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ABSTRACT Exploring and understanding the temporal structure of dynamic networks attract extensive
attentions over the past few years. Most of these current research focuses on temporal community detection,
evolution analysis or link prediction from a mission-oriented perspective. In fact, these three tasks should
be not isolated but mutually reinforcing. Transforming these three tasks into a unified framework, it is
crucial to extract the evolution pattern, which helps to understand the time-varying characteristics of
temporal structure in essence. In addition, to the best of our knowledge, there is no work focusing on
modeling and uncovering the local and global evolution pattern hidden in temporal community structure
simultaneously. In this paper, we propose a novel framework based on Orthogonal Nonnegative Matrix
Factorization to Explore the Evolution Pattern (ONMF-EEP) for analyzing and predicting the time-varying
structures in dynamic networks from local and global perspectives. The nature of this framework assumes
that community structures are subject to a local evolution pattern (LEP) at each snapshot, and these LEPs
are from a common global evolution pattern (GEP). The framework can synchronously detect temporal
community structure, extract evolution pattern, and predict structure including communities and future
snapshot links. The extensive experiments on real-world networks and artificial networks demonstrate that
our proposed framework is highly effective on the tasks of dynamic network analysis.

INDEX TERMS Orthogonal Non-negative matrix factorization (ONMF), Temporal community detection,
Evolutionary pattern extraction, Structure prediction.

I. INTRODUCTION

DYNAMIC networks [1] are usually used to model and
explore temporal complex systems effectively in the

real world, where the structure and the relationships between
entities are time-varying. In recent years, dynamic network
analysis [2] is gaining popularity rapidly in a wide variety of
application domains, such as cyber-physical systems, social
networks, biological networks and communication networks.
It poses a great challenge for temporal structure analysis
in dynamic networks as which are elusive and complicated.
Usually, a dynamic network is represented as a series of snap-
shots or slices. For exploring and understanding the dynamic
networks, researchers mainly focus on three problems: de-
tecting what community structures are at different snapshots,
analyzing how communities evolve over time, and predicting
which links will appear or disappear in the near future. These
three problems correspond to three main research tasks, i.e.,

temporal community detection, evolution analysis and link
prediction in dynamic network analysis, respectively.

Firstly, the temporal community detection, which is differ-
ent from static community detection [3]–[5], could discover
time-varying meaningful structures and functions hidden in
dynamic networks. Current research methods can be divided
into two categories, i.e., two-step based approach and evolu-
tionary clustering based approach. A two-step strategy based
approach [6], which typically detects the community struc-
ture independently at each snapshot by using a method de-
signed for static networks, and then partially adjust. However,
dynamic networks usually evolve slowly and their commu-
nity structures of adjacent snapshots are similar. Therefore,
two-step based approach ignores the influence of historical
information on current community structures so that it is
sensitive to noise. For addressing this issue, the other type
of methods based on evolutionary clustering [7], [8] are

VOLUME XX, 2019 1



proposed to detect current community structure while con-
sidering previous snapshots. A detailed review of community
detection in dynamic networks is in [1], [2]. Unfortunately,
most of these methods do not capture evolution patterns of
communities, which helps to understand the time-varying
characteristics of temporal structure in essence.

Secondly, evolution analysis of community structure is
usually used for understanding the time-varying characteris-
tics and tracking the trend of temporal structure of complex
systems. For example, in a scientific collaboration network, a
node represents a researcher, a link represents a collaboration
relation between two nodes, and a community usually rep-
resents a group of researchers with a same research interest
respectively. In most cases, we not only need to know which
research field a researcher belongs to, but also the changing
trends in the future to follow the academic dynamic. Most
of these existing methods are based on heuristic approaches,
which first obtain the community structure of each snapshot
and then analyze their evolution between adjacent snapshots.
Some other existing approaches to model the dynamic evo-
lution from tracking network measures [9]. In addition, some
one would like to provide useful intuitions about the commu-
nity structure changes happening in the underlying network
by tracking the evolution [10]. However, these methods lack
a mechanism to model the evolution pattern for predicting
the future structure including community or link structure in
dynamic networks.

Thirdly, the task of link prediction in dynamic networks
is to predict near future snapshots according to the past
observed snapshots. In the early years, some snapshot col-
lapse based methods were proposed, which transform the
snapshots into a single collapsed network and then predict
the links [11]. These approaches usually have low accuracy
because they predict links solely based on the frequency
of links. Later, some methods improved the accuracy of
link prediction by considering the topological structure of
dynamic networks [12]. Recently, matrix decomposition was
introduced to discover low dimensional representations of
dynamic networks then dealing with the link prediction prob-
lem [13]. These algorithms tend to significantly outperform
the others. A few other methods were just unilaterally de-
signed for either predicting community structure or links
[14], [15] from a mission-oriented perspective.

In fact, these three problems, community detection, evolu-
tion analysis and link prediction are not isolated, but mutu-
ally reinforcing. The reason is that modularity and temporal
variability of dynamic networks always exist simultaneously.
In addition, community structures usually evolve slowly,
but their evolution (e.g., community structures changed dra-
matically) may be anomalous in some abnormal case (e.g.,
some major emergency broke out). However, most of the
existing methods cannot discover the abnormal evolution
of community structures hiding in dynamic networks as
the evolution extent is hard to measure. In this paper, we
propose a novel two-step framework based on Orthogonal
Nonnegative Matrix Factorization [16] to Extract Evolution

Pattern (ONMF-EEP) for exploring and predicting the time-
varying structure in dynamic networks from local and global
perspectives. In detail, we propose a hypothesis that commu-
nity structures are subject to a local evolution pattern (LEP)
at each snapshot respectively. At the same time, a common
global evolution pattern (GEP) is hidden in the underlying
network, which would be infinitely close to these LEPs
in normal case. Under this hypothesis, we design ONMF-
EEP as two steps: LEP extraction and GEP extraction. In
the first step, the proposed framework discovers temporal
community structure and detects the corresponding LEP with
ONMF based on the core idea of evolution clustering. In the
second step, to extract GEP, the framework maximizes the
shared information among LEPs by optimizing the distance
between the matrix representations of all the LEPs and the
GEP on Grassmann manifold. We demonstrate the superior
performance of our proposed algorithms over the baseline
methods on both artificial and real-world dynamic networks.
It is worthwhile to highlight several contributions of our
proposed framework ONMF-EEP as follows:
• To our best knowledge, we first extract evolution pattern

by modeling and uncovering the evolution characteris-
tics of dynamic networks from local and global perspec-
tives.

• We propose a novel unified framework ONMF-EEP,
which is easy to be extended, for exploring and un-
derstanding the temporal structure including community
detection, evolution analysis, and link structure predic-
tion.

• The extensive experimental results demonstrate that our
proposed method ONMF-EEP has good performance
for temporal community detection, and has effective
ability for evolution analysis and link prediction both
on real-world networks and artificial networks.

II. RELATED WORK
Dynamic networks analysis [1] is widely concerned in many
fields. Most of the current research about it mainly focus on
community detection [2], [17], evolutionary analysis [18],
[19], link prediction [13], [14], and anomaly detection [20],
[21]. Here, we give a general overview on evolutionary
analysis for dynamic network, which is the most related for
this work. The methods of evolutionary analysis for dynamic
network are mainly divided into three categories: heuristic
approaches [22], [23], machine learning based methods [24],
[25] and generative model based methods [10], [15], [27].

Heuristic approaches for evolutionary analysis explore
usually the community evolution based on some similar
criterions after detecting community structure at snapshots.
In the early day, Palla et al. [22] detect the temporal com-
munity structure based on clique percolation, and then un-
cover basic relationships characterizing community evolu-
tion. They define possible events in community evolution
including growth, contraction, merging, splitting, birth and
death. Later, Asur et al. [23] present a characterization of
critical behavioral patterns for temporally varying interaction
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FIGURE 1: Illustration of three main tasks in dynamic networks analysis.

networks based on the events in community evolution. This
type of approaches usually depend too much on defined rules
and have high computation complexity.

Machine learning based methods fro evolutionary analysis
tend to identify the features of the detected temporal commu-
nity structure based on feature learning method. Typically, Il-
han et al. [24] proposed a framework that community features
identification based on feature selection methods, and study
the evolutionary characteristic to predict the community evo-
lution. Liu et al. [25] use the existing Louvain method [26]
to detect temporal community structure in the bibliographic
coupling and co-citation networks, and then train a classifier
to predict the evolution of physics research. This type of
methods tend to ignore structural information of the historical
snapshots and lack of model interpretation.

Generative model-based methods for evolutionary analy-
sis, which is the most related with our proposed method,
model the generative mechanism of dynamic networks and
the evolution of temporal community structure. Differently
from the first two types of approaches, generative model-
based methods tend to model the community structure and
the evolution characteristic hiding in dynamic networks syn-
chronously. For example, Yu et al. [10] model the temporal
status of the edges as a function of time-based on NMF in
dynamic networks. Their approaches are used to predict links
and detect node-centric anomaly. Tajeuna et al. [27] model
the evolution of temporal community structure with an auto
regressive model, and predict future changes with survival
analysis techniques. Wu et al. [15] introduce the spectral
graph theory to track the latent feature vectors of dynamic
networks, then use the Finite Impulse Response (FIR) filter
to model the evolution of the latent feature vector of each
node. This type of approaches usually has reasonable model
interpretation and model the community structure and the
evolution characteristic uniformly. Unfortunately, this type of
methods cannot discover the abnormal evolution of commu-

nity structure hiding in dynamic networks as the evolution
extent is hard to measure.

III. PROBLEM FORMALIZATION
Here, we represent a dynamic network as a series of network
snapshots. Let {1, 2, ..., T} be a finite set of time snapshots
and G = (V,E(t)) be an undirected and unweighed dynamic
network, where V = {1, ..., N} is a set of entities or nodes,
E(t) is a set of edges that connect two nodes of V at snapshot
t. G is represented with a sequence of N × N adjacency
matrix A(t), where the element at snapshot t

A
(t)
ij =

{
1 (i, j) ∈ E(t)

0 (i, j) /∈ E(t).

In addition, we summarize the main notations in table 1.

TABLE 1: Table of Notations

Symbol Definition
t the snapshot label, and t ∈ [1, T ];
V the set of nodes, and V = {1, 2, · · · , N};

E(t) the set of edges at snapshot t;
A(t) the adjacent matrix at snapshot t;
H(t) the community membership matrix at t, and H(t) ∈ RN×Kt

+ ;
Zt the evolution matrix that models LEP at snapshot t;
Z the evolution matrix that models GEP;
Ct the community label matrix of snapshot t.
K the number of communities.

In general, dynamic networks analysis mainly include
three tasks: detecting community structure, extracting evo-
lution pattern and predicting future structure (please see as
Fig. 1).

Usually, a static network could be divided into groups
of nodes with dense connections internally and sparse con-
nections between groups. This modular structure is called
community structure of complex networks, and a group is
called a community (or cluster). Accordingly, a dynamic net-
work can be seen as a sequence of static network snapshots.
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The community structures are represented as a temporal N
dimension vectorC(t), where the elementC(t)

i is the commu-
nity label of node i at snapshot t. The set of community labels
is {1, 2, · · · ,K}, where K is the number of communities.

We model the evolution patterns of temporal community
structure with evolution matrices. To model the LEPs, we in-
troduce a temporal N ×K dimension matrix Z(t−1)(t ≥ 2),
of which element Z(t−1)

lk represents the evolution probability
from community l to community k at snapshot t − 1. Simi-
larly, we introduce a common N ×K dimension matrix Z to
model the GEP.

Link prediction is a common problem in static networks.
Its core purpose is to predict missing links according to a
static state of the observed network. Differently in dynamic
networks, we need to predict a future snapshot network
Â(T+1) according to the trends of the past snapshot networks
G : (V,E(t)).

The tasks of the proposed framework are summarized as
follows.
• Input: A dynamic network G : (V,E(t)).
• Output: The community structureC(t)(t = 1, 2, · · · , T ),

LEPs , GEP, the future community structureC(T+1), the
future link structure Â(T+1).

IV. METHODS
In this section, we present our proposed framework ONMF-
EEP for exploring dynamic networks including community
detection, evolution analysis and link prediction.

A. ONMF-EEP
When Nonnegative Matrix Factorization (NMF) is applied to
community detection, the core idea is that leaning a low rank
non-negative representation H of the underlying adjacency
matrix. And H is just the community membership matrix,
of which element Hik represents the preference of node i
belongs to community k. It has derived different versions
of NMF models including SNMF, PNMF, SNMTF, Semi-
NMTF [16]. These methods are all suitable for extending into
our unified framework ONMF-EEP designing for dynamic
networks.

Our proposed framework ONMF-EEP assumes that com-
munity structures are subject to a LEP of community struc-
ture at each snapshot respectively, and a common GEP is
hidden in them. According to the two assumptions, ONMF-
EEP consists of two steps (Fig.2):
• Step 1: LEP Extraction. For each snapshot network,

we obtain its non-negative, low-dimensioanl represen-
tation, H(t), under column orthonormality constraints
i,e., H(t)TH(t)T = I , by using extensional Orthogonal
NMF (ONMF). In addition, we integrate LEP with a
temporal K×K dimension matrix Z(t−1)(t ≥ 2) using
the idea of evolutionary clustering [7].

• Step 2: GEP Extraction. To obtain the GEP hidden in a
dynamic network, we fuse the LEP at each snapshot into
a common GEP, which is introduced with a common

FIGURE 2: Illustration of the proposed ONMF-EEP.

N ×K dimension matrix Z , by an ONMF model. The
main idea is that minimizing the distance betweenZ and
each Z(t−1).

Below we just take Orthogonal SNMF as an example to
extend to ONMF-EEP for exploring dynamic networks.

B. STEP 1: LEP EXTRACTION
In a dynamic network, similarly, the element H(t)

ik repre-
sents the propensity that node i belongs to community k
at snapshot t. Differently, we set H(t) under column or-
thonormality constraints, H(t)TH(t) = I , since we focus on
non-overlapping community detection here a node just may
belong to only one community. ThenH(t)

i· ×H
(t)T
j· represents

the expected value of the link that exists between node i
and j. In fact, to obtain H(t) from the observed adjacency
matrix A(t), we just need to make each entry of matrix
H(t)H(t)T as close to A(t) as possible. Here, we assume that
the difference between A(t) and H(t)H(t)T obeys Gaussian
distribution with zero mean. Then the loss can be constructed
by Euclidean distance, ||A(t) − H(t)H(t)T ||2F , which is the
square of the Frobenius norm of two matrices difference [8].

In addition, we assume that community structures are
subject to an independent LEP of community structure at
each snapshot, respectively. To model the LEPs, we intro-
duce a temporal N × K dimension matrix Z(t−1)(t ≥ 2),
where element Z(t−1)

lk represents the evolution probability
from community l to community k at snapshot t − 1. Sim-
ilarly, we need to make each entry of matrix H(t−1)Z(t−1)
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as close to H(t) as possible. Then we introduce the loss
||H(t) − H(t−1)Z(t−1)||2F as a penalty term. Then the ob-
jective function is constructed as follow:

min
Ht,Z(t−1)≥0

Q(t)(H(t), Z(t−1))

=


||A(t) −H(t)H(t)T ||2F t = 1,

||A(t) −H(t)H(t)T ||2F
+ 2α||H(t) −H(t−1)Z(t−1)||2F t ≥ 2,

(1)

where α is a balance parameter, H(t)TH(t) = I . When
t = 1, the objective function corresponds to the stand ONMF
[16], and the update rules are as follows:

H(1) ← H(1) � A(1)H(1)

H(1)H(1)TA(1)H(1)
(2)

where · � · represents hadamard product. When t ≥ 2, the
derivative of Q(t) with respect to H(t) is as follows:

∂Q(t)

∂H(t)
=− 4A(t)H(t) + 4(1 + α)H(t)

− 4αH(t−1)Z(t−1)
(3)

To incorporate the orthonormality constraint into the up-
date rule, the concept of natural gradient needs to be in-
troduced [28]. As the natural gradient ∂Q(t)

∂H(t) = ∂Q(t)

∂H(t) −
H(t)H(t)T ∂Q(t)

∂H(t) , we have that

∂Q(t)

∂H(t)
=− 4A(t)H(t) − 4αH(t−1)Z(t−1)

+ 4H(t)H(t)TA(t)H(t)

+ 4αH(t)H(t)TH(t−1)Z(t−1)

(4)

Following the Karush-Kuhn-Tucker (KKT) condition, the
update rule of H(t) is as follows:

H(t) ← H(t)�
A(t)H(t) + αH(t−1)Z(t−1)

H(t)H(t)TA(t)H(t) + αH(t)H(t)TH(t−1)Z(t−1)

(5)

For the evolutionary matrix Z(t−1), the derivative of Q(t)

with respect to Z(t−1) is as follows:

∂Q(t)

∂Z(t−1) = −4αH(t)H(t−1)T + 4αZ(t−1) (6)

Correspondly, the update rule of Z(t−1) is as follows:

Z(t−1) ←− H(t−1)TH(t) (7)

Updating iteratively H(t) and Z(t−1) according to the rule
5 and 7 until the objective function 1 converges. Then the
community label of each node at snapshot t is derived by the
equation as follows:

C
(t)
i = argmax

k
(H

(t)
ik ).

In addition, Z(t−1)(t = 2, · · · , T ) can represent the LEP of
dynamic networks, which model the evolution rules between
consecutive snapshot pairs, independently.

C. STEP 2: GEP EXTRACTION
We assume that a common GEP exists behind the entire
dynamic network. In most cases, dynamic network evolves
slowly and LEPs approach to GEP. In fact, GEP extraction
could translate to minimizing the total geodesic distance
between a common evolution matrix Z and the temporal
evolution matrices Z(t−1)(t ≥ 2) at each snapshot. Then we
merge the temporal evolution matrices Z(t−1) of snapshot
networks to Z on Grassmann Manifolds. According to the
work of the literature [16], the square distance between Z
and Z(t−1) on Grassmann Manifolds can be computed as
Dis(Z, Z(t−1)) = k − tr(ZZTZ(t−1)Z(t−1)T ), where k
is the number of dimension of subspaces, tr(·) represents the
trace of matrix. Then the objective function of Step 2 is as
follow:

min
Z≥0

J(Z) =

T∑
t=2

||H(t) −H(t−1)Z||2F

+ β

T−1∑
t=1

(k − tr(ZZTZ(t)Z(t)T )).

(8)

The derivative of J with respect to Z is as follow:

∂J

∂Z
=

T∑
t=2

(2Z − 2H(t−1)TH(t))

− 2β

T−1∑
t=1

Z(t)Z(t)TZ

(9)

Similarly, the update rule of Z is as follow:

Z ←− Z �
∑T

t=2(H
(t−1)TH(t)) + β

∑T−1
t=1 Z(t)Z(t)TZ∑T

t=2Z
, (10)

where β is a balance parameter for controlling the weight
of the geodesic distance. Z represents the GEP, which rep-
resents the global evolution characteristic of dynamic net-
works.

Then based on the GEP, we can predict the community
membership matrix at snapshot T+1 according to Ĥ(T+1) ≈
H(T )Z . Naturally, we can predict the community structure
at snapshot T + 1 with Ĉ(T+1)

i = argmax
k

(H
(T+1)
ik ). At

the same time, we can predict the link structures by recon-
structing the adjacency matrix at snapshot t with Â(T+1) ≈
H(T+1)H(T+1)T according to the model hypothesis.

D. COMPLEXITY ANALYSIS
Here, we give the optimization algorithm of ONMF-EEP in
Algorithm 1 according to the update rules above. We assume
that the average number of edges at snapshots is m̂, and
the average number of iterations is n̂iter. From Algorithm
1, the algorithm mainly consists of two steps, and the most
time-consuming part is the optimization of H(t), which is
O(n̂iterT (4N

2K + 4NK2 + 2NK)). The N2 can be ap-
proximately equal to m̂ because the real dynamic networks
are usually very sparse. Considering K is much less than N
and m̂, it could be ignored for time complexity. Therefore,
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FIGURE 3: The performance of community detection over NMI and ER on the dynamic Grow-shrink networks with
different fuzzy parameters (a, b)q = 31, (c, d)q = 33, (e, f)q = 35, and (g, h)q = 37.

Algorithm 1 ONMF-EEP

Input:A(t)(t = 1, 2, · · · , T ), α and β
Output: C(t), H(t), Z(t−1),Z
1: Initialize H(t), Z(t−1),Z;
2: while not converge do
3: Update H(1) according to Eq.2;
4: for t ∈ [2, T ] do
5: while not converge do
6: Update H(t) according to Eq.5;
7: Update Z(t−1) according to Eq.7;
8: for t ∈ [1, T ] do
9: C

(t)
i = argmax

k
(H

(t)
ik )

10: while not converge do
11: Update Z according to Eq.10;
12: Ĥ(T+1) ≈ H(T )Z;
13: Ĉ

(T+1)
i = argmax

k
(H

(T+1)
ik );

14: Â(T+1) ≈ H(T+1)H(T+1)T ;
15: return C(t), H(t), Z(t−1), Z .

the time complexity degrades to O(n̂iterT (m̂ +N)), which
is approximately linear for the number of nodes and edges in
dynamic networks.

V. RESULTS AND DISCUSSION
In this section, we demonstrate the performance of ONMF-
EEP for analyzing the time-varying structure including com-
munity detection, LEP and GEP extraction and link predic-
tion at future snapshot on synthetic and real-world dynamic
networks. We set the balance parameters α = 10 and β = 0.4

on all experiments according our parameter analysis.

A. MEASUREMENTS
To measure the performance of the algorithms, we introduce
several evaluation measures for community detection and
link prediction of dynamic networks in this subsection.

For community detection, normalized mutual information
(NMI) and error rate (ER) are good choices when the ground
truth is available [29], [30]. They are defined as follows:

NMI =
2I(Ĝ,G)

H(Ĝ) +H(G)
, (11)

ER = ||ĜĜT −GGT ||2F , (12)

where Ĝ denotes the community structures detected from
the algorithm and G denotes the ground truth. H(Ĝ) and
H(G) denote the entropies of Ĝ and G respectively, and
I(Ĝ,G) denote the mutual information between Ĝ and G
respectively. NMI is used to measure the consistency between
two partitions as an entropy metric, which is restrained in
[0, 1]. The higher the value of NMI, the more similar the two
partitions are. In detail, NMI = 1 indicates that G and Ĝ
are identical, and NMI = 0 indicates that the two partitions
are entirely different. ER measures the difference between
two different partitions, and the smaller it is, the better the
performance is. In general, ER tends to increase with the
scale of networks.

For link prediction, we choose the widely-used evaluation
metrics, Root Mean Square Error (RMSE), which is defined
as

RMSE =

√
||Â − A||, (13)
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FIGURE 4: The performance of community detection over NMI and ER on the MIT email networks with different
resolutions (a, b)T = 24, (c, d)T = 16, (e, f)T = 12, and (g, h)T = 8.

where Â and A are the predicted and true matrices for the
future snaphshot, respectively.

B. TEMPORAL COMMUNITY DETECTION

To demonstrate the performance of community detection,
we compare our proposed ONMF-CCP with four benchmark
methods: SNMF, Multislice [26], FaceNet [31], DYNMOGA
[32]. Here, we set the penalty co-efficient of smoothness as
0.8 for FaceNet, the resolution parameter γ = 1 and couple
parameter ω = 0.2 for Multislice. These are the common
parameter settings in the related researches. In addition, all
the algorithms are repeated 10 times, and the average results
and the corresponding variance bars are given in figures.

We design the comparison experiments over NMI and ER
on a synthetic data, dynamic Grow-shrink benchmark [33],
which uses a triangular waveform function to model the dy-
namic of network and generates each snapshot network with
the classic Stochastic Block Model [34]. Here, we set the
number of snapshots T = 12, the number of noes N = 256,
the number of communities K = 4 for generating dynamic
networks. Fig.3 shows the performance over NMI and ER
on four dynamic Grow-shrink networks with different fuzzy
parameters (a, b)q = 31, (c, d)q = 33, (e, f)q = 35, and
(g, h)q = 37. It should be noted that the larger the fuzzy
parameters, the fuzzier the community structure of generated
networks. Most methods can easily achieve high accuracy on
community detection of generated network if the parameter q
is too small. Then the comparative results of methods are not
comparable. On the contray, the comparative results of meth-
ods are also not comparable if the parameter q is too large.
In the figure, the x-axes are snapshot labels t and the y-axes
are NMI or ER values. From the Fig.3, we can conclude that

the proposed methods always achieves better performance
than other four methods for different fuzzy parameters on
both NMI and ER. It’s worth noting that the ER values of
Multislice is the lowest in Fig.3 (h) corresponding to q = 37.
The reason may be that Multislice optimizes modularity
with a greedy heuristic method that it could achieve good
performance on ER, even though it tends to have high time
complexity. Looking at the subfigures from left to right, the
whole trend of the accuracy on both NMI and ER decreases
gradually as the fuzzy parameters q increases. Obviously, this
is because the community structures of networks are unsharp
when the parameter q is large.

In addition, we design the comparison experiments over
NMI and ER on a real-world data, e-mail communication
network [35]. The data includes 48 consecutive months from
September 2006 to August 2010. Here, we cut the network
into multi-time slices with different resolutions. As shown in
Fig.4, four dynamic networks from the e-mail communica-
tion correspond to (a, b)T = 24, 2 consecutive months as a
snapshot, (c, d)T = 16, 3 consecutive months as a snapshot,
(e, f)T = 12, 4 consecutive months as a snapshot, and
(g, h)T = 8, 6 consecutive months as a snapshot. Similarly,
the x-axes are snapshot labels t and the y-axes are NMI or
ER values. From Fig.4, in most cases, the results demonstrate
our proposed ONMF-EEP has the best performance over
NMI and ER on the real-world email networks with different
resolutions. On closer inspection, we find the performance
of FaceNet is just slightly inferior to ONMF-EEP on real-
world email networks. It is suitable for the real-world net-
work which has a natural evolution, because FaceNet also
considers the evolutions of communities and the temporal
smoothness of evolutions.
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FIGURE 5: The intensity of evolution over time on the dynamic Grow-shrink networks with different fuzzy parameters.
(a, c, e, d) are the trace of Z(t) and Z , and (b, d, f, h) are the square distance between Z(t) and Z .
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FIGURE 6: The intensity of evolution over time on the MIT e-mail networks with different resolutions. (a, c, e, d) are the
trace of Z(t) and Z , and (b, d, f, h) are the square distance between Z(t) and Z .

From the above conclusions, our proposed ONMF-EEP
always achieves better performance than the four benchmark
methods over both NMI and ER on 8 dynamic networks from
the Grow-shrink benchmark and the MIT e-mail dataset. At
the same time, the variance rods are stable and small in most
cases. This shows that our algorithm has good robustness for
temporal community detection task in dynamic networks.

C. EVOLUTION ANALYSIS AND LINK PREDICTION

Evolution analysis of community structure is very important
for tracking the time-varying trend of dynamic networks.
According to the obtained evolution matrices of IPE and
GEP, we demonstrate the intensity of evolution over time
on the dynamic Grow-shrink networks and the MIT e-mail

networks. Here, the trace of evolution matrix Z(t), i.e.,
tr(Z(t)) (t = 1, 2, · · · , T − 1), is used for quantizing the
propensity of keeping in current community. In other words,
the smaller the trace of Z(t), the more dramatic the evolution.
In addition, we compute the distance between the GEP and
the LEPs with D(Z(t),Z) = ||Z(t)−Z||2F . The big distance
can indicate the LPE is abnormal, which can be used for
evolution anomaly detection of dynamic networks.

Fig.5 shows the intensity of evolution over time on the
dynamic Grow-shrink networks with different fuzzy param-
eters q = 31, 33, 35, 37 from left to right. In the figure, the
traces of Z(t) and Z are demonstrated in Fig.5 (a, c, e, g),
and the distances between Z(t) and Z in Fig.5 (b, d, f, h),
respectively. The x-axes are snapshot labels t. From the first
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FIGURE 7: The performance of community prediction and detection over NMI, ER and Modularity on the MIT e-mail
networks and the dynamic Grow-shrink networks.

row of Fig.5, we find the trace of Z (see as red bars) are
lower than the Z(t) on the four networks of Grow-shrink
benchmark. This indicates that GEP has a stronger tendency
of community transfer than IPEs. From the secongd row
of Fig.5, we can discover evolution anomaly at a glance.
Because the higher the D(Z(t),Z) value, the more abnormal
the evolution. For example, the IPE at snapshot 4 and 11 are
more abnormal on the networks with q = 31.

Similarly, we show the intensity of evolution over time
on the MIT e-mail networks with different resolutions T =
24, 16, 12, 8 from left to right in Fig.6. On the contrary, the
tr(Z) (see as red bars) is getting higher and higher from
left to right in the first row of Fig.6. This indicates that the
resolution of snapshots has a significant influence on the GEP
of the MIT e-mail networks, eg., there is a larger propensity
of keeping in current community for the networks with
longer snapshot windows. It’s worth noting that tr(Z(1)) is
relatively bigger than others on each of the four networks in
thefirst row of Fig.6. The reason for this phenomenon is that
there is no historical information used for IPE extraction at
the first snapshot. From the secongd row of Fig.6, we can’t
discover any evolution anomalies for the four networks of the
MIT e-mail networks with different resolutions.

For the community structure prediction, we compute the
NMI, ER and Modularity [26] at the future snapshot with
Ĥ(T ), which is obtained according to Ĥ(T ) = H(T−1)Z . We
show the performance of community prediction and detection
for snapshot T on the MIT e-mail networks ((a),(b),(c), and
(d)) and the dynamic Grow-shrink networks ((e),(f),(g), and
(h)) in Fig.7. From the comparison of results, we discover the
accuracy of community prediction keep usually close to com-
munity detection over NMI, ER and Modularity, especially

for the MIT e-mail networks ((a),(b),(c), and (d)). The results
indicate that our method has effective predictive ability for
community structure.

For temporal link prediction task, we compare our pro-
posed ONMF-CCP with four existing methods: weighted
collapsed tensor (WCT), Katz index-based algorithm (Katz),
singular value decomposition (SVD), symmetric NMF-based
algorithm (SNMF-FC) [13], which are widely used for tem-
poral link prediction problem. WCT and Katz are topology
based methods, while SVD, SNMF-FC and ONMF-EEP
are matrix decomposition based methods. Similarly, all the
algorithms are repeated 10 times over the evaluation metrics
RMSE, and the average results are demonstrated in bar
charts.

We demonstrate the results of link prediction over
RMSE on the dynamic Grow-shrink networks and MIT e-
mail networks in table 2. The dynamic Grow-shrink net-
works are generated with different fuzzy parameters: q =
31, 33, 35, 37. From the table, we conclude that WCT and
SVD are less accurate than the others, and the proposed
ONMF-EEP is a little bit higher more accurate than SNMF-
FC on the four artificial dynamic networks. The reason is that
WCT, Katz and SVD collapse the snapshot networks into
a static network so that eliminate topological information.
Similarly, the MIT e-mail networks are cut into multi-time
slices with different resolutions: 2, 3, 4, 6 months as a snap-
shot, of which the numbers of snapshots are corresponding to
T = 24, T = 16, T = 12, T = 8 respectively. Fortunately,
the proposed ONMF-EEP is always the most accurate on the
four real-world dynamic networks. Undeniably, we find the
performance of SNMF-FC almost keeps pace with ours. The
reason is that the SNMF-FC, which is similar to the proposed
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TABLE 2: The results of link prediction over RMSE on two dynamic networks.

Methods Grow-shrink networks MIT e-mail networks
q = 31 q = 33 q = 35 q = 37 T = 24 T = 16 T = 12 T = 8

WCT 18.55 18.77 18.92 19.08 8.44 9.71 10.47 11.23
Katz 12.98 12.78 12.75 13.06 9.87 14.11 8.89 13.95
SVD 18.55 18.77 18.92 19.08 8.44 9.71 10.47 11.23

SNMF-FC 12.34 12.49 12.60 12.69 5.74 6.20 6.41 6.77
ONMF-EEP 11.72 11.84 11.93 12.00 5.13 5.75 6.20 6.79

ONMF-EEP, collapses the feature matrices obtained at vari-
ous time points with an immediate purpose to avoid elimi-
nating topological information. The results in table 2 show
that our proposed ONMF-EEP outperforms these benchmark
methods on the dynamic Grow-shrink networks and the MIT
e-mail networks.

In summary, our proposed method ONMF-EEP has good
performance for temporal community detection, and has
effective ability for community and link structure prediction
both on real-world network and artificial network.

VI. CONCLUSIONS
Extracting evolution pattern of temporal community struc-
tures helps to understand the time-varying and complicated
dynamic networks. We first extract evolution pattern by
modelling and uncovering the evolution characteristics of
dynamic networks from local and global perspectives. Under
this assumption, we propose a novel framework ONMF-EEP
for community detection, evolution analysis, and commu-
nity and link structure prediction. Fortunately, our proposed
framework has excellent performance for temporal commu-
nity detection both on real-world networks and artificial
networks. Simultaneously, our approach has an effective abil-
ity for community and link structure prediction in dynamic
networks.

There are still several problems with our proposed ap-
proach to be considered. Firstly, our method is a two-step
strategy, and this is a question worth thinking about how
to skillfully design our framework into a unified model for
extracting LEP and GEP. Secondly, the balance parameters α
and β are set according to experiments, and it is necessary
to study a strategy for determining the balance parameters
based on dynamic networks automatically. Thirdly, we are
interested in exploring the correlation between LEP (or GEP)
and topological features for dynamic networks.
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