years, the
rapid advancements in transformers [22] have led to the emergence of
numerous long-time series prediction techniques, such as those detailed
in [23–25]. However, it is imperative to note that these methodologies
solely address temporal dependencies.

Thirdly, the utilization of graph neural networks is prevalent in
processing spatial information. For instance, Wu et al. [32] proposed a
novel graph neural network architecture, known as Graph-WaveNet, for
spatiotemporal graph modeling. Their approach incorporates adaptive
dependency matrices learned through node embeddings, facilitating the
model’s capacity to capture concealed spatial dependencies inherent in
the input data. DCRNN [33] modeled the traffic flow as a diffusion
process on a directed graph and introduced a diffusion-based convo-
lutional recursive neural network, This framework, entrenched within
3

deep learning, serves as an effective paradigm for traffic prediction,
seamlessly merging spatial and temporal dependencies inherent in
traffic flows. Additionally, GMAN [30] utilized a multigraph attention-
based depth network that performs attention operations across both
spatial and temporal dimensions.‘

However, the aforementioned spatiotemporal-dependent models
tend to independently model temporal and spatial aspects, often dis-
regarding the crucial cross-information interactions between these
dimensions.

3. Methods

The fundamental objective of TC-GCN is to enhance the accu-
racy of traffic prediction by fostering a cross-dimensional approach
that effectively models the information embedded within both the
spatiotemporal and feature dimensions of the data.

3.1. Problem definition

Definition 1 (Road Network 𝐺). A traffic network is defined as a
weighted undirected graph denoted by 𝐺 = (𝑉 ,𝐸,𝐴), serving to depict
the inherent topological configuration of its road infrastructure. Here,
𝑉 = {𝑣0,… , 𝑣𝑆} represents a set of 𝑆 monitoring nodes, while 𝐸
corresponds to the ensemble of edges signifying interrelationships. The
adjacency matrix 𝐴 ∈ R𝑆×𝑆 is employed to quantitatively express the
degree of connection strength across these nodes.

Definition 2 (Feature Matrix 𝑋). The traffic data inherent in the road
network 𝐺 is considered as the attribute features of the nodes within
𝑉 . This is succinctly represented by the matrix 𝑋 ∈ R𝐶×𝑃×𝑆 , where 𝐶
stands for the quantity of node attribute features, encompassing param-
eters like traffic speed, traffic flow, and traffic density. Furthermore,
𝑃 signifies the duration of the historical time series, while 𝑆 = |𝑉 |

denotes the count of sensor nodes present in the network.

Definition 3 (Cross-Attention View). Let a three-dimensional structured
tensor be denoted by 𝑋 ∈ R𝑑1×𝑑2×𝑑3 , with 𝑑1, 𝑑2, and 𝑑3 representing
the three dimensions. In this context, the cross-attention view linking
dimensions 𝑑1 and 𝑑2 is precisely defined as:

𝑉 = 𝑟(𝑋) ∈ R𝑑1×𝑑2 , (1)
𝑑1⇄𝑑2
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Fig. 2. The proposed TC-GCN framework. The core composition of the TC-GCN model involves an 𝐿-layer cross-information module comprised of ST blocks. A light blue background
represents the starting convolution, an orange background represents u-convolution, and a green background represents the decoder.
where 𝑟(𝑋) stands for the primary content mapping function. It is
important to note that identical functions can be established in the
definitions of 𝑉𝑑1⇆𝑑3 and 𝑉𝑑2⇆𝑑3 .

𝑉𝑑1⇄𝑑2 characterizes the mutual dependence existing between the
dimensions 𝑑1 and 𝑑2 within the context of the three-dimensional
tensor 𝑋. Within the scope of traffic data 𝑋 ∈ R𝐶×𝑃×𝑆 , this concept
possesses evident physical significance. As shown in Fig. 1, 𝑉𝑆⇆𝑃 rep-
resents spatiotemporal cross-information, and then 𝑉𝑆⇆𝑃 [𝑛3, 𝑡1] = 0 and
𝑉𝑆⇆𝑃 [𝑛3, 𝑡2] ≠ 0. The primary aim of the TC-GCN model is to effectively
capture the cross-information interactions within diverse dimensions of
traffic data through the prism of a cross-attention view, thereby aug-
menting the accuracy of spatiotemporal traffic flow prediction. Evident
from the earlier definition, the pivotal facet of the cross-attention view
resides in the strategic design of 𝑟(𝑋).

Given historical traffic data denoted as 𝑋 = {𝑥0,… , 𝑥𝑃 } ∈ R𝐶×𝑆×𝑃

for each road intersection, the future traffic data can be predicted as
follows:

𝑌 = 𝑓𝜃 (𝑋) , 𝑋 ∈ R𝐶×𝑃×𝑆 , (2)

where 𝑃 signifies the length of the historical time window for traffic
flow, 𝑆 stands for the number of traffic detection nodes, and 𝐶 rep-
resents the traffic attributes of each node, encompassing parameters
such as speed and flow. 𝑌 =

{

𝑥𝑃+1, ⋯ , 𝑥𝑃+𝑄
}

represents the predicted
output generated by the model 𝑓𝜃 , where 𝜃 is the model parameter.

During the training process, the ground-truth value 𝑌 corresponding
to 𝑌 is provided. The training objective is to progressively minimize the
disparity between 𝑌 and 𝑌 .

3.2. The TC-GCN framework

As illustrated in Fig. 2, the core composition of the TC-GCN model
involves an 𝐿-layer cross-information module comprised of ST blocks.
This module is designed to intricately amalgamate insights originating
from the intricate intersection of the three dimensions intrinsic to
traffic spatiotemporal data. These dimensions include spatiotemporal
intersection, feature space intersection, and feature time intersection
information. The process of intersecting each pair of these dimensions
is orchestrated through the utilization of the cross-attention view elu-
cidated in Definition 3. To effectively harness the spatial information
ingrained within the data, TC-GCN systematically addresses the spatial
dependency challenge prevalent within traffic data. This is executed
through the integration of the diffusion convolution methodology [10]
within the framework of ST blocks.
4

3.3. The cross-information contained in the ST blocks

Similar to the existing deep learning-based traffic prediction mod-
els [5,34], the TC-GCN initiates its process by standardizing the input
data 𝑋. The computation formula for this standardization is expressed
as follows:

𝑋𝑛𝑜𝑟𝑚 =
𝑋 − 𝜇

𝜎
, (3)

where 𝜇 and 𝜎 denote the mean and variance of 𝑋, respectively. The
incorporation of these standardization operations renders the TC-GCN
deep learning model more amenable to effective training.

Simultaneously, we execute a two-dimensional convolution involv-
ing the temporal and spatial dimensions of the normalized 𝑋𝑛𝑜𝑟𝑚,
employing a kernel size of 𝑘 = 1×1. The original feature dimensionality
𝐶 is retained as the channel of the convolution, which is standardized
to 𝐹 . The computational process is illustrated by:

𝑋𝑠 = 𝑐𝑜𝑛𝑣2𝐷𝑠
(

𝑋𝑛𝑜𝑟𝑚
)

∈ R𝐹×𝑃×𝑆 , (4)

where 𝑐𝑜𝑛𝑣2𝐷𝑠 is a two-dimensional convolution and 𝐹 is the output
channel.

In fact, following the operation elucidated by Eq. (4), we trans-
form the original attribute dimension 𝐶 into the standardized feature
dimension, thereby generating 𝑋𝑠. Subsequently, this processed data
𝑋𝑠 serves as input to the ST blocks and diffusion convolution modules
within every layer of the TC-GCN. For a given layer 𝑙 ∈ 1,… , 𝐿 − 1,
the input is denoted as 𝑋(𝑙), while the output stemming from the
application of the ST blocks and diffusion convolution is termed 𝑋(𝑙+1).
It is crucial to note that the initialization point is 𝑋(0) = 𝑋𝑠. With
this groundwork established, let us delve into a more comprehensive
elaboration of the ST blocks.

The traffic data exhibits three interdependent dimensions charac-
terized by intricate relationships. For instance, congestion at a specific
detection node can progressively propagate and influence neighboring
nodes over time. This phenomenon is not merely confined to local
effects but can exert influence on the broader traffic state, owing to the
intricate interplay of traffic space relationships. As a result, achieving
an effective alignment and interplay of the time, space, and feature
dimensions emerges as a critical imperative in the domain of traffic
forecasting.

The conventional fusion of the three underlying dimensions in spa-
tiotemporal traffic prediction overlooks the inherent structural insights
ingrained within the data, as highlighted in works such as [14,35].
Typically, this approach flattens the traffic data to facilitate attention
operations, thereby disregarding the intricate cross-intersection that
exists within each physical dimension of the spatiotemporal traffic data.
This technique, essentially confined within a single dimension, does
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not fully capture the interplay between dimensions. To address this
limitation, we design a structured data manipulation approach within
the ST blocks. The cross-information extraction module is primarily
constructed upon three efficient cross-attention views. This section
proceeds to elaborate extensively on these three modules facilitating
information intersection.

3.3.1. The cross-attention view 𝑉𝑆⇆𝑃
The responsiveness of road traffic to accidents is notably influenced

y spatiotemporal information. The urgency of addressing incidents
aries significantly between remote road sections during nighttime
nd central road sections during morning hours, leading to diverse
mergency treatment pressures. Consequently, urban traffic manage-
ent places a particular emphasis on intersections and peak hours.
iven the strong interdependence within spatiotemporal information,
e undertake the task of capturing the cross-information between the

patial dimension 𝑆 and temporal dimension 𝑇 through the lens of
patiotemporal modeling. This approach seeks to compensate for the
nformation loss incurred due to the irregular sampling of data obtained
ia current technological means.

The derivation of the cross-attention view 𝑉𝑆⇆𝑇 involves a three-
step process:

• Feature Dimension Readout (𝑅𝐹 ): This step entails the extrac-
tion of pivotal information from the input data 𝑋(𝑙) along the
feature dimension.

• Mapping Function (𝑀): A mapping function, denoted as 𝑀 ,
employs convolutional operations to produce the cross-attention
view 𝑉𝑆⇆𝑇 .

• Gating Mechanism (𝐺): An additional gating mechanism, re-
ferred to as 𝐺, is introduced to filter the information and generate
the final output.

hese three successive steps collaborate to generate the desired cross-
ttention view 𝑉𝑆⇆𝑇 , effectively capturing the interdependence be-
ween the spatial and temporal dimensions in the data.

Initially, to extract cross-information from the traffic data, it is
mperative to tap into the insights embedded within the statistical
eature dimension. To achieve this, we employ a readout operation
hat sifts through the feature dimension, capturing its crucial attributes.
ubsequently, this data is mapped onto the spatiotemporal cross-view.
he mathematical representation of this process is as follows:
(𝑙)
𝑟𝑓 =𝑅𝐹 (𝑋(𝑙−1))

=𝑐𝑜𝑛𝑐𝑎𝑡𝑒(𝑅𝑓𝑚𝑎𝑥(𝑋(𝑙−1)), 𝑅𝑓𝑚𝑖𝑥(𝑋(𝑙−1)), 𝑅𝑓𝑚𝑒𝑎𝑛(𝑋(𝑙−1))),
(5)

where the operation 𝑐𝑜𝑛𝑐𝑎𝑡(⋅) signifies the concatenation of tensors
across the channels of 𝑋(𝑙−1) ∈ R𝐹×𝑃×𝑆 . The symbols 𝑅𝑓𝑚𝑎𝑥(𝑋(𝑙−1)),
𝑓𝑚𝑖𝑥(𝑋(𝑙−1)) and 𝑅𝑓𝑚𝑒𝑎𝑛(𝑋(𝑙−1)) correspond to readout operations em-
loyed to compute the maximum, minimum, and mean values along the
eature dimension 𝐹 , respectively. Eq. (5) is essentially an extension
f the pooling operation. Importantly, this formulation retains the
patiotemporal dimensions while effectively extracting critical insights
rom the feature dimension. This strategic approach enhances the ef-
iciency of the computation involved in calculating the cross-attention
iew.

Next, the TC-GCN undertakes a depth transformation on the readout
eature 𝑋(𝑙)

𝑟𝑓 ∈ R3×𝑄×𝑆 to make it adaptively structured. To achieve
his, a two-dimensional convolution is employed, characterized by a
rogressive increase and subsequent decrease in values. Within the
C-GCN framework, this operation is referred to as the U-D Conv
peration. The mathematical expression capturing this process is as
ollows:
(𝑙)
𝑆⇆𝑃 = 𝜎

(

𝑐𝑜𝑛𝑣2𝐷𝑑𝑜𝑤𝑛(𝜎(𝑐𝑜𝑛𝑣2𝐷𝑢𝑝(𝑋
(𝑙)
𝑟𝑓 )))

)

, (6)

here 𝑐𝑜𝑛𝑣2𝐷𝑢𝑝 denotes a two-dimensional convolution operation with
5

kernel size of 1 × 1, utilizing input and output channels both of size 3, 𝑋
nd incorporating a latent hyperparameter such that 𝑙𝑎𝑡𝑒𝑛𝑡 > 3. Mean-
hile, 𝑐𝑜𝑛𝑣2𝐷𝑑𝑜𝑤𝑛 represents a two-dimensional convolution operation
ith kernels of size 1 × 1 and latent input and output channels both
f size 1. The symbol 𝜎 signifies the activation function. The U-D Conv
tructure closely resembles the U-Net architecture commonly employed
n image segmentation, and it is adept at generating the cross-attention
iew using a limited number of parameters. Subsequent experiments
alidate its superior performance in comparison to ordinary mapping
tructures.

Lastly, Eq. (6) illustrates that 𝑉 (𝑙)
𝑆⇆𝑇 embodies the cross-information

etween time and space. This cross-information is subsequently em-
loyed to filter the output information in subsequent computations. The
ynamics of this information filtering procedure are captured by:

𝑋(𝑙)
𝑓𝑝 = 𝑐𝑜𝑛𝑣2𝐷

(

𝑋(𝑙−1)) ∈ R𝐹×𝑆×𝑃 , (7)
(𝑙)
𝑆𝑇 = tanh

(

𝑋(𝑙)
𝑓𝑝

)

⊙ sof tmax
(

𝑉 (𝑙)
𝑆⇆𝑇

)

, (8)

here the operation of sof tmax standardization is applied along the
ast dimension of 𝑉 (𝑙)

𝑆⇆𝑇 , and the symbol ⊙ signifies the Hadamard
ensor convolution operation [36]. It can be seen from Eq. (8) that
𝑜𝑓𝑡𝑚𝑎𝑥

(

𝑉 (𝑙)
𝑆⇆𝑇

)

exhibits similarities to the attention coefficient, but
different from the original attention coefficient. The conventional atten-
tion coefficient matrix relinquishes the structural information inherent
in the original data, transitioning instead into a cross-information
attention coefficient that captures interactive attention dynamics.

3.3.2. The cross-attention view 𝑉𝐹⇆𝑆
Similar to 𝑉𝑆⇆𝑇 , we can obtain the cross-information between

the space and feature dimensions, which represents the relationship
strength between the feature and space dimensions in traffic data.

This section provides a detailed description of the cross-information
between the spatial and feature dimensions. Initially, we reposition the
time axis of 𝑋(𝑙) to the channel position, as follows:

𝑋(𝑙)
𝑜𝑡 = 𝑅𝑜𝑡𝑡

(

𝑋(𝑙−1)) ∈ R𝑄×𝐹×𝑆 . (9)

Following the rotation operation 𝑅𝑜𝑡𝑡, the procedure for acquiring
the cross-information between the feature and space dimensions is
fundamentally analogous to that of 𝑉 𝑆 ⇆ 𝑇 . This process similarly
entails three steps: 𝑅𝑃 , 𝑚, and feature filtering.

Nevertheless, the temporal readout function differs from the feature
readout function due to the ordered nature of the feature dimension. If
the temporal readout function is similar to Eq. (5), it would lead to
the loss of temporal order information. To retain the temporal order
information, we devise the temporal readout function 𝑅𝑃 , wherein the
temporal dimension is partitioned into 𝑝 patches, as follows:

𝑋(𝑙)
1 ,… , 𝑋(𝑙−1)

𝑝 = 𝑠𝑝𝑙𝑖𝑡(𝑋(𝑙)
𝑜𝑡 ). (10)

Subsequently, the maximum, minimum, and average information is
extracted from the 𝑝 time patches using the following formula:

𝑋(𝑙)
𝑟𝑡 =𝑅𝑃

(

𝑋(𝑙)
1 ,… , 𝑋(𝑙−1)

𝑝

)

=𝑐𝑜𝑛𝑐𝑎𝑡(𝑃𝑡𝑚𝑎𝑥(𝑋
(𝑙−1)
𝑖 ), 𝑃𝑡𝑚𝑖𝑥(𝑋

(𝑙−1)
𝑖 ), 𝑃𝑡𝑚𝑒𝑎𝑛(𝑋

(𝑙−1)
𝑖 ))|𝑝𝑖=1 ∈ R3𝑝×𝐹×𝑆 .

(11)

Similar to Eq. (6), the operator 𝑚 ultimately derives a cross-attention
view encompassing spatial and feature information, as expressed by:

𝑉 (𝑙)
𝐹⇆𝑆 = 𝑚(𝑋(𝑙)

𝑟𝑡 )

= 𝜎(𝑐𝑜𝑛𝑣2𝐷𝑑𝑜𝑤𝑛(𝜎(𝑐𝑜𝑛𝑣2𝐷𝑢𝑝(𝑋
(𝑙)
𝑟𝑡 )))), (12)

here 𝑐𝑜𝑛𝑣2𝐷𝑢𝑝 and 𝑐𝑜𝑛𝑣2𝐷𝑑𝑜𝑤𝑛 possess the same definitions as in
q. (6), but they apply to the input and output channels, respectively.

The output of the information filtering process and Eq. (8) for the
patial and feature information are expressed as follows:

𝑋(𝑙)
𝑡𝑝 = 𝑐𝑜𝑛𝑣2𝐷(𝑋(𝑙−1)), (13)
(𝑙) (𝑙) (𝑙)

𝑆𝐹 = tanh(𝑋𝑡𝑝 )⊙ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑉𝑆⇆𝐹 ). (14)
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3.3.3. The cross-attention view 𝑉𝐹⇆𝑃
As known to all, time and features constitute two pivotal dimensions

ithin traffic data. Consequently, the TC-GCN model must also acquire
he cross-information between these dimensions.

The objective of this section is to derive the interaction between the
eature and temporal dimensions in spatiotemporal traffic data. Obtain-
ng the feature-temporal interaction relies on the spatial information
eadout 𝑅𝑆 . Similar to Eq. (9), we begin by rotating the output 𝑋(𝑙) of
he ST blocks to reposition the dimension to be read (spatial dimen-
ion) as the channel dimension for further processing. In mathematical
erms:
(𝑙)
𝑜𝑠 = 𝑅𝑜𝑡𝑡(𝑋(𝑙)) ∈ R𝑆×𝐹×𝑃 . (15)

he cross-attention view 𝑉𝐹⇆𝑃 follows the same principle as described
n Eqs. (5) and (6), and it is formulated as follows:

𝑋(𝑙)
𝑟𝑠 = 𝑅𝑆 (𝑋(𝑙−1)) = 𝑐𝑜𝑛𝑐𝑎𝑡𝑒(𝑅𝑠𝑚𝑎𝑥(𝑋(𝑙−1)), 𝑅𝑠𝑚𝑖𝑥(𝑋(𝑙−1)), 𝑅𝑠𝑚𝑒𝑎𝑛(𝑋(𝑙−1))), (16)

𝑉 (𝑙)
𝐹⇆𝑃 = 𝜎(𝑐𝑜𝑛𝑣2𝐷𝑑𝑜𝑤𝑛(𝜎(𝑐𝑜𝑛𝑣2𝐷𝑢𝑝(𝑋(𝑙)

𝑟𝑠 )))), (17)

where the symbol representations are the same as those in Eq. (6).
The input of the final obtained feature-time interlayer is as follows:

𝑋(𝑙)
𝑠𝑝 = 𝑐𝑜𝑛𝑣2𝐷(𝑋(𝑙−1)), (18)

𝑋(𝑙)
𝐹𝑄 = tanh(𝑋(𝑙)

𝑠𝑝 )⊙ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑉 (𝑙)
𝐹⇆𝑃 ). (19)

3.4. Cross-information fusion

After obtaining the various sets of cross-information 𝑋(𝑙)
𝑆𝑇 , 𝑋

(𝑙)
𝑆𝐹 and

𝑋(𝑙)
𝐹𝑄, we need to fuse them, and to make the fusion process adjustable,

the TC-GCN adopts a trainable weighted method for information fusion,
and its formula is expressed as follows:

𝑋(𝑙)
𝑐𝑟𝑜𝑠𝑠 = 𝛼(𝑙)𝑆𝑇𝑋

(𝑙)
𝑆𝑇 + 𝛼(𝑙)𝐹𝑆𝑋

(𝑙)
𝐹𝑆 + 𝛼(𝑙)𝐹𝑇𝑋

(𝑙)
𝐹𝑇 , (20)

where 𝛼(𝑙)𝑆𝑇 , 𝛼
(𝑙)
𝐹𝑆 and 𝛼(𝑙)𝐹𝑇 are the trainable parameters of the TC-GCN,

which represent the adaptive sum of pairwise interaction results for
three dimensions of traffic spatiotemporal data.

3.5. Spatial diffusion-based GCNs

Spatial information embedded within traffic data, specifically the
interconnections among traffic detection points denoted as 𝑉 , carries
significant relevance for spatiotemporal prediction [1]. In this con-
text, this component amalgamates spatial information by leveraging
the cross-information 𝑋(𝑙)

𝑐𝑟𝑜𝑠𝑠. To capture spatial information within
the TC-GCN framework, the WaveNet’s diffusion convolution tech-
nique [32] is adopted. This entails the application of the subsequent
graph convolution formulation:

𝑋(𝑙) =𝐺𝐶𝑁(𝑋(𝑙)
𝑐𝑟𝑜𝑠𝑠)

=
𝐾
∑

𝑘=0
𝐴𝑘𝑋(𝑙)

𝑐𝑟𝑜𝑠𝑠𝑊𝑘1 + (𝐴𝑇 )𝑘𝑋(𝑙)
𝑐𝑟𝑜𝑠𝑠𝑊𝑘2 + 𝐴𝑘

𝑎𝑝𝑡𝑋
(𝑙)
𝑐𝑟𝑜𝑠𝑠,

(21)

where 𝐴 signifies the distance-weighted adjacency matrix of the traffic
network, serving as a pre-established spatial relationship. Its structure
adheres to the representation outlined in the literature [2]. Addition-
ally, 𝐴𝑇 stands for the transpose of this matrix, and 𝐾 denotes the order
of the GCN. The expression 𝐴𝑎𝑑𝑝 corresponds to the ensuing adaptive
spatial relationship:

𝐴𝑎𝑑𝑝 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑅𝑒𝐿𝑈 (𝐸1𝐸2)), 𝐸1, 𝐸
𝑇
2 ∈ R𝑆×𝑑 , (22)

where 𝐸1 and 𝐸2 symbolize the trainable parameters, while 𝑑 rep-
resents a hyperparameter. Eq. (22) essentially adaptively obtains the
spatial relationships in traffic data through representation learning.

Following several iterations of cross-information and spatial infor-
(𝑙)
6

mation extraction, the output 𝑋 , 𝑙 ∈ {0,… , 𝐿 − 1} from each layer is
harmonized. This culminates in the derivation of the final output of the
TC-GCN, which can be expressed as:

𝑌 = 𝑓 (𝑋(0),… , 𝑋(𝐿−1)) =
𝐿−1
∑

𝑙=0
𝑋(𝑙). (23)

3.6. The loss function of the TC-GCN

Since the Huber loss is less sensitive to outliers when contrasted
with the squared error loss, the TC-GCN model deliberately adopts the
former as its designated loss function. The expressions for Huber’s loss
functions are outlined as follows:

𝐿𝐻𝑢𝑏𝑒𝑟(𝑌 , 𝑌 ) =

{ 1
2 (𝑌 − 𝑌 )2, ‖(𝑌 − 𝑌 )‖ ≤ 𝛿,

𝛿|𝑌 − 𝑌 | − 1
2 𝛿

2, otherwise.
(24)

4. Experiments and results

In this section, we embark on the validation process to ascertain the
effectiveness of the proposed TC-GCN model. This validation is carried
out through a combination of comparative baseline experiments and
detailed component analyses, encompassing diverse methods. The as-
sessment is conducted across two distinct real datasets, thus providing
a robust evaluation of the model’s performance and capabilities.

In particular, we address the following research questions:

• RQ1: How does our proposed TC-GCN method compare in per-
formance to various state-of-the-art methods?

• RQ2: How do the fundamental components of the TC-GCN con-
tribute to the network’s resilience?

• RQ3: We employ the U-D Conv operation as presented in Eqs. (6),
(12), and (17). To what extent does its incorporation contribute
to effectiveness and performance enhancement?

• RQ4: In Eqs. (5), (11) and (16), we employ max, min, and 𝑚𝑒𝑎𝑛
functions to extract statistical information. To what degree does
the utilization of these strategies contribute to the overall effec-
tiveness of the approach?

• RQ5: In Eq. (10), what rationale underlies the division of the
temporal dimension into 𝑝 patches?

.1. Datasets

This paper undertakes the validation of the proposed TC-GCN frame-
ork using two publicly available transportation network datasets,
amely METR-LA and PEMS-BAY, obtained from an open-source code
rovided in a prior publication [32]. METR-LA comprises traffic speed
tatistics acquired from 207 sensors located on Los Angeles County
ighways, covering a span of four months (from Mar. 1 to Mar. 7,
012). The traffic speed was aggregated every 5 min and the adjacency
atrix was calculated by the distance between sensors in the traffic
etworks. On the other hand, PEMS-BAY encompasses traffic speed data
ollected over a six-month duration (from January 1, 2017 to May 31,
017) from 325 sensors across the Bay Area with a sampling interval
as 5 min. The 325 × 325 adjacency matrix was built according

o the spatial relationship between roads. The dataset is partitioned
hronologically, allocating 70% of the samples for training, 10% for
alidation, and the remaining 20% for testing purposes.

.2. Metrics

In order to conduct an equitable comparison of the aforementioned
aselines with the model introduced in this paper, a set of three widely
mployed traffic forecasting error metrics is employed to assess their
erformance. These metrics encompass the mean squared error (MSE),
ean absolute error (MAE), and root-mean-square error (RMSE). Their

espective formulations are defined as follows, as delineated in prior
esearch [31]:
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• Mean squared error

𝑀𝑆𝐸 = 1
𝑛

𝑛
∑

𝑡=1

‖

‖

‖

𝑌𝑡 − 𝑌𝑡
‖

‖

‖

2
, (25)

• Mean absolute error

𝑀𝐴𝐸 = 1
𝑚

𝑚
∑

𝑖=1

‖

‖

‖

𝑌𝑖 − 𝑌𝑖
‖

‖

‖

, (26)

• Root-mean-square error

𝑅𝑀𝑆𝐸 =

√

√

√

√

1
𝑛

𝑛
∑

𝑡=1

(

𝑌𝑡 − 𝑌𝑡
)

. (27)

4.3. Experimental setup

The experimental procedures detailed in this paper are executed
on a Linux server equipped with a GeForce RTX 2080Ti GPU boasting
12 GB of memory. The dataset is consistently partitioned into train-
ing, validation, and test sets with a proportion of 7:3:1. Following
50 training epochs, the optimal model established on the validation
set is applied for evaluation on the test set. The adaptive moment
estimation (Adam) optimizer is employed, utilizing a learning rate of
0.001. Considering the balance between accuracy and speed, in the
initial convolution specified by Eq. (4), the count of output channels
is set to 32 (𝐹 = 32). The parameter 𝑙𝑎𝑡𝑒𝑛𝑡 featured in Eqs. (6), (12),
and (17) is determined as 32. For Eq. (10), a patch size of 3 is chosen
and the other patch size accuracies can be found in Table 4. Lastly, the
latent dimensionality 𝑑 within Eq. (22) is established at 10 because of
the simplicity of operations.

4.4. Baselines

A comprehensive validation process is conducted on the TC-GCN
model, encompassing an array of rigorous assessments. The verification
baselines encompass both statistical methodologies and data-driven
approaches.

• HA [37]: It refers to the Historical Average model;
• SVR [14]: It denotes the Support Vector Regression model;
• FNN: It is a network that employs matrix decomposition princi-

ples for supervised learning. It acquires the embedding layer to
capture continuous dense features through this approach;

• GCN [37]: It stands for Graph Convolutional Network, a model
adept at leveraging the information intrinsic to the data as well
as the interrelations existing among the data points;

• GRU [38]: It corresponds to a Gated Recurrent Unit, constituting
a form of recurrent neural network;

• DCRNN [33]: It represents Diffusion Convolutional Recurrent
Neural Network, which harnesses a bidirectional random walk
mechanism to encapsulate spatial dependencies within a decoder-
structured network;

• AGCRN [39]: It denotes Adaptive Graph Convolutional Recur-
rent Network, characterized by two modules and a recurrent
network. This configuration facilitates the automatic capture of
spatiotemporal correlations inherent in traffic flow sequences;

• Graph-WaveNet [32]: It encompasses a learning paradigm
grounded in adaptive dependency matrices and node embeddings.
The model adeptly captures latent spatial dependencies intrinsic
to the provided data;

• GMAN [30]: It refers to Graph Multi-Attention Network, a model
featuring spatial, temporal, and translation attention layers. This
architecture forecasts traffic conditions at diverse time intervals
and various locations within the framework of a road network
graph.
7

t

4.5. Experimental results

4.5.1. Forecasting performance comparison: RQ1
Tables 2 and 3 present a comprehensive comparative analysis of

various methods across different prediction horizons: 15-minute (hori-
zon 3), 30-minute (horizon 6), and 1-hour (horizon 12) ahead pre-
dictions. In these tables, the superior performance is indicated by
underlined numbers, while suboptimal performance is marked with
numbers accompanied by asterisks.

According to Table 2 and Table 3, the following conclusions can be
drawn.

• The TC-GCN consistently achieves the highest accuracy across
both datasets in the majority of instances. Notably, it demon-
strates a substantial performance superiority over temporal mod-
els like DCRNN, GMAN, and AGCRN, which are prominent spa-
tiotemporal deep learning models.

• Upon contrasting the statistical approaches (HA and SVR) with
the data-driven methodologies, a discernible trend emerges: data-
driven methods exhibit superior performance compared to their
statistical counterparts. This observation holds true except for
the GCN model, which falls under the data-driven umbrella and
primarily caters to spatial dimensions. This trend substantiates
the fundamental temporal nature of traffic data, underscoring the
challenge of fulfilling the inherent a priori assumptions associated
with statistical methods.

• The TC-GCN method put forth in this study closely approximates
and consistently outperforms the WaveNet and GMAN methods.
This performance advantage is attributed to the TC-GCN’s capac-
ity to capture cross-information, thereby enhancing its predictive
capabilities.

4.5.2. Effect of each component: RQ2
It can be seen from Fig. 2 that the three cross-attention-based

branches (S-T, S-F, and F-T) form the central elements of the TC-GCN
architecture. To verify their effectiveness, comprehensive experiments
were executed on the METR-LA and PEMS-BAY datasets. The assess-
ment encompasses input and prediction intervals ranging from 15 min
(horizon 7) to 1 h (horizon 12), with the metric of interest being
the Mean Absolute Error (𝑀𝐴𝐸). The ensuing list enumerates the
comparative methods for reference.

• w/o ST: In this configuration, the S-T branch depicted in Fig. 2
is excluded from the TC-GCN architecture. As a result, Eq. (20) is
adjusted to take the form:

𝑋(𝑙)
𝑐𝑟𝑜𝑠𝑠 = 𝛼(𝑙)𝐹𝑆𝑋

(𝑙)
𝐹𝑆 + 𝛼(𝑙)𝐹𝑇𝑋

(𝑙)
𝐹𝑇 . (28)

• w/o FS: In this configuration, the F-S branch is removed from the
TC-GCN architecture. As a result, Eq. (20) is adjusted to take the
form:

𝑋(𝑙)
𝑐𝑟𝑜𝑠𝑠 = 𝛼(𝑙)𝑆𝑇𝑋

(𝑙)
𝑆𝑇 + 𝛼(𝑙)𝐹𝑇𝑋

(𝑙)
𝐹𝑇 . (29)

• w/o FT: In this configuration, the F-T branch is omitted from
consideration. Consequently, Eq. (20) is adjusted to take the form:

𝑋(𝑙)
𝑐𝑟𝑜𝑠𝑠 = 𝛼(𝑙)𝑆𝑇𝑋

(𝑙)
𝑆𝑇 + 𝛼(𝑙)𝐹𝑆𝑋

(𝑙)
𝐹𝑆 . (30)

The experimental outcomes are visually presented in Fig. 3. The
indings conclusively indicate that, in the majority of instances, the
ccuracy exhibited by the TC-GCN surpasses that of the comparative
ethods. This substantiates the discernible positive impact of each

ubbranch in enhancing the model’s accuracy.

.5.3. The effect of the U-D Conv operation: RQ3
The U-D convolution serves as a pivotal process in the cross-

ttention generation in Eqs. (6), (12) and (17). In order to establish

he efficacy of the U-D Conv operation and its consequential impact
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Table 2
Comparison among the experimental results obtained by the baselines on the METR-LA dataset.

15 min 30 min 1 h

Method MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE

HA 75.0750 3.5416 8.6646 118.0912 45 365 10.8670 189.2791 6.2397 13.7579
SVR 69.9264 3.2971 8.3622 103.4865 4.0887 10.1728 154.7231 5.3561 12.4388
FNN 30.2496 3.1718 5.4928 37.9989 3.4167 6.1505 48.5412 3.7574 6.9500
GCN 75.6262 5.9177 8.6913 84.1558 6.1783 9.1580 99.7477 6.6400 9.9458
GRN 32.2965 2.9487 5.6340 43.5997 3.2976 6.5040 59.5445 3.8622 7.5601
DCRNN 27.1907 2.7468 5.1444 34.5166 3.0530 5.7685 53.3642 3.8106 7.1273
AGCRN 22.8343 2.5461 4.7443 30.7892 2.8235 5.4909 40.6558 3.1556 6.3031
WaveNet 20.7290* 2.4506* 4.5158* 27.6090* 2.7127* 5.1911* 37.9661* 3.0443 6.0721
GMAN 21.3438 2.4709 4.5924 29.6966 2.7689 5.4081 42.0717 3.1755 6.4405
TC-GCN 20.4548 2.4457 4.4852 27.2302 2.6816 5.1566 37.1123 3.0495* 6.0867*
Table 3
Comparison among the experimental results obtained by the baselines on the PEMS-BAY dataset.

15 min 30 min 1 h

Method MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE

HA 9.5010 1.3975 3.0824 18.7981 1.8557 4.3357 36.4378 2.5788 6.0364
SVR 7.007 1.225 2.6471 12.9692 1.5577 4.7611 22.6681 2.0309 4.7611
FNN 12.5717 1.9202 3.5405 16.3261 2.0714 4.0326 20.5379 2.2472 4.5272
GCN 49.4765 3.5329 7.0337 50.9295 3.6209 7.1356 53.8557 3.7717 7.3351
GRN 6.6762 1.2248 2.5052 11.9706 1.5151 3.3147 18.3235 1.8596 4.1208
DCRNN 5.6616 1.1554 2.3093 10.8403 1 5103 3.1453 22.9179 2.2366 4.5324
AGCRN 5.5342 1.1453 2.2895 8.7044 1.3459 2.8546 13.1818 1 5827 3.5308
WaveNet 5.0028* 1.0973* 2.1781* 8.5086* 1.3273* 2.8162* 13.3827* 1 5973* 3.5446*
GMAN 5.1039 1.1140 2.2036 8.4563 1.3228 2.8239 13.1639 1.6048 3.5521
TC-GCN 4.9199 1.0916 2.159871 8.1990 1.3025 2.7664 13.0277 1.5688 3.4982
on the enhanced accuracy of the model, an investigative approach is
undertaken. This approach involves the replacement of the U-shaped
convolution module with a conventional convolution module, aptly
named ‘wo uconv’. Subsequently, the 𝑀𝑆𝐸 results are systematically
assessed for horizons ranging from 3 (15 min) to 12 (60 min), lever-
aging data derived from two distinct datasets. The resulting outcomes
are graphically portrayed in Fig. 4.

It can be seen from Fig. 4 that after replacing the U-D Conv module
with a common convolution module, the overall accuracy of the TC-
GCN on the METR-LA dataset decreases, especially for long sequence
prediction horizons (10 to 12). This means that the U-D Conv module
can effectively model the hidden features contained in long sequences.
On both datasets, the TC-GCN outperforms the variants that remove
this module in most cases, which shows that U-D Conv has a certain
representation learning ability and can encode data features.

4.5.4. The effect of the readout function: RQ4

To undertake a deeper analysis regarding the impact of the read-
out function on cross-attention generation, this study delves into the
implementation of distinct methodologies, namely, minimum pooling,
average pooling, and maximum pooling, on the observed information.
The deliberate selection of diverse pooling techniques, when employed
in tandem, facilitates the encapsulation of distinctive features across
various strata and levels of granularity. The outcomes of these exper-
imental endeavors are visually conveyed in Fig. 5, where it becomes
evident that, in the majority of instances, a combination of maximum,
minimum, and average pooling yields optimal results. Consequently,
the TC-GCN adopts the amalgamated approach of maximum, minimum,
and average pooling as its designated readout function, as corroborated
by the evidence stemming from the experimental results.
8

Table 4
Effects of different splits on the TC-GCN performance (MSE) in terms of temporal
dimension pooling.
𝑘 1 2 3 4 5

META-LA 37.7868 38.0069 37.6408 37.6410 38.0069
PEMS-BAY 13.6040 13.4574 13.0277 14.1727 14.0857

4.5.5. The effect of the 𝑅𝑃 function: RQ5

Drawing from the insights garnered in the preceding experiments, it
becomes increasingly clear that the operational scope of TC-GCN within
a 12-step temporal horizon engenders a substantial amplification in the
overall model accuracy. Given this observation, our endeavor aims to
provide robust validation for the effectiveness of the 𝑅𝑃 module and
to gauge the impact of partition count on model accuracy. Thus, we
deliberate on the configuration of the partition parameter, adopting
values of 𝑘 = 1, 2,… , 5, all the while focusing on the context of the
aforementioned 12-step horizon. The outcomes stemming from this
endeavor are comprehensively outlined in Table 4.

The experimental results reveal that the model attains its maximum
accuracy when 𝑘 = 3. Given the inherent chronological order of time,
segmenting the input data facilitates the model’s acquisition of long-
term temporal dependencies, including periodic variations. In this way,
the model achieves higher accuracy. When 𝑘 > 3, the accuracy of the
model experiences a diminishing trend. This decline can be attributed
to the potential overutilization of data segmentation, leading to a di-
lution of temporal contextual dependencies. The time-splitting module
allows the model to extract data features of varying granularities and
hierarchies through the partitioning of time intervals with differing
lengths.
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Fig. 3. Effect of each component in METR-LA and PEMS-BAY datasets.
5. Conclusion

This paper introduces a novel TC-GCN model that employs a three-
dimensional modeling framework encompassing time, space, and fea-
ture map depth. The model adeptly captures the cross-latitude fea-
tures and dependencies between these three dimensions, enabling
proficient predictions for both short-term and long-term traffic data.
A notable facet of this approach is the novel utilization of pool-
ing combinations, effectively extracting information distributed across
9

diverse granularities within the dataset. A pivotal advancement lies
in the incorporation of a graph convolution module. This module
seamlessly amalgamates temporal hierarchical convolution with spa-
tial self-attention mechanisms. Impressively, this integration preserves
spatial structure information while dynamically emulating intricate
nonlinear spatial connections among nodes. The experimental results
obtained on two real-world datasets show that the performance of
the proposed TC-GCN model is superior to that of the mainstream
models over both long and short durations. Our future endeavors
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Fig. 4. The effect of the presence or absence of U-D Conv on the predictive performance achieved by the TC-GCN model on the METR-LA and PEMS-BAY datasets.
will revolve around the application of the model to real-world ur-
ban traffic scenarios prevalent in contemporary times. This approach
will involve a deliberate incorporation of the distinct characteristics
exhibited by modern urban traffic, with the overarching goal of ful-
filling the complex requirements associated with accurate traffic flow
prediction.
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