
LDRNet: Enabling Real-Time Document
Localization on Mobile Devices

Han Wu1, Holland Qian2, Huaming Wu3(B), and Aad van Moorsel4

1 Newcastle University, Newcastle upon Tyne, UK
han.wu@ncl.ac.uk

2 Tencent, Shenzhen, China
3 Tianjin University, Tianjin, China

whming@tju.edu.cn
4 University of Birmingham, Birmingham, UK

aad.vanmoorsel@ncl.ac.uk, a.vanmoorsel@bham.ac.uk

Abstract. Modern online services often require mobile devices to con-
vert paper-based information into its digital counterpart, e.g., passport,
ownership documents, etc. This process relies on Document Localization
(DL) technology to detect the outline of a document within a photo-
graph. In recent years, increased demand for real-time DL in live video
has emerged, especially in financial services. However, existing machine-
learning approaches to DL cannot be easily applied due to the large
size of the underlying models and the associated long inference time.
In this paper, we propose a lightweight DL model, LDRNet, to local-
ize documents in real-time video captured on mobile devices. On the
basis of a lightweight backbone neural network, we design three predic-
tion branches for LDRNet: (1) corner points prediction; (2) line borders
prediction and (3) document classification. To improve the accuracy, we
design novel supplementary targets, the equal-division points, and use
a new loss function named Line Loss. We compare the performance of
LDRNet with other popular approaches on localization for general doc-
uments in a number of datasets. The experimental results show that
LDRNet takes significantly less inference time, while still achieving com-
parable accuracy.
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1 Introduction

The integration of paper documents and digital information is an essential pro-
cedure in many online services today. An increasing number of users start to
use mobile devices (i.e., smartphones) to take photos of the paper documents.
The preliminary step to extract digital information from those photos is Doc-
ument Localization (DL) [3]. DL is a machine learning technology that focuses
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on detecting and segmenting document outlines within image frames. The input
is usually a digital photo containing the paper document and the outputs are
the predicted quadrilateral (i.e., four-sided polygon) coordinates of the docu-
ment outline. Accurate DL is crucial for the follow-up process such as Optical
Character Recognition (OCR).

In most online services that use DL, photos captured by mobile devices are
uploaded to servers for DL processing. Recently, some service providers, for safety
purposes, have started to demand users to capture a video of the paper document
instead of a static photo [7]. This is because a video is naturally more difficult
to counterfeit than a static photo. One concrete example is illustrated in Fig. 1,
where the user uses its smartphone to record a video of the identity document.
During the video recording, the mobile application (developed by the service
provider) requests the user to move the document properly to fit the guidance
displayed on the screen (the white borders in the figures). In the previous design
using a static photo, an impostor can cheat the system with a scanned copy of
the document. However, in this scheme with a live video it needs to hold the
actual document to finish the process. Furthermore, the laser security marks
on identity documents change dynamically in the recorded video depending on
the light environment and camera angle, which provides more comprehensive
materials for the verification process.

Fig. 1. An example of document localization based on video.

The premise to achieve the above video-based process is that the document
outline and trajectory can be tracked in real-time during the video recording. A
video is actually a series of images, called frames, that are captured at certain
frequency, e.g., 30 Frames Per Second (FPS). Thus DL performed on a video can
be understood as a series of DL tasks, where each task is performed on one frame.
Therefore, real-time DL on a live video means the DL process on each frame
needs to be finished within the time interval between two consecutive frames
(e.g., 33.3 ms for a 30 FPS video). However, existing DL approaches cannot
fulfill these real-time demands due to the long inference time (e.g., over 100 ms
even on a PC according to [10]). Furthermore, state-of-the-art DL models are
complex and require large storage space, which potentially exhausts the capacity
of mobile devices [3,12].

To break through this bottleneck we propose a novel document localiza-
tion neural network, LDRNet, to Localize Document in Real-time. Previous
works dive into the design of the new network architectures to improve the accu-
racy, which is time-consuming and diminishes the efficiency. We start from a
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lightweight Convolutional Neural Network (CNN), MobilenetV2 [15], which is a
fundamental feature extractor especially designed for devices with limited mem-
ory and resources. Unlike feature pyramid networks [14], we design a feature
fusion module that does not enlarge the model size. Existing DL approaches
require postprocessing after prediction, which is cumbersome and inefficient.
Therefore we design our prediction target to be the coordinates of the quadri-
lateral corners instead of the contour of the document thus avoiding postpro-
cessing. The orientation of the document also can be obtained from the order of
the output coordinates. We propose a novel loss function, Line Loss, to improve
the precision. By adding equal-division points between contiguous corner points,
LDRNet achieves better formalization of the borderlines.

In summary, the main contributions of this paper include:

– We present LDRNet, a document localization approach with significantly
lower computational cost than the state-of-the-art methods. LDRNet paves
the way for real-time DL on a live video recorded by mobile devices.

– We design the Line Loss function and equal-division points feature for LDR-
Net to guarantee the localization accuracy without undermining its efficiency
or enlarging its model size.

– In the experiments, we compare the performance of LDRNet with other pop-
ular DL approaches on localizing general document datasets. The results indi-
cate that LDRNet achieves comparable accuracy while outperforming other
approaches in terms of efficiency.

2 Related Work

There exist three main kinds of approaches for DL: Mathematical Morphology-
based Methods, Segmentation-based Methods and Keypoint-like Methods.
Mathematical morphology-based methods are based on mathematical morphol-
ogy [2]. There are some other hand-designed features used in mathematical
morphology-based methods, like the tree-based representation [4]. Along with
the popularity of CNN in this field, many CNN-based methods have emerged.
Segmentation-based methods regard DL as the segmentation [16] task using the
CNN to extract the features. Same as segmentation-based methods, using the
features extracted by the CNN, keypoint-like methods [10] predict the four cor-
ners of the document directly, considering DL as the keypoint detection task.

Mathematical Morphology-based Methods inherit the ideas which detect
the contour of the documents using traditional image processing methods, image
gradients calculations [2], Canny border detectors, Line Segment detectors [17]
and image contours detectors, etc. Although there are many kinds of differ-
ent mathematical morphology-based approaches, they are all developed on the
basis of the technologies mentioned above, which makes the performance unsta-
ble when the datasets change. The accuracy of these methods heavily depends
on the environmental conditions in the image. For instance, if the color of the
background and the document are difficult to distinguish, or if the image is
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captured with insufficient lighting, the borders of the document may not be
detected. Another weakness of these mathematical morphology-based methods
is that they output the four borders or four points disorderly so a necessary step
for determining the orientation of the document is the postprocessing, which
leads to extra cost.

Segmentation-based Methods regard DL as a segmentation task. Segmen-
tation adapts dense predictions, outputs the heat map for every pixel on the
image, and uses classification labels to determine whether the pixels belong to
the object or the background. Then by grouping the pixels with the same labels,
the document is segmented. By adopting the CNNs to extract the image feature,
the segmentors get rid of the impacts from the complex environment conditions.
Since every segmentor is a data-driven deep-learning model, it can reach high
precision as long as enough data are fed. U-Net [14] and DeepLab [5] are the
popular segmentors. However, the large model size and long inference time make
these segmentors incompetent for real-time DL. Similar to the mathematical
morphology-based methods, postprocessing is inevitable to find the orientation
of the document content.

Keypoint-like Methods output the coordinates of the quadrilateral corner
points of the document directly. Recent keypoint detection networks do not
regress the coordinates of the key points, instead, they produce dense predic-
tions like segmentation networks do. [13] predict heat maps of the keypoints and
offsets. [10] predict the points in a sparse-prediction way to locate the four points
directly. To improve the precision, it uses CNN recursively to fix the coordinates
errors. These key-point models indeed get high precision, but also have the same
weakness which segmentation-based methods have, the large model size and the
long inference time.

3 Context and Methodology

3.1 Problems and Challenges

In previous online services, DL task is performed on the server while the mobile
device only captures and uploads the photo of the document. This structure can
not fulfil the real-time DL task on a video due to the transmission cost. Therefore
we aim to embedDLmodule onmobile devices in our work. Tracking the document
outline and trajectory in a live video means the DL process for each frame should
be completed within the frame interval (33.3 ms for a 30 FPS video). This calls for
strict demands on both the accuracy and speed of DL model.

Specifically, the challenges of this study come from four facets: (i) The compu-
tational resource on mobile devices is very limited while existing DL approaches
require large memory and long inference time. (ii) In addition to the contour of
the document, the direction of the content should also be detected to determine
the trajectory of the document in a video. (iii) It is complex and time-consuming
to calculate the precise angle between the document and the camera to obtain
the trajectory. (iv) During the video recording, the corner points of the document
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may be occluded by the user’s fingers, therefore the ability to predict occluded
corner points is necessary.

3.2 Task Analysis

To address the challenges listed above, we present a novel neural network model,
LDRNet, to Localize Documents in Real-time. Instead of calculating the precise
angle between the document and camera, we calculate the distance between each
target corner point and the corresponding localized point to track the trajectory of
the document. This provides considerable accuracy while consuming less compu-
tational resources on mobile devices. As summarized by the following equation,
(xi

doc, y
i
doc) is the coordinate of the ith corner point of the localized document,

while (xi
target, y

i
target) represents the coordinate of the ith target corner point.

Then we sum the Euclidean distances of the four sets of corresponding points.

Distance =
4∑

i=1

√
(xi

doc − xi
target)2 + (yidoc − yitarget)2. (1)

The orientation of the document can be simply inferred from the order of
the corner points. Thus our goal is to predict the four quadrilateral coordinates
of the document in counter-clockwise order. The order of the four quadrilateral
points is determined by the contents of the document instead of the direction
that the document is placed. Throughout this paper, we use N to denote the
total number of points we predict for each document. In addition to the four
corner points, we predict (N − 4)/4 equal-division points on each border of the
document. These extra N − 4 points are used to refine the localization of the
document. Moreover, we add a classification head to our network architecture
for classifying the document in the input images. Depending on the specific DL
task, this classification head is adjustable. The minimum number of classes is two,
which represents whether the image contains a document or not, respectively.

3.3 Network Architecture

Fully Convolutional Feature Extractor. As we aim to run DL on mobile
devices, we choose a lightweight backbone network, MobilenetV2 [15]. It applies
both depth-wise convolution and point-wise convolution operations to achieve
faster and lighter extraction. As illustrated in Fig. 2, the last output feature
map from the backbone is Fb ∈ R

H
32×W

32 ×1280 with H denoting the height of the
input image and W denoting the width. To improve the accuracy, we extract
five feature maps with different spatial resolutions from the backbone.

Feature Fusion Module. The low and high-level feature maps are fused
together by the feature fusion module. The first step is feature compression,
where we use global average pooling to downsample the feature maps, and resize
them to the same size. Then we add the five feature maps directly instead of the
top-down architecture used in [11].
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Fig. 2. The network architecture of LDRNet.

Network Output Branches. The outputs of the LDRNet consist of three
branches. The first branch is the corner points branch. It outputs in the form
of a 4 × 2 vector, four corners’ coordinates (x, y) in order. The second branch
is the borders branch, it outputs in the form of an (N − 4) × 2 vector, where
(N − 4) is the number of points to be predicted on the four borders. Each
border has (N − 4)/4 points so there are N − 4 coordinates of points in total on
the second branch. The third branch outputs the classification label, denoting
the type of document in the input image. Unless the size of the classification
output is specified, the classification output contains two elements, one denoting
the likelihood of having documents in the image, the other one denoting the
likelihood that no document is detected in the input image.

Line Loss. Standard Deep Convolutional Neural Network architectures are
inherently poor at precise localization and segmentation tasks [9]. This is because
the last convolutional layer only contains high-level features of the whole image.
While these features are extremely useful for classification and bounding box
detection, they lack the information for pixel-level segmentation [10]. In order
to improve the precision of DL, we combine the two branches of the LDRNet’s
outputs (corner points branch and borders branch), we predict the corners in a
line-prediction fashion. In addition to the four corner points, we also predict the
equal-division points on the lines thus the labels can be generated automatically
and no more human effort is required. The proposed Line Loss is formulated
as Lline(p) = βLSim(p) + γLDis(p), which is a weighted sum of the similarity
loss LSim and the distance loss LDis. The similarity loss is used to restrict the
points from the same border along an identical line, while the distance loss is
used to guarantee that along this line the points are equally divided.

To guarantee that the predicted points from each border are on a straight
line, we use the similarity loss LSim to calculate the similarity of two vectors of
the three successive points on the line. The details of LSim are shown in Eq. (2),
(3), (4).
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LSim(p) = [
∑

k∈l,r,t,b

N
4 −3∑

i=0

sim(p[k]i, p[k]i+1, p[k]i+2)]/(N − 4), (2)

sim(p[k]i, p[k]i+1, p[k]i+2) = (
−−→
p[k]i+1

i ·
−−→
p[k]i+2

i+1)/(
∣∣∣
−−→
p[k]i+1

i

∣∣∣ ×
∣∣∣
−−→
p[k]i+2

i+1

∣∣∣), (3)
−−→
p[k]i+1

i =
(
p[k]xi − p[k]xi+1, p[k]

y
i − p[k]yi+1

)
. (4)

where p[l], p[r], p[t], p[b] denote the points on the left border, on the right border,
on the top border and on the bottom border, respectively.

The distance loss is used to constrain the points we predict to be equal-
division points. We use Eqs. (5) and (6) to make sure the successive points of
each border have the same distance in both x-direction and y-direction.

LDis(p) = [
∑

k∈l,r,t,d

N
4 −1∑

i=0

dist(p[k]i, p[k]i+1, p[k]i+2)]/(N − 4), (5)

dist(p[k]i, p[k]i+1, p[k]i+2) =
∣∣∣∣p[k]xi − p[k]xi+1

∣∣ −
∣∣p[k]xi+1 − p[k]xi+2

∣∣∣∣+
∣∣∣∣p[k]yi − p[k]yi+1

∣∣ −
∣∣p[k]yi+1 − p[k]yi+2

∣∣∣∣ . (6)

Furthermore, we use L2 loss for the regression and cross-entropy for the
classification. The regression loss LReg is an L2 loss between the predicted
points p and the ground truth points g, which can be formulated as:

LReg(p, g) =
1

N − 4

N∑

i=0

∑

j∈x,y

2
√

(ĝji − pji )2, (ĝx = gx/W, ĝy = gy/H). (7)

where (gxi , g
y
i ) denotes the i-th ground truth point of the document. Our regres-

sion target is ĝ, which is the normalization of g by image width (W ) in x-
coordinate and image height (H) in y-coordinate.

The classification loss LCls is soft-max loss over multiple classes confi-
dences (x), which is calculated as:

LCls(x, c) =
Ncls∑

i=0

−ci log x̂i, (x̂i =
exp(xi)∑
j exp(xj)

). (8)

where ci ∈ {0, 1} is an indicator denoting whether the image contains the i-th
category document and Ncls is the number of the total document categories.

Finally, we define the total loss as the weighted sum of the regression loss
LReg, the classification loss LCls and the Line Loss LLine:

L(x, c, p, g) = LReg(p, g) + δLCls(x, c) + Lline(p). (9)

where the weights δ, β and γ are chosen depending on the experimental results,
and the values normally range from 0 to 1.
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4 Experimental Evaluation

For the comparison experiment, we use the dataset from ‘ICDAR 2015 Smart-
Doc Challenge 1’ [3]. Training and inference setting details are listed in this
section. The experimental results are compared to the previous work to show
the advantages of our approach. Then we use the ablation study to analyze the
contribution of each component of our model. Finally, we test our model on the
MIDV-2019 dataset [1] to highlight the characteristic of our model, the ability
to predict occluded corner points.

4.1 Training and Inference Details

Unless specified, we use MobilenetV2 with the width multiplier α equal to 0.35
(used to control the width of the network) as our backbone network. We set the
number of regression points (N) to 100. Our network is trained with RMSprop
optimizer, which uses only one set of hyperparameters (rho is set to 0.9, momen-
tum is set to 0, and epsilon is set to 1e−7). We trained our networks for 1000
epochs, with an initial learning rate of 0.001 and a batch size of 128 images. The
learning rate is reduced in a piecewise constant decay way, and is set as 0.0001,
0.00005, 0.00001 at the 250th, 700th and 850 epochs, respectively. Our backbone
network weights are initialized with the weights pretrained on ImageNet [6]. We
use the Xavier initializer [8] as the final dense layer. The input images are resized
to which both the width and the height are 224 pixels. Regarding the Line Loss
function parameters, δ is set to 0.32, β and γ are configured as 0.0032.

For the inference, we first forward the input image through the network to
obtain the quadrilateral points’ coordinates of the documents and the predicted
class. Then we multiply the quadrilateral points’ coordinates by the width (W )
and height (H) of the input image. Note that we only use four quadrilateral
points’ coordinates instead of the predicted N coordinates, because we found
little difference between their performance. Thus we can remove the weights of
the final dense layer that are not used for the four quadrilateral coordinates. The
size of the input image is the same as we used for training.

4.2 Comparison of Accuracy

To evaluate the accuracy of our DL model, we use the Jaccard Index (JI), which is
also adopted in others’ work [3,10,12]. First we remove the perspective transform
of the ground-truth G and the predicted results S, then obtain the corrected
quadrilaterals S

′
and G

′
. For each frame f , the JI is computed as JI(f) =

area(G
′ ∩ S

′
)/area(G

′ ∪ S
′
). The value of JI range from 0 to 1 and higher JI

indicates higher accuracy.
As shown in Table 1, the images in the dataset can be divided into five cat-

egories according to different backgrounds. Only backgound05 is complex, with
strong occlusions. We compare the accuracy of LDRNet to seven previous DL
models. It is observed that our LDRNet outperforms the previous works in terms
of background02 and background05 (results in bold). For other backgrounds,
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Table 1. Accuracy compared with previous works. The results are listed from top to
bottom in the descending order of overall JI.

Method Background Overall

01 02 03 04 05

HU-PageScan [12] / / / / / 0.9923

LDRNet-1.4 (ours) 0.9877 0.9838 0.9862 0.9802 0.9858 0.9849

SEECS-NUST-2 [10] 0.9832 0.9724 0.9830 0.9695 0.9478 0.9743

LRDE [3] 0.9869 0.9775 0.9889 0.9837 0.8613 0.9716

SmartEngines [3] 0.9885 0.9833 0.9897 0.9785 0.6884 0.9548

NetEase [3] 0.9624 0.9552 0.9621 0.9511 0.2218 0.8820

RPPDI-UPE [3] 0.8274 0.9104 0.9697 0.3649 0.2163 0.7408

SEECS-NUST [3] 0.8875 0.8264 0.7832 0.7811 0.0113 0.7393

LDRNet reaches comparable performance with the best ones. The overall JI
of LDRNet exceeds the other methods except for HU-PageScan in [12], which
does not provide the results of background01 to background05. However, HU-
PageScan uses 8,873,889 trainable parameters which is over 21 times the number
of parameters in our LDRNet-0.35 (denotes LDRNet with α = 0.35). Therefore
HU-PageScan requires significant memory and computing time thus can not
fulfill the real-time demand. This will be introduced in the next section. Addi-
tionally, since HU-PageScan is segmentation-based, it only predicts the contour
of the document. Thus the orientation of the document is unknown and requires
follow-up process to calculate the document trajectory.

4.3 Comparison of Inference Time

Fig. 3. The inference time comparison between LDRNet and the previous DL methods
on the ‘ICDAR 2015 SmartDoc Challenge 1’ dataset. The horizontal axis is log scaled.

Our Network is tested on iPhone11 using TNN engine. HU-PageScan is tested
on a PC equipped with Intel Core i7 8700 processor, 8 GB RAM, and 6 GB
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NVIDIA GTX 1060 [12]. In Fig. 3, the vertical axis is the JI of the model while
the horizontal axis is the log scaled inference time. We illustrate the result of
four settings of LDRNet, all using MobilenetV2 but with different values of α
(0.1, 0.35, 0.75, 1.3, 1.4). We observe that higher α leads to higher JI but longer
inference time. The JI of HU-PageScan (run on a PC) is 0.0074 (absolute value)
higher than LDRNet-1.4 (run on smartphone), whereas the inference time is
about 4x longer. The short inference time of LDRNet meets the demand for
localizing documents in the image frames in a live video (usually photographed
at 30 FPS, represented by the dashed vertical line in Fig. 3). For general usage,
LDRNet-1.4 is the best option and its model size is only 10 MB.

4.4 Ablation Study

Fig. 4. The JI of LDRNet with different α and with or without feature fusion module.
The number of regression points is set to 100. All are trained with Line Loss.

In our experiments using LDRNet, we construct the feature fusion module
using average pooling and add operation. To evaluate the efficiency of this fea-
ture fusion module, we run experiments with this module enabled and disabled.
Figure 4 compares the JI of these two scenarios with α ranging from 0.1 to 1.4.
We can observe that the feature fusion-enabled models outperform those without
feature fusion. Since the model complexity grows as we increase α, it is observed
that the efficiency of our feature fusion module drops as the model becomes more
complex. Thus in the cases that α > 1.0, feature fusion is not recommended.

We also evaluate the efficiency of the Line Loss by comparing the JI of models
with and without Line Loss. For LDRNet-0.35, enabling Line Loss improves the
JI from 0.9643 to 0.9776.

4.5 Predictions of the Occluded Points

Benefiting from the task analysis and the network architecture, LDRNet is able
to predict the occluded points, including the points occluded by other objects
and the points out of the input image. This characteristic is crucial for video
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Fig. 5. Examples of occluded points prediction. Each case contains three images,
namely, the input image (top left), the predicted corners on the input image (top right),
the localized document after removing the perspective transformation (bottom).

recording since the document is usually occluded by the user’s fingers during the
interaction. For evaluation we test our model on the MIDV-2019 dataset, which
contains video clips of identity documents captured by smartphones in low light
conditions and with higher projective distortions [1]. As depicted in Fig. 5(b),
LDRNet can predict the corner occluded by fingers. Even if more than half of
the passport is out of the image, as illustrated in Fig. 5(d), our LDRNet predicts
the occluded corners correctly.

5 Conclusion

We design LDRNet, a real-time document localization model for mobile devices.
LDRNet extracts the image features using neural networks and predicts the coor-
dinates of quadrilateral points directly. We propose the novel loss function, Line
Loss, and design the equal-division points feature to guarantee its efficiency and
accuracy. The most practical scenario of LDRNet is tracking the trajectory of
document in a live video captured on mobile devices. The experimental results
show that LDRNet has lower inference time than other methods, while achiev-
ing comparable accuracy. Currently, LDRNet is being deployed in the identity
verification system of a company that serves about 3.8 million customers. The
code is available at: https://github.com/niuwagege/LDRNet. In future work, we
will finetune the hyper-parameters more precisely, use low-level and high-level
image features fusions like FPN, or a larger backbone, etc.
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