
Codecs for DNA-based Data Storage Systems with
Multiple Constraints for Internet of Things

Kaixin Fan∗, Huaming Wu∗ and Ruidong Li†
∗Center for Applied Mathematics, Tianjin University, Tianjin 300072, China

†Institute of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan
E-mail: {kxfan, whming}@tju.edu.cn, liruidong@ieee.org

Abstract—Internet of Things (IoT) devices are severely con-
strained in computational capacity, battery life, and data storage,
which fail to meet the requirement of mass data storage. With
the explosive growth of data to be stored, Deoxyribonucleic acid
(DNA)-based storage has become a promising direction for IoT
data storage due to its various advantages, e.g. high capacity,
long durability and scalability. However, DNA synthesis and
sequencing are subject to errors due to certain biochemical
properties of DNA. In this paper, an explicit encoding and
decoding scheme for constrained systems satisfying both 3-
RLL constraint and strong-(4,1)-locally-GC-balanced constraint
is designed. We propose the use of a state-splitting algorithm to
encode binary strong-(4,1)-locally-balanced constrained systems
with the rate 2 : 3, and a state-dependent decoding algorithm to
decode the encoded data. The calculation results show that the
codebook of the encoding scheme in this paper is larger than that
of the existing scheme, and the total number of codewords with a
length of 24 is more than 6 times that of the existing scheme. The
information rate is higher than that of existing coding schemes.
The encoding table size required is two orders of magnitude
smaller than the existing scheme.

Index Terms—DNA-based storage, Constrained systems, En-
code and decode, Internet of Things.

I. INTRODUCTION

With the rapid development of the Internet of Things (IoT)
and the next generation of information technology, massive
data are collected every day by different types of sensors,
however, the processing, transmission and storage of big
data bring new challenges to mobile users. As far as we
know, wireless sensor networks are an essential part of IoT.
However, due to the limited size, IoT devices are still severely
constrained in computational capacity, battery life, and data
storage. Moreover, the exponential growth of data globally
has presented challenges for traditional data storage methods,
particularly in terms of preserving and protecting data.

As a data carrier, Deoxyribonucleic acid (DNA) molecules
boast several advantages compared to traditional storage me-
dia, including high storage density, long lifespan, and low
maintenance costs. These characteristics make DNA a promis-
ing alternative for data storage and it is envisioned to have a
wide range of potential applications in the future. Therefore,
DNA-based storage shows a strong correlation and promising
direction for IoT communication technology. However, the
researchers found that during the process of DNA storage
in vitro, especially during DNA synthesis, Polymerase Chain

Reaction (PCR), and DNA sequencing, base substitution,
deletion, and insertion errors are common when DNA strands
do not meet biochemical constraints. In particular, the DNA
strand should meet the k-RLL constraint (i.e. the repetition
of the same homopolymer cannot exceed k.) and the strong-
(l, δ)-locally-GC-balanced constraint (i.e. in windows of length
greater than or equal to l, the proportion of guanine(G) and
cytosine(C) is within a certain range).

A DNA storage system that meets these constraints is
referred to as a constrained system (S). Ross et al. [1]
experimentally found that substitution and deletion errors
increased significantly when the repeats of the same nucleotide
on the nucleotide chain exceeded 6. In most synthesis and
sequencing techniques during DNA storage, too high or low
GC-content in the DNA strand can significantly increase error
occurrence [2]. The global GC-content constraint refers to
the requirement that the GC-content in the DNA strand must
fall within a specified range. Recently, the global GC-content
constraint has been widely studied in the literature [3]–[7].
However, the local GC-content constraint has been shown to
be more appropriate for DNA storage [8] compared to global
GC-content constraint, due to its ability to better predict the
success of polymerase chain reaction (PCR). This is due to
the fact that local GC-content constraint provides a better
predictor of polymerase chain reaction (PCR) success and is
more sensitive in forecasting PCR results.

On the local GC-content constraint, Gabrys et al. [9] put
forward the concept of strong-(l, δ)-locally-balanced constraint
in binary and provided its capacity, but no codec scheme
was presented. Wang et al. [10] proposed two methods for
encoding the strong-(l, δ)-locally-balanced constraint system.
The first one is constructing two one-to-one correspondence
tables of blocks of length s to the Dyck path. However, this
method can become impractical when the parameters are large
as it requires a significant amount of entries to be stored,
making it difficult to encode and decode. The second method
uses state transition diagrams and the running digital sum
(RDS) sequence to encode the strong-(4,1)-locally-balanced
constrained code. However, the establishment of the state
transition graphs lacks a theoretical basis. Fan et al. [11]
calculated the capacity of constrained channels that satisfy
both k-RLL and strong-(l, δ)-locally-GC-balanced constraints.

In this paper, we present an explicit encoding and decoding
scheme for constrained systems that satisfy both the 3-RLL979-8-3503-1090-0/23/$31.00 © 2023 IEEE

2023 IEEE Global Communications Conference: Communications Software and Multimedia

2857

GL
O

BE
CO

M
 2

02
3 

- 2
02

3 
IE

EE
 G

lo
ba

l C
om

m
un

ic
at

io
ns

 C
on

fe
re

nc
e 

| 
97

9-
8-

35
03

-1
09

0-
0/

23
/$

31
.0

0 
©

20
23

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

GL
O

BE
CO

M
54

14
0.

20
23

.1
04

37
03

1

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 27,2024 at 14:47:59 UTC from IEEE Xplore.  Restrictions apply. 



constraint and the strong-(4,1)-locally-GC-balanced constraint.
In this coding scheme, the constraint graph is split by a
state-splitting algorithm and decoded by a state-dependent
decoding algorithm. We describe the theoretical basis of the
encoding and decoding scheme, give the encoder of the binary
sequence, and analyze the performance of the encoder through
calculation. The main contribution of this work is twofold:

• We simplify the coding problem of a quaternary constrain
system, which satisfies both the 3-RLL and the strong-
(4,1)-locally-GC-balanced constraint to the coding prob-
lem of a binary constrained system which satisfies the
strong-(4,1)-locally-balanced constraint. Therefore, cod-
ing and decoding can be designed in binary-constrained
systems, which makes the problem simple and easy.

• We use the state-splitting algorithm to obtain the encoder
ϵ for a binary-constrained system with encoding rate 2:3
that satisfies the strong-(4,1)-locally-balanced constraint.
This encoder can encode any binary sequence of length
2n into a binary sequence of length 3n that satisfies the
strong-(4,1)-locally-balanced constraint. Compared with
the existing scheme, it is found that the codebook of ϵ is
larger than the codebook of the existing scheme, and the
total number of codewords with a length of 24 is more
than 6 times that of the existing scheme.

II. DEFINITIONS AND PRELIMINARIES

For a binary word x ∈ Σn
q = {0, 1, . . . , q−1}n, the function

wt(x) represents the weight of x. When q = 2, the weight
refers to the proportion of “1”; When q is equal to 4, it’s the
ratio of 2(C) and 3(G).

Definition 1. q-ary k-RLL constraint: Let x =
(x1, x2, . . . , xn) ∈ Σn

q = {0, 1, . . . , q − 1}n. Given k > 0,
we say that x is k-RLL constrained if the run of consecutive
symbol of Σq is at most k.

Definition 2. q-ary strong-(l,δ)-locally-(GC-)balanced con-
straint: Let l be an even positive integer and δ be a nonneg-
ative integer. A sequence x ∈ Σn

q is said to satisfy the q-ary
strong-(l,δ)-locally-(GC-)balanced constraint if for all even l′,
l′ ≥ l and 1 ≤ i ≤ n − l′ + 1, the weight of the window
x[i; l′] = (xi, xi+1, . . . , xi+l′−1) is between

[
l′

2 − δ, l′

2 + δ
]
,

i.e. l′

2 − δ ≤ w(x[i; l′]) ≤ l′

2 + δ.

We adopt a quaternary model of DNA data storage coding
table based on the base characteristics of DNA, as shown in
Table I. And the binary sequence x ∈ Σ2n

2 can be divided into
odd sequence xo = (x1, x3, . . . , x2n−1) and even sequence
xe = (x2, x4, . . . , x2n).

TABLE I: A Quaternary Model of DNA Data Storage Coding
binary data 00 01 10 11

base A T C G
quaternary data 0 1 2 3

Definition 3. Deterministic: The labeled graph G is consid-
ered deterministic if the outgoing edges from each state are
labeled uniquely [12].

Definition 4. Finite Local Anticipation (FLA): A finite-state
transition graph is said to have finite local anticipation a if
a is the smallest nonnegative integer such that for each state
u, all paths starting from u and producing sequences of the
same length a+ 1 have the same initial edge label.

III. CODE CONSTRUCTIONS

In this section, we focus on developing an efficient code
construction method to encode arbitrarily long binary source
data into a sequence satisfying the 3-RLL constraint and
strong-(l,δ)-locally-GC-balanced constraint. In this section, we
first simplify the channel and then use the state-splitting
algorithm to design an encoder.

According to proposition 1 in [11], when k ≥ l
2+δ, by using

Table I, we can combine the binary odd sequence of length n
satisfying both binary k-RLL constraint and binary strong-
(l,δ)-locally-balanced constraint with any binary even se-
quence of length n to obtain the quaternary sequence of length
n satisfying both k-RLL constraint and strong-(l, δ)-locally-
GC-balanced constraint. Since k = 3, l = 4, δ = 1 satisfies the
conditions, the codec problem of a quadrilateral constrained
system satisfying both 3-RLL constraint and strong-(4,1)-
locally-GC-balanced constraint is transformed into a binary
constrained system codec problem satisfying both binary 3-
RLL constraint and strong-(4,1)-locally-balanced constraint.
By the definition of 3-RLL constraint and strong-(4,1)-locally-
balanced constraint, it can be concluded that strong-(4,1)-
locally-balanced constraint includes 3-RLL constraint. There-
fore, the binary-constrained system codec problem satisfy-
ing both the binary 3-RLL constraint and the strong-(4,1)-
locally-balanced constraint can be simplified to the binary-
constrained system codec problem satisfying the strong-(4,1)-
locally-balanced constraint. Next, we design an encoder for
a binary-constrained system that satisfies the strong-(4,1)-
locally-balanced constraint.

Theorem 1. (Finite-State Coding Theorem) Given a con-
strained system S with capacity C(S) and positive integers
p and q such that the inequality p/q ≤ C(S) holds, there
exists a finite-state encoder with a state-dependent decoder
that encodes an arbitrary binary sequence into a constrained
system S at a constant rate p : q [13].

Theorem 1 states that for any given positive integers p and
q such that p/q ≤ C(S), a code that operates at rate p : q
exists. Specifically, if p and q are selected as relatively prime
numbers, it is possible to design an encoder with a codeword
length that is minimum and consistent with the chosen rate
R = p : q. Finite-state graphs are a widely utilized method
for the representation of constrained sequences [10], [14]. In
our work, we adopt the state-splitting algorithm [13], [15] to
design a binary constrained system encoder with an encoding
rate of 2 : 3 which satisfies the strong-(4,1)-locally-balanced

2023 IEEE Global Communications Conference: Communications Software and Multimedia

2858
Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 27,2024 at 14:47:59 UTC from IEEE Xplore.  Restrictions apply. 



constraint. It can encode any binary sequence with a length of
2n into a binary sequence with a length of 3n which satisfies
the strong-(4,1)-locally-balanced constraint.

A. State-Splitting Algorithm

In our work, the rate of the encoder is mathematically
represented as R = p/q. A finite-state encoder, with this
specified rate, is defined as a labeled encoder that operates by
accepting a binary p-block as its input sequence and producing
a binary q-block as its corresponding output label. The symbol
ϵ is employed to denote such a labeled finite-state encoder. The
design of this type of block coding is comprised of several
essential steps, which are outlined as follows.

• Step 1: we must identify a deterministic labeled graph
G that represents the given constrained system S. This is
often straightforward as most constrained systems have a
natural deterministic representation.

• Step 2: we compute the adjacency matrix AG of G.
Using this matrix, we can calculate the capacity of the
constrained system through C(S) = log λ(AG), where
λ(AG) denotes the largest characteristic real root of
matrix AG. Subsequently, we select a code rate R = p : q
that satisfies the inequality

p

q
≤ C(S). (1)

• Step 3: Construct Gq .
• Step 4: Find an (Aq

G, 2
p)-approximate eigenvector v

using the Franaszek algorithm [16]. Eliminate all the
states in Gq with components equal to 0 and restrict it
to an irreducible component H . Repeat steps 5-6 until a
labeled graph H with the minimum out-degree of at least
2p per state is obtained.

• Step 5: Find a v-consistent partition of the state in H .
• Step 6: Find the v-consistent splitting corresponding to

this partition and create a new labeled graph H ′ along
with a new approximate eigenvector v′.

• Step 7: Delete the excess edges from each state in H ′ so
that each state has exactly 2p output edges. The remaining
2p edges are then tagged with p-blocks for each edge,
resulting in each edge having both a source word and a
codeword. This process results in obtaining a finite-state
encoder with rate p : q for the constrained system S.

It should be noted that the intelligent selection of the v-
consistent partition of the state in the state-splitting algorithm
and the intelligent allocation of the p-block input label on the
output edge of the 2p bar can reduce the complexity of the
encoder and decoder. It can be seen from the above steps that
this algorithm is applicable to all constrained systems with
deterministic representations.

B. Finite-State Encoder for Strong-(4,1)-Locally-Balanced
Constrained System S0

Following the above steps, we find a deterministic repre-
sentation of S0, which is depicted in Fig. 1 as the constraint
graph G.

Fig. 1: The deterministic constrained graph

According to the Perron-Frobenius theorem [17], the ca-
pacity of S0 can be determined. The adjacency matrix of

the constrained graph G is: AG =

(
0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

)
. After

calculation, the maximum eigenvalue is determined to be
λmax =

√
5+1
2 . Therefore, the capacity can be derived as

follows: C(S0) = log2(λmax) = log2(
√
5+1
2 ) = 0.6942.

When selecting values for p and q, it is common to prioritize
the minimization of both p and q while still satisfying the ca-
pacity limit given in (1), as this helps to reduce the complexity
of the system. Consider the case where p = 2 and q = 3 are
chosen and meet the conditions of (1). By following the steps
outlined above, the graph Gq = G3 can be constructed. The

adjacency matrix of G3 is given as: A3
G =

(
0 2 0 1
2 0 3 0
0 3 0 2
1 0 2 0

)
.

The graph G3 is illustrated in Fig. 2.

Fig. 2: G3

The condition that allows us to utilize Gq as a finite-state
encoder with rate p : q is that it has at least four outgoing
edges per state. This condition can be expressed in terms of
the adjacency matrix of Gq as the approximate eigenvector
inequality: Aqv ≥ 2pv, where the elements of vector v are
non-negative integers, and v is referred to as the (Aq

G, 2
p)-

approximate eigenvector. The Franaszek algorithm [16] is then
employed to find an (A3

G, 2
2)-approximate eigenvector v. The

algorithmic flow is described in Algorithm 1.

Algorithm 1 Franaszek algorithm
Require: ξ ∈ N+

Ensure: v
1: y ← ξ;
2: v ← 0;
3: while v ̸= y do
4: v ← y ;
5: y ← min{⌊ 1

n
Av⌋,v} ;

6: return v

By using this method, we get that the (A3
G, 2

2)-approximate
eigenvector is v = (1, 2, 2, 1) when ξ = 2. Since every term
of v is non-zero, states are not deleted, and H = G3. This
approximate eigenvector is utilized to guide the state-splitting
process. The vector v acts as allocation weights, where vi

2023 IEEE Global Communications Conference: Communications Software and Multimedia

2859
Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 27,2024 at 14:47:59 UTC from IEEE Xplore.  Restrictions apply. 



represents the weight assigned to state i. As can be seen from
vector v, states 0 and 3 do not undergo splitting, while states 1
and 2 are split into two states, respectively. These subsequent
states are labeled as 1(1), 1(2) and 2(1), 2(2).
v-consistent partition of the state: Let Eu represent the set

of outgoing edges from state u. Each outgoing edge is assigned
a weight based on the weight assigned to its terminal state.
For instance, the weight of the outgoing edge “101” from state
1 is 1, which corresponds to its terminal state 0. According
to the weights corresponding to the approximate eigenvectors
v, we need to split Eu into vi disjoint sets, {E1

u, . . . , E
vi
u }.

The partitioning is performed based on the following criteria:∑
j∈E1

u
vj mod 22 = 0, vi − 2−2

∑
j∈E1

u
vj ≤ 0. The first

condition means that the sum of the weights of the edges in
each set of edges must be a multiple of 4. The second condition
dictates that the sum of the weights of the edges must not ex-
ceed 4 times the weight of the state, as designated by the vector
v. In the case of state 1, E1 = {101, 011, 010, 001, 100}, with
a weight of 2 and 5 outgoing edges, there are 15 possible ways
to partition the outgoing edges, yet only three of them satisfy
the aforementioned conditions. For demonstration purposes,
we arbitrarily choose one of these three valid partitions, such
as E1

1 = {101, 011, 010} and E2
1 = {001, 100}. In a similar

manner, the outgoing edges of state 2 are partitioned into
E1

2 = {101, 110} and E2
2 = {011, 010, 100}. According to

the established edge-change rule, a new graph H ′ will be
generated after the splitting of states 1 and 2.

The edges in graph H ′ that are not associated with state
splitting are inherited from graph G3. In the event that state u
is partitioned into two states, u(1) and u(2), we will examine
the two distinct scenarios regarding the edges involved in the
state splitting.

• Case 1: Consider an edge e in the graph G3 that starts at
state u′ ̸= u and ends at state u. This edge is duplicated
in G3 and creates two new edges: e(1) from u′ to u(1)

and e(2) from u′ to u(2).
• Case 2: Consider an edge e in the graph G3 that starts at

state u and ends at state u′. Assuming that edge e is part
of set Ei

u in the partition Eu, the graph H ′ will have a
corresponding edge from state u(i) to state u′.

Additionally, the labels assigned to the edges are derived
directly from the labels present in G3. The resulting graph,
represented by H ′, is visualized in Fig. 3.

Each state in H ′ has at least 22 outgoing edges. To satisfy
the requirement of having only 4 outgoing edges per state, the
excess edges are randomly removed. For instance, the edge
labeled “000” is removed from state 0, and the edge labeled
“110” is removed from state 3. The 2-block source word is
assigned to the four remaining outgoing edges as input tags,
resulting in a finite-state encoder ϵ with a rate 2:3 for S0, as
depicted in Fig. 4.

We will use the following example to demonstrate the
coding process. The encoder returns a status sequence when
generating a code word sequence.

Example: Assume that the input binary source code is:
x1 = 011110001111 (In the decoding example, it is shown

Fig. 3: H ′, a new labeled state transition graph of G3 obtained
by v-consistent partition of the state

Fig. 4: A finite-state encoder ϵ with a rate 2:3 for S0

that the two-bit suffix "11" of x1 is a meaningless block of
bits attached in order to decode all source sequences smoothly,
while "0111100011" is the actual binary source sequence to
be encoded.). Select the initial state u0 = 0 of encoder ϵ.
According to Fig. 4, the binary sequences are encoded in
2-bit increments from left to right. From state 0, the edge
corresponding to the 2-block input label “01” is transferred
to the state 1(1), and the output 3-block is labeled “010”.
Next, starting from the state 1(1), the 2-block input label “11”
corresponds to the state 2(2), and the output 3-block is labeled
“001”. Repeat this process until the source code is complete.
In the end, we get the codeword x1

1 = 010001110011001101.
It can be verified that this binary codeword satisfies the
strong-(4,1)-locally-balanced constraint. Encoder to return to
the state sequence is 0, 1(1), 2(2), 1(2), 0, 1(2), 0. Then take any
length of 18 binary source word y1 = 010000011010110010,
through Table I, the corresponding quaternary codeword is
σ = AGAAACCGTAGCTTCCTC. It satisfies the strong-
(4,1)-locally-GC-balanced constraint.

IV. DECODER

Theorem 1 reveals that the encoder for S, obtained through
the state-splitting algorithm discussed above, requires the uti-
lization of a state-dependent decoder. It accepts the q codeword
as input and generates a user bit block of length p based on
the internal state. This decoder is used to decode sequences
that are encoded to satisfy the constraints, and is part of a
complete decoding scheme. Here is how it is decoded.

Decoding procedure:
• Initialize the decoder’s initial state with the encoder’s

initial state u0.

2023 IEEE Global Communications Conference: Communications Software and Multimedia

2860
Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 27,2024 at 14:47:59 UTC from IEEE Xplore.  Restrictions apply. 



• If the current state is ui, the current codeword to be de-
coded and a′ future codewords together form a sequence
of a′ + 1 blocks (q-block) as the input sequence for the
decoder.

• Repeat the second step as long as there are codewords
undecoded.

Due to space constraints, see [12] for a detailed explanation.
The variable a′ in the above decoding step is the FLA of the
encoder. Since the graph G is deterministic, its FLA a, is equal
to 0. This property is preserved even after the application of
powers, meaning the FLA of G3 is also 0. According to the
theory of the state-splitting algorithm, after state-splitting, the
FLA increases by 1, resulting in an FLA of a′ equal to 1. For
any path, the initial state and the first two 3-bit output labels
uniquely determine the initial edge, allowing the encoder to
be decoded with a delay equal to one block. To overcome this
limitation in practice, it is recommended to attach a p-block
“11” to the end of the source sequence. This decoder turns the
encoder upside down when applied to a valid code sequence,
effectively tracing the sequence of states.

Example: Assume that the valid binary sequence in the
above example is x′

1 = 0111100011 of length 10, and “11”
is in order to successfully decode the additional meaning-
less string. We decode the above codeword σ. The con-
version between binary and quaternary results in two bi-
nary sequences，x1

1 = 010001110011001101 and y1 =
010000011010110010, where y1 is source word， but x1

1

also needs to be decoded. The decoder starts in state 0 and
the input tag is determined by the combination of the current
codeword “010” and a future codeword “001”. As a result,
the decoder will decode the input tag “01”. The decoder then
transitions to state 1(1). By using “001” and “110”, the input
tag is confirmed as “00”. Keep following this step to decode,
and finally, according to the state sequence output by the
encoder, the next state is state 0. Then by “001” and the
next code word “101” decoded to get a two-bit block “11”.
The corresponding source sequence is x′

1 = 0111100011.
Comparing x′

111 = 011110001111 to the sequence x1 in the
example above shows that the decoding is correct.

The use of the state-dependent algorithm in decoding pro-
vides a straightforward and user-friendly approach. However,
it is imperative to consider that a state-dependent decoder is
susceptible to substantial error propagation when transmitting
over noisy channels, as there is no guarantee that the decoder
will accurately re-establish the encoder’s state. To mitigate this
issue, further investigation into the potential of using the slider
decoding method as a solution is advisable.

V. PERFORMANCE ANALYSIS

A. Baselines

To gain insight into the proposed approach, the following
encoding schemes are listed below along with ours:

1) Construction 1 [10]: This encoder employs a one-to-
one mapping table of RDS-words and Dyck paths. It
encodes each block of size p by analyzing the current

RDS word and selecting the corresponding Dyck path
from the appropriate table to obtain the codewords.

2) Construction 2 [10]: The encoder of Construction 2
uses finite state transition diagrams and RDS words.

3) Our encoder ϵ: We use the state-splitting algorithm to
generate a finite state transition graph, which serves as
our encoder ϵ.

B. Comparison of Codebook Sizes

A codebook refers to the set of distinct codewords generated
by an encoder starting from its initial state and ending at the
same initial state, after reading 3-block output labels across all
possible path lengths. For instance, let us consider the encoder
ϵ with an initial state of 0. The codebook of this encoder
encompasses all possible paths that initiate and terminate at
state 0, while encompassing the number of unique codewords
that arise from the reading of 3-block output labels.

We compare the codebook size of our encoder ϵ with the
codebook size of Construction 2. Let N1(0, n) denote the
number of paths in ϵ that start and end at state 0, with length n.
Similarly, Fn

1 (0) represents the number of distinct codewords
of length n in ϵ that start and end at state 0. For Construction
2, we use N2(0

+, n) to denote the number of distinct paths
that start and end at state 0+, with length n, and Fn

2 (0
+)

to represent the number of distinct codewords of length n
that start and end at state 0+. The calculation results are
shown in Table II, where n represents the path length, and
the corresponding codeword length is 3n.

TABLE II: Comparison of codebook sizes. The best results
are highlighted in bold.

No. paths/codewords
Path length n 1 2 3 4 5 6 7 8 . . .

N1(0, n) 0 1 0 6 0 30 0 150 . . .
Fn

1 (0) 0 4 0 44 0 540 0 6114 . . .
N2(0+, n) 0 1 0 2 0 8 0 36 . . .
Fn

2 (0+) 0 9 0 21 0 105 0 963 . . .

It can be found that the paths obtained by both encoders
do not contain paths of odd length. So compare the number
of paths with even length. Except for the number of paths
of length 2 and the number of codewords of length 6 that
are smaller than those of Construction 2, the number of paths
and the number of codewords are all larger than those of the
encoder of Construction 2. With the increase of n, the number
of codewords obtained from n = 4 keeps increasing, and the
growth rate of the number of codewords obtained is 1000%,
1127% and 1032%, respectively. They are larger than the
corresponding growth rates of 130%, 400%, and 817% for the
number of codewords obtained by the encoder of Construction
2. Moreover, the sum of the number of codewords for ϵ from
1 to 8 of n gives the number of codewords as 6702, and the
number of codewords obtained by the encoder of Construction
2 is 1098. Thus far, the encoder ϵ gets 6.1 times as many
codewords as the encoder of Construction 2. It can be seen
from the obtained encoder state transition diagram that the
output edge of the state of encoder ϵ is more dispersed than
that of the encoder of Construction 2.

2023 IEEE Global Communications Conference: Communications Software and Multimedia

2861
Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 27,2024 at 14:47:59 UTC from IEEE Xplore.  Restrictions apply. 



Therefore, it can be inferred that the encoder ϵ can obtain
more different codewords of the same length that satisfy the
restriction. That is, the codebook obtained by the encoder ϵ is
larger than that obtained by the encoder of Construction 2.

C. Comparison of Information Rates

Because the cost of synthesizing DNA is very high, codes
should be designed so that nucleotides carry as much informa-
tion as possible. The information rate is the number of Bits
(Bits Per Base, BPB) carried by each base, in bits/nt. The
higher the BPB, the better the coding scheme.

In our encoding scheme, the encoder ϵ converts a bi-
nary sequence of 2n bits (where a valid binary sequence
length is only 2n − 2) into a binary sequence of 3n bits
satisfying the strong-(4,1)-locally-balanced constraint. Then,
through the conversion of binary and quaternary in Table I,
a DNA sequence consisting of 3n bases was obtained by
combining with any binary sequence with a length of 3n.
Therefore, it is defined that the BPB of this encoding scheme
is R = 2n−2+3n

3n → 1.667bits/nt, n → ∞. The encoder of
Construction 1 encodes any binary information of length sn
into a binary sequence of length mn satisfying the strong-
(4,1)-locally-balanced constraint (s : m is the encoding rate
of the encoder).

Through Table I, combined with any binary sequence with a
length of m∗n, a DNA sequence consisting of mn bases can be
obtained. The BPB of this encoding scheme is R1 = s∗n+m∗n

mn .
The calculation results that meet the coding conditions are
summarized in the table [10]. It can be found that whether
it is s = 2,m = 4 or s = 15,m = 23, their obtained rates
are less than or equal to 0.667. So we know the BPB of the
encoder of Construction 1 is R1 ≤ 1.667bits/nt. If the later
conditions are ripe, the complexity and efficiency of the coding
scheme may be simulated.

D. Comparison of Code Table Sizes

A comparison is made with the encoding table required for
the encoder of the latest research scheme [10] Construction
1. In order to make the encoder rate of Construction 1 reach
0.667 and the BPB of the encoding scheme reach 1.667, the
input block length should be 12 and the output block length
18. Then the encoding table would need to store 212 = 4096
items, which is quite impractical. Moreover, the size of the
encoding table increases with the length of the input sequence.
Our encoder ϵ requires only a table of 24 entries to complete
the encoding, which is two orders of magnitude smaller than
the encoder required for Construction 1. And the size of the
encoding table does not increase with the increase of the input
sequence length.

VI. CONCLUSION

In this paper, we propose encoding and decoding schemes
for DNA storage systems that satisfy both 3-RLL and strong-
(4,1)-locally-GC-balanced constraints. A finite state encoder ϵ
with an encoding rate of 2:3 is designed to satisfy the strong-
(4,1)-locally-balanced constrained system by state-splitting

algorithm. According to incomplete statistics, the codebook of
encoder ϵ is more than 6 times the codebook of existing en-
coders, which can represent more codewords satisfying strong-
(4,1)-locally-balanced constraint. The encoding information
rate is greater than that of the existing encoding scheme, and
the encoding table used is two orders of magnitude smaller
than that of the existing scheme. The state-dependent decoding
algorithm is used in the decoding process. The algorithm uses
the finite state transition graph obtained by state-splitting to
reverse the decoding, which is simple and easy.

ACKNOWLEDGMENT

This work is supported by the National Key R&D Program
of China under Grant Number 2020YFA0712100 and the
National Natural Science Foundation of China under Grant
Number 62071327. Huaming Wu is the corresponding author.

REFERENCES

[1] M. G. Ross, C. Russ, M. Costello, A. Hollinger, N. J. Lennon,
R. Hegarty, C. Nusbaum, and D. B. Jaffe, “Characterizing and measuring
bias in sequence data,” Genome biology, vol. 14, no. 5, pp. 1–20, 2013.

[2] P. Yakovchuk, E. Protozanova, and M. D. Frank-Kamenetskii, “Base-
stacking and base-pairing contributions into thermal stability of the dna
double helix,” Nucleic acids research, vol. 34, no. 2, pp. 564–574, 2006.

[3] Y. Erlich and D. Zielinski, “Dna fountain enables a robust and efficient
storage architecture,” science, vol. 355, no. 6328, pp. 950–954, 2017.

[4] K. A. S. Immink and K. Cai, “Efficient balanced and maximum
homopolymer-run restricted block codes for DNA-based data storage,”
IEEE Communications Letters, vol. 23, no. 10, pp. 1676–1679, 2019.

[5] J. H. Weber, J. A. M. de Groot, and C. J. van Leeuwen, “On single-error-
detecting codes for DNA-based data storage,” IEEE Communications
Letters, vol. 25, no. 1, pp. 41–44, 2021.

[6] T. T. Nguyen, K. Cai, K. A. S. Immink, and H. M. Kiah, “Capacity-
approaching constrained codes with error correction for dna-based data
storage,” IEEE Transactions on Information Theory, vol. 67, no. 8, pp.
5602–5613, 2021.

[7] K. Cai, Y. M. Chee, R. Gabrys, H. M. Kiah, and T. T. Nguyen,
“Correcting a single indel/edit for dna-based data storage: Linear-
time encoders and order-optimality,” IEEE Transactions on Information
Theory, vol. 67, no. 6, pp. 3438–3451, 2021.

[8] Y. Benita, R. S. Oosting, M. C. Lok, M. J. Wise, and I. Humphery-
Smith, “Regionalized gc content of template dna as a predictor of pcr
success,” Nucleic acids research, vol. 31, no. 16, pp. e99–e99, 2003.

[9] R. Gabrys, H. M. Kiah, A. Vardy, E. Yaakobi, and Y. Zhang, “Locally
balanced constraints,” in 2020 IEEE International Symposium on Infor-
mation Theory (ISIT). IEEE, 2020, pp. 664–669.

[10] C. Wang, Z. Lu, Z. Lan, G. Ge, and Y. Zhang, “Coding schemes for
locally balanced constraints,” in 2022 IEEE International Symposium on
Information Theory (ISIT). IEEE Press, 2022, p. 1342–1347.

[11] K. Fan, H. Wu, and Z. Yan, “Constrained channel capacity for dna-based
data storage systems,” IEEE Communications Letters, vol. 27, no. 1, pp.
70–74, 2023.

[12] B. H. Marcus, R. M. Roth, and P. H. Siegel, “An introduction to coding
for constrained systems,” Lecture notes, 2001.

[13] B. H. Marcus, P. H. Siegel, and J. K. Wolf, “Finite-state modulation
codes for data storage,” IEEE Journal on selected areas in communica-
tions, vol. 10, no. 1, pp. 5–37, 1992.

[14] A. D. Weathers and J. K. Wolf, “A new rate 2/3 sliding block code
for the,” IEEE transactions on information theory, vol. 37, no. 3, pp.
908–913, 1991.

[15] R. Adler, D. Coppersmith, and M. Hassner, “Algorithms for sliding block
codes-an application of symbolic dynamics to information theory,” IEEE
Transactions on Information Theory, vol. 29, no. 1, pp. 5–22, 1983.

[16] P. A. Franaszek, “Construction of bounded delay codes for discrete
noiseless channels,” IBM Journal of Research and Development, vol. 26,
no. 4, pp. 506–514, 1982.

[17] E. Seneta, Non-negative matrices and Markov chains. Springer Science
& Business Media, 2006.

2023 IEEE Global Communications Conference: Communications Software and Multimedia

2862
Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on February 27,2024 at 14:47:59 UTC from IEEE Xplore.  Restrictions apply. 


