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ABSTRACT Exploring and understanding the temporal structure of dynamic networks attract extensive
attention over the past few years. Most of these current research focuses on temporal community detection,
evolution analysis or link prediction from a mission-oriented perspective. In fact, these three tasks should
be not isolated but mutually reinforcing. Transforming these three tasks into a unified framework, it is
crucial to extract the evolution pattern, which helps to understand the time-varying characteristics of temporal
structure in essence. In addition, to the best of our knowledge, there is no work focusing on modeling and
uncovering the local and global evolution pattern hidden in temporal community structure, simultaneously.
In this paper, we propose a novel framework based on Orthogonal Nonnegative Matrix Factorization to
Explore the Evolution Pattern (ONMF-EEP) for analyzing and predicting the time-varying structures in
dynamic networks from local and global perspectives. The nature of this framework assumes that community
structures are subject to a local evolution pattern (LEP) at each snapshot, and these LEPs are from a
common global evolution pattern (GEP). The framework can synchronously detect temporal community
structure, extract evolution pattern, and predict structure including communities and future snapshot links.
The extensive experiments on real-world networks and artificial networks demonstrate that our proposed
framework is highly effective on the tasks of dynamic network analysis.

INDEX TERMS Orthogonal non-negative matrix factorization (ONMF), temporal community detection,
evolutionary pattern extraction, structure prediction.

I. INTRODUCTION
Dynamic networks [1] are usually used to model and explore
temporal complex systems effectively in the real world, where
the structure and the relationships between entities are time-
varying. In recent years, dynamic network analysis [2] is
gaining popularity rapidly in a wide variety of application
domains, such as cyber-physical systems, social networks,
biological networks and communication networks. It poses
a great challenge for temporal structure analysis in dynamic
networks as which are elusive and complicated. Usually,
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a dynamic network is represented as a series of snapshots
or slices. For exploring and understanding the dynamic net-
works, researchers mainly focus on three problems: detecting
what community structures are at different snapshots, analyz-
ing how communities evolve over time, and predicting which
links will appear or disappear in the near future. These three
problems correspond to three main research tasks, i.e., tem-
poral community detection, evolution analysis and link pre-
diction in dynamic network analysis, respectively.

Firstly, the temporal community detection, which is
different from static community detection [3]–[5], could dis-
cover time-varying meaningful structures and functions hid-
den in dynamic networks. Current research methods can be
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divided into two categories, i.e., two-step based approach
and evolutionary clustering based approach. A two-step strat-
egy based approach [6], which typically detects the com-
munity structure independently at each snapshot by using
a method designed for static networks, and then partially
adjust. However, dynamic networks usually evolve slowly
and their community structures of adjacent snapshots are sim-
ilar. Therefore, two-step based approach ignores the influence
of historical information on current community structures so
that it is sensitive to noise. For addressing this issue, the other
type of methods based on evolutionary clustering [7], [8] are
proposed to detect current community structure while con-
sidering previous snapshots. A detailed review of community
detection in dynamic networks is in [1], [2]. Unfortunately,
most of these methods do not capture evolution patterns of
communities, which helps to understand the time-varying
characteristics of temporal structure in essence.

Secondly, evolution analysis of community structure is
usually used for understanding the time-varying characteris-
tics and tracking the trend of temporal structure of complex
systems. For example, in a scientific collaboration network,
a node represents a researcher, a link represents a collabo-
ration relation between two nodes, and a community usu-
ally represents a group of researchers with a same research
interest respectively. In most cases, we not only need to
know which research field a researcher belongs to, but also
the changing trends in the future to follow the academic
dynamic. Most of these existing methods are based on heuris-
tic approaches, which first obtain the community structure
of each snapshot and then analyze their evolution between
adjacent snapshots. Some other existing approaches to model
the dynamic evolution from tracking network measures [9].
In addition, someone would like to provide useful intuitions
about the community structure changes happening in the
underlying network by tracking the evolution [10]. However,
these methods lack a mechanism to model the evolution pat-
tern for predicting the future structure including community
or link structure in dynamic networks.

Thirdly, the task of link prediction in dynamic networks
is to predict near future snapshots according to the past
observed snapshots. In the early years, some snapshot col-
lapse based methods were proposed, which transform the
snapshots into a single collapsed network and then predict
the links [11]. These approaches usually have low accuracy
because they predict links solely based on the frequency
of links. Later, some methods improved the accuracy of
link prediction by considering the topological structure of
dynamic networks [12]. Recently, matrix decomposition was
introduced to discover low dimensional representations of
dynamic networks then dealing with the link prediction
problem [13]. These algorithms tend to significantly outper-
form the others. A few other methods were just unilater-
ally designed for either predicting community structure or
links [14], [15] from a mission-oriented perspective.

In fact, these three problems, community detection, evo-
lution analysis and link prediction are not isolated, but

mutually reinforcing. The reason is that modularity and tem-
poral variability of dynamic networks always exist simul-
taneously. In addition, community structures usually evolve
slowly, but their evolution (e.g., community structures
changed dramatically) may be anomalous in some abnor-
mal case (e.g., some major emergency broke out). However,
most of the existing methods cannot discover the abnormal
evolution of community structures hiding in dynamic net-
works as the evolution extent is hard to measure. In this
paper, we propose a novel two-step framework based on
Orthogonal Nonnegative Matrix Factorization [16] to Extract
Evolution Pattern (ONMF-EEP) for exploring and predicting
the time-varying structure in dynamic networks from local
and global perspectives. In detail, we propose a hypothesis
that community structures are subject to a local evolution
pattern (LEP) at each snapshot respectively. At the same
time, a common global evolution pattern (GEP) is hidden in
the underlying network, which would be infinitely close to
these LEPs in normal case. Under this hypothesis, we design
ONMF-EEP as two steps: LEP extraction and GEP extrac-
tion. In the first step, the proposed framework discovers
temporal community structure and detects the corresponding
LEP with ONMF based on the core idea of evolution cluster-
ing. In the second step, to extract GEP, the framework maxi-
mizes the shared information among LEPs by optimizing the
distance between the matrix representations of all the LEPs
and the GEP on Grassmann manifold. We demonstrate the
superior performance of our proposed algorithms over the
baseline methods on both artificial and real-world dynamic
networks. It is worthwhile to highlight several contributions
of our proposed framework ONMF-EEP as follows:

• To our best knowledge, we first extract evolution pattern
by modeling and uncovering the evolution characteris-
tics of dynamic networks from local and global perspec-
tives.

• We propose a novel unified framework ONMF-EEP,
which is easy to be extended, for exploring and
understanding the temporal structure including com-
munity detection, evolution analysis, and link structure
prediction.

• The extensive experimental results demonstrate that our
proposed method ONMF-EEP has good performance
for temporal community detection, and has effective
ability for evolution analysis and link prediction both on
real-world networks and artificial networks.

II. RELATED WORK
Dynamic networks analysis [1] is widely concerned in
many fields. Most of the current research about it
mainly focus on community detection [2], [17], evolutionary
analysis [18], [19], link prediction [13], [14], and anomaly
detection [20], [21]. Here, we give a general overview on
evolutionary analysis for dynamic network, which is the
most related for this work. The methods of evolutionary
analysis for dynamic network are mainly divided into three
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categories: heuristic approaches [22], [23], machine learn-
ing based methods [24], [25] and generative model based
methods [10], [15], [27].

Heuristic approaches for evolutionary analysis explore
usually the community evolution based on some similar
criterions after detecting community structure at snapshots.
In the early day, Palla et al. [22] detect the temporal com-
munity structure based on clique percolation, and then
uncover basic relationships characterizing community evo-
lution. They define possible events in community evolution
including growth, contraction, merging, splitting, birth and
death. Later, Asur et al. [23] present a characterization of
critical behavioral patterns for temporally varying interaction
networks based on the events in community evolution. This
type of approaches usually depend too much on defined rules
and have high computation complexity.

Machine learning based methods for evolutionary anal-
ysis tend to identify the features of the detected temporal
community structure based on feature learning method. Typ-
ically, Ilhan and Ögüdücü [24] proposed a framework that
community features identification based on feature selection
methods, and study the evolutionary characteristic to predict
the community evolution. Liu et al. [25] use the existing
Louvain method [26] to detect temporal community structure
in the bibliographic coupling and co-citation networks, and
then train a classifier to predict the evolution of physics
research. This type of methods tend to ignore structural
information of the historical snapshots and lack of model
interpretation.

Generative model-based methods for evolutionary analy-
sis, which is the most related with our proposed method,
model the generative mechanism of dynamic networks and
the evolution of temporal community structure. Differ-
ently from the first two types of approaches, generative
model-based methods tend to model the community structure
and the evolution characteristic hiding in dynamic networks
synchronously. For example, Yu et al. [10] model the tempo-
ral status of the edges as a function of time-based on NMF in
dynamic networks. Their approaches are used to predict links
and detect node-centric anomaly. Tajeuna et al. [27] model
the evolution of temporal community structure with an auto
regressive model, and predict future changes with survival
analysis techniques. Wu et al. [15] introduce the spectral
graph theory to track the latent feature vectors of dynamic
networks, then use the Finite Impulse Response (FIR) filter
to model the evolution of the latent feature vector of each
node. This type of approaches usually has reasonable model
interpretation and model the community structure and the
evolution characteristic uniformly. Unfortunately, this type of
methods cannot discover the abnormal evolution of commu-
nity structure hiding in dynamic networks as the evolution
extent is hard to measure.

III. PROBLEM FORMALIZATION
Here, we represent a dynamic network as a series of network
snapshots. Let {1, 2, ...,T } be a finite set of time snapshots

TABLE 1. Table of notations.

and G = (V ,E (t)) be an undirected and unweighed dynamic
network, where V = {1, ...,N } is a set of entities or nodes,
E (t) is a set of edges that connect two nodes ofV at snapshot t .
G is represented with a sequence of N × N adjacency matrix
A(t), where the element at snapshot t

A(t)ij =

{
1 (i, j) ∈ E (t)

0 (i, j) /∈ E (t).

In addition, we summarize the main notations in table 1.
In general, dynamic networks analysis mainly include

three tasks: detecting community structure, extracting evo-
lution pattern and predicting future structure (please see
as Fig. 1).

Usually, a static network could be divided into groups
of nodes with dense connections internally and sparse con-
nections between groups. This modular structure is called
community structure of complex networks, and a group is
called a community (or cluster). Accordingly, a dynamic
network can be seen as a sequence of static network snap-
shots. The community structures are represented as a tem-
poral N dimension vector C (t), where the element C (t)

i is
the community label of node i at snapshot t . The set of
community labels is {1, 2, · · · ,K }, where K is the number of
communities.

We model the evolution patterns of temporal commu-
nity structure with evolution matrices. To model the LEPs,
we introduce a temporal N ×K dimension matrix Z (t−1)(t ≥
2), of which element Z (t−1)

lk represents the evolution proba-
bility from community l to community k at snapshot t − 1.
Similarly, we introduce a common N × K dimension matrix
Z to model the GEP.

Link prediction is a common problem in static networks. Its
core purpose is to predict missing links according to a static
state of the observed network. Differently in dynamic net-
works, we need to predict a future snapshot network Â(T+1)

according to the trends of the past snapshot networks G :
(V ,E (t)).
The tasks of the proposed framework are summarized as

follows.

• Input: A dynamic network G : (V ,E (t)).
• Output:The community structureC (t)(t = 1, 2, · · · ,T ),
LEPs, GEP, the future community structure C (T+1),
the future link structure Â(T+1).
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FIGURE 1. Illustration of three main tasks in dynamic networks analysis.

IV. METHODS
In this section, we present our proposed framework
ONMF-EEP for exploring dynamic networks including com-
munity detection, evolution analysis and link prediction.

A. ONMF-EEP
When Nonnegative Matrix Factorization (NMF) is applied to
community detection, the core idea is that leaning a low rank
non-negative representation H of the underlying adjacency
matrix. And H is just the community membership matrix,
of which element Hik represents the preference of node i
belongs to community k . It has derived different versions
of NMF models including SNMF, PNMF, SNMTF, Semi-
NMTF [16]. These methods are all suitable for extending into
our unified framework ONMF-EEP designing for dynamic
networks.

Our proposed framework ONMF-EEP assumes that com-
munity structures are subject to a LEP of community structure
at each snapshot respectively, and a common GEP is hidden
in them. According to the two assumptions, ONMF-EEP
consists of two steps (Fig.2):
• Step 1 (LEP Extraction): For each snapshot network,
we obtain its non-negative, low-dimensioanl representa-
tion, H (t), under column orthonormality constraints i,e.,
H (t)TH (t)T

= I , by using extensional Orthogonal NMF
(ONMF). In addition, we integrate LEP with a temporal
K ×K dimension matrix Z (t−1)(t ≥ 2) using the idea of
evolutionary clustering [7].

• Step 2 (GEP Extraction): To obtain the GEP hidden in
a dynamic network, we fuse the LEP at each snapshot
into a commonGEP, which is introducedwith a common
N × K dimension matrix Z , by an ONMF model. The
main idea is that minimizing the distance betweenZ and
each Z (t−1).

Below we just take Orthogonal SNMF as an example to
extend to ONMF-EEP for exploring dynamic networks.

FIGURE 2. Illustration of the proposed ONMF-EEP.

B. STEP 1: LEP EXTRACTION
In a dynamic network, similarly, the element H (t)

ik repre-
sents the propensity that node i belongs to community k at
snapshot t . Differently, we set H (t) under column orthonor-
mality constraints, H (t)TH (t)

= I , since we focus on
non-overlapping community detection here a node just may
belong to only one community. Then H (t)

i· ×H
(t)T
j· represents
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the expected value of the link that exists between node i and j.
In fact, to obtain H (t) from the observed adjacency matrix
A(t), we just need to make each entry of matrix H (t)H (t)T as
close to A(t) as possible. Here, we assume that the difference
between A(t) and H (t)H (t)T obeys Gaussian distribution with
zero mean. Then the loss can be constructed by Euclidean
distance, ||A(t) − H (t)H (t)T

||
2
F , which is the square of the

Frobenius norm of two matrices difference [8].
In addition, we assume that community structures are sub-

ject to an independent LEP of community structure at each
snapshot, respectively. To model the LEPs, we introduce a
temporal N × K dimension matrix Z (t−1)(t ≥ 2), where
element Z (t−1)

lk represents the evolution probability from com-
munity l to community k at snapshot t−1. Similarly, we need
to make each entry of matrix H (t−1)Z (t−1) as close to H (t) as
possible. Then we introduce the loss ||H (t)

−H (t−1)Z (t−1)
||
2
F

as a penalty term. Then the objective function is constructed
as follow:

min
H t ,Z (t−1)≥0

Q(t)(H (t),Z (t−1))

=


||A(t) − H (t)H (t)T

||
2
F t = 1,

||A(t) − H (t)H (t)T
||
2
F

+ 2α||H (t)
− H (t−1)Z (t−1)

||
2
F t ≥ 2,

(1)

where α is a balance parameter, H (t)TH (t)
= I . When t = 1,

the objective function corresponds to the stand ONMF [16],
and the update rules are as follows:

H (1)
← H (1)

�
A(1)H (1)

H (1)H (1)TA(1)H (1) (2)

where · � · represents hadamard product. When t ≥ 2,
the derivative of Q(t) with respect to H (t) is as follows:

∂Q(t)

∂H (t) =−4A
(t)H (t)

+ 4(1+ α)H (t)
− 4αH (t−1)Z (t−1) (3)

To incorporate the orthonormality constraint into the
update rule, the concept of natural gradient needs to be
introduced [28]. As the natural gradient ∂Q(t)

∂H (t) =
∂Q(t)

∂H (t) −

H (t)H (t)T ∂Q(t)

∂H (t) , we have that

∂Q(t)

∂H (t) = −4A
(t)H (t)

− 4αH (t−1)Z (t−1)

+ 4H (t)H (t)TA(t)H (t)

+ 4αH (t)H (t)TH (t−1)Z (t−1) (4)

Following the Karush-Kuhn-Tucker (KKT) condition,
the update rule of H (t) is as follows:

H (t)
←H (t)

�
A(t)H (t)

+ αH (t−1)Z (t−1)

H (t)H (t)TA(t)H (t) + αH (t)H (t)TH (t−1)Z (t−1)

(5)

For the evolutionary matrix Z (t−1), the derivative of Q(t) with
respect to Z (t−1) is as follows:

∂Q(t)

∂Z (t−1) = −4αH
(t)H (t−1)T

+ 4αZ (t−1) (6)

Correspondly, the update rule of Z (t−1) is as follows:

Z (t−1)
←− H (t−1)TH (t) (7)

Updating iterativelyH (t) and Z (t−1) according to the rule 5
and 7 until the objective function 1 converges. Then the
community label of each node at snapshot t is derived by the
equation as follows:

C (t)
i = argmax

k
(H (t)

ik ).

In addition, Z (t−1)(t = 2, · · · ,T ) can represent the LEP of
dynamic networks, which model the evolution rules between
consecutive snapshot pairs, independently.

C. STEP 2: GEP EXTRACTION
We assume that a common GEP exists behind the entire
dynamic network. In most cases, dynamic network evolves
slowly and LEPs approach to GEP. In fact, GEP extraction
could translate to minimizing the total geodesic distance
between a common evolution matrix Z and the temporal
evolution matrices Z (t−1)(t ≥ 2) at each snapshot. Then
we merge the temporal evolution matrices Z (t−1) of snapshot
networks to Z on Grassmann Manifolds. According to the
work of the literature [16], the square distance between Z
and Z (t−1) on Grassmann Manifolds can be computed as
Dis(Z,Z (t−1)) = k − tr(ZZTZ (t−1)Z (t−1)T ), where k is the
number of dimension of subspaces, tr(·) represents the trace
of matrix. Then the objective function of Step 2 is as follow:

min
Z≥0

J (Z ) =
T∑
t=2

||H (t)
− H (t−1)Z||2F

+β

T−1∑
t=1

(k − tr(ZZTZ (t)Z (t)T )). (8)

The derivative of J with respect to Z is as follow:

∂J
∂Z
=

T∑
t=2

(2Z − 2H (t−1)TH (t))− 2β
T−1∑
t=1

Z (t)Z (t)TZ (9)

Similarly, the update rule of Z is as follow:

Z ←− Z �
∑T

t=2(H
(t−1)TH (t))+ β

∑T−1
t=1 Z

(t)Z (t)TZ∑T
t=2Z

,

(10)

where β is a balance parameter for controlling the weight of
the geodesic distance.Z represents theGEP,which represents
the global evolution characteristic of dynamic networks.

Then based on the GEP, we can predict the community
membership matrix at snapshot T +1 according to Ĥ (T+1)

≈

H (T )Z . Naturally, we can predict the community structure at
snapshot T + 1 with Ĉ (T+1)

i = argmax
k

(H (T+1)
ik ). At the

same time, we can predict the link structures by recon-
structing the adjacency matrix at snapshot t with Â(T+1) ≈
H (T+1)H (T+1)T according to the model hypothesis.
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Algorithm 1 ONMF-EEP

Input: A(t)(t = 1, 2, · · · ,T ), α and β
Output: C (t),H (t),Z (t−1),Z
1: Initialize H (t),Z (t−1),Z;
2: while not converge do
3: Update H (1) according to Eq.2;
4: for t ∈ [2,T ] do
5: while not converge do
6: Update H (t) according to Eq.5;
7: Update Z (t−1) according to Eq.7;
8: for t ∈ [1,T ] do
9: C (t)

i = argmax
k

(H (t)
ik )

10: while not converge do
11: Update Z according to Eq.10;
12: Ĥ (T+1)

≈ H (T )Z;
13: Ĉ (T+1)

i = argmax
k

(H (T+1)
ik );

14: Â(T+1) ≈ H (T+1)H (T+1)T ;
15: return C (t),H (t), Z (t−1), Z .

D. COMPLEXITY ANALYSIS
Here, we give the optimization algorithm of ONMF-EEP in
Algorithm 1 according to the update rules above. We assume
that the average number of edges at snapshots is m̂, and
the average number of iterations is n̂iter . From Algorithm 1,
the algorithm mainly consists of two steps, and the most
time-consuming part is the optimization of H (t), which is
O(n̂iterT (4N 2K + 4NK 2

+ 2NK )). The N 2 can be approx-
imately equal to m̂ because the real dynamic networks are
usually very sparse. Considering K is much less than N
and m̂, it could be ignored for time complexity. Therefore,
the time complexity degrades to O(n̂iterT (m̂ + N )), which is
approximately linear for the number of nodes and edges in
dynamic networks.

V. RESULTS AND DISCUSSION
In this section, we demonstrate the performance of
ONMF-EEP for analyzing the time-varying structure includ-
ing community detection, LEP and GEP extraction and link
prediction at future snapshot on synthetic and real-world
dynamic networks. We set the balance parameters α = 10
and β = 0.4 on all experiments according our parameter
analysis.

A. MEASUREMENTS
To measure the performance of the algorithms, we introduce
several evaluationmeasures for community detection and link
prediction of dynamic networks in this subsection.

For community detection, normalized mutual informa-
tion (NMI) and error rate (ER) are good choices when
the ground truth is available [29], [30]. They are defined as

follows:

NMI =
2I (Ĝ,G)

H (Ĝ)+ H (G)
, (11)

ER = ||ĜĜT − GGT ||2F , (12)

where Ĝ denotes the community structures detected from the
algorithm and G denotes the ground truth. H (Ĝ) and H (G)
denote the entropies of Ĝ and G respectively, and I (Ĝ,G)
denote the mutual information between Ĝ andG respectively.
NMI is used to measure the consistency between two parti-
tions as an entropy metric, which is restrained in [0, 1]. The
higher the value of NMI, the more similar the two partitions
are. In detail, NMI = 1 indicates that G and Ĝ are identical,
and NMI = 0 indicates that the two partitions are entirely
different. ER measures the difference between two different
partitions, and the smaller it is, the better the performance is.
In general, ER tends to increase with the scale of networks.

For link prediction, we choose the widely-used evalua-
tion metrics, Root Mean Square Error (RMSE), which is
defined as

RMSE =
√
||Â−A||, (13)

where Â and A are the predicted and true matrices for the
future snaphshot, respectively.

B. TEMPORAL COMMUNITY DETECTION
To demonstrate the performance of community detec-
tion, we compare our proposed ONMF-CCP with four
benchmark methods: SNMF, Multislice [26], FaceNet [31],
DYNMOGA [32]. Here, we set the penalty co-efficient of
smoothness as 0.8 for FaceNet, the resolution parameter
γ = 1 and couple parameter ω = 0.2 for Multislice. These
are the common parameter settings in the related researches.
In addition, all the algorithms are repeated 10 times, and the
average results and the corresponding variance bars are given
in figures.

We design the comparison experiments over NMI and ER
on a synthetic data, dynamic Grow-shrink benchmark [33],
which uses a triangular waveform function to model the
dynamic of network and generates each snapshot network
with the classic Stochastic BlockModel [34]. Here, we set the
number of snapshots T = 12, the number of noes N = 256,
the number of communities K = 4 for generating dynamic
networks. Fig.3 shows the performance over NMI and ER
on four dynamic Grow-shrink networks with different fuzzy
parameters (a, b)q = 31, (c, d)q = 33, (e, f )q = 35, and
(g, h)q = 37. It should be noted that the larger the fuzzy
parameters, the fuzzier the community structure of generated
networks. Most methods can easily achieve high accuracy on
community detection of generated network if the parameter q
is too small. Then the comparative results of methods are not
comparable. On the contray, the comparative results of meth-
ods are also not comparable if the parameter q is too large.
In the figure, the x-axes are snapshot labels t and the y-axes
are NMI or ER values. From the Fig.3, we can conclude that
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FIGURE 3. The performance of community detection over NMI and ER on the dynamic Grow-shrink networks with different fuzzy
parameters (a, b)q = 31, (c, d )q = 33, (e, f )q = 35, and (g, h)q = 37.

FIGURE 4. The performance of community detection over NMI and ER on the MIT email networks with different resolutions
(a, b)T = 24, (c, d )T = 16, (e, f )T = 12, and (g, h)T = 8.

the proposed methods always achieves better performance
than other four methods for different fuzzy parameters on
both NMI and ER. It’s worth noting that the ER values of
Multislice is the lowest in Fig.3 (h) corresponding to q = 37.
The reason may be that Multislice optimizes modularity with
a greedy heuristic method that it could achieve good perfor-
mance on ER, even though it tends to have high time com-
plexity. Looking at the subfigures from left to right, the whole
trend of the accuracy on both NMI and ER decreases gradu-
ally as the fuzzy parameters q increases. Obviously, this is
because the community structures of networks are unsharp
when the parameter q is large.
In addition, we design the comparison experiments over

NMI and ER on a real-world data, e-mail communication

network [35]. The data includes 48 consecutive months from
September 2006 to August 2010. Here, we cut the network
into multi-time slices with different resolutions. As shown
in Fig.4, four dynamic networks from the e-mail communi-
cation correspond to (a, b)T = 24, 2 consecutive months as a
snapshot, (c, d)T = 16, 3 consecutive months as a snapshot,
(e, f )T = 12, 4 consecutive months as a snapshot, and
(g, h)T = 8, 6 consecutive months as a snapshot. Similarly,
the x-axes are snapshot labels t and the y-axes are NMI or
ER values. From Fig.4, in most cases, the results demonstrate
our proposed ONMF-EEP has the best performance over
NMI and ER on the real-world email networks with different
resolutions. On closer inspection, we find the performance of
FaceNet is just slightly inferior to ONMF-EEP on real-world
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FIGURE 5. The intensity of evolution over time on the dynamic Grow-shrink networks with different fuzzy parameters. (a, c, e, d ) are the trace of
Z (t) and Z , and (b, d , f , h) are the square distance between Z (t) and Z .

FIGURE 6. The intensity of evolution over time on the MIT e-mail networks with different resolutions. (a, c, e, d ) are the trace of Z (t) and Z ,
and (b, d , f , h) are the square distance between Z (t) and Z .

email networks. It is suitable for the real-world network
which has a natural evolution, because FaceNet also considers
the evolutions of communities and the temporal smoothness
of evolutions.

From the above conclusions, our proposed ONMF-EEP
always achieves better performance than the four bench-
mark methods over both NMI and ER on 8 dynamic net-
works from the Grow-shrink benchmark and the MIT e-mail
dataset. At the same time, the variance rods are stable and
small in most cases. This shows that our algorithm has good
robustness for temporal community detection task in dynamic
networks.

C. EVOLUTION ANALYSIS AND LINK PREDICTION
Evolution analysis of community structure is very important
for tracking the time-varying trend of dynamic networks.

According to the obtained evolution matrices of IPE and
GEP, we demonstrate the intensity of evolution over time
on the dynamic Grow-shrink networks and the MIT e-mail
networks. Here, the trace of evolutionmatrix Z (t), i.e., tr(Z (t))
(t = 1, 2, · · · ,T − 1), is used for quantizing the propensity
of keeping in current community. In other words, the smaller
the trace of Z (t), the more dramatic the evolution. In addition,
we compute the distance between the GEP and the LEPs with
D(Z (t),Z) = ||Z (t)

−Z||2F . The big distance can indicate the
LPE is abnormal, which can be used for evolution anomaly
detection of dynamic networks.

Fig.5 shows the intensity of evolution over time on the
dynamic Grow-shrink networks with different fuzzy param-
eters q = 31, 33, 35, 37 from left to right. In the figure,
the traces of Z (t) and Z are demonstrated in Fig.5 (a, c, e, g),
and the distances between Z (t) and Z in Fig.5 (b, d, f , h),
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FIGURE 7. The performance of community prediction and detection over NMI, ER and modularity on the MIT e-mail
networks and the dynamic Grow-shrink networks.

respectively. The x-axes are snapshot labels t . From the first
row of Fig.5, we find the trace of Z (see as red bars) are
lower than the Z (t) on the four networks of Grow-shrink
benchmark. This indicates that GEP has a stronger tendency
of community transfer than IPEs. From the secongd row
of Fig.5, we can discover evolution anomaly at a glance.
Because the higher the D(Z (t),Z) value, the more abnormal
the evolution. For example, the IPE at snapshot 4 and 11 are
more abnormal on the networks with q = 31.
Similarly, we show the intensity of evolution over time

on the MIT e-mail networks with different resolutions T =
24, 16, 12, 8 from left to right in Fig.6. On the contrary,
the tr(Z) (see as red bars) is getting higher and higher from
left to right in the first row of Fig.6. This indicates that the
resolution of snapshots has a significant influence on the GEP
of the MIT e-mail networks, eg., there is a larger propensity
of keeping in current community for the networks with longer
snapshot windows. It’s worth noting that tr(Z (1)) is relatively
bigger than others on each of the four networks in thefirst
row of Fig.6. The reason for this phenomenon is that there is
no historical information used for IPE extraction at the first
snapshot. From the secongd row of Fig.6, we can’t discover
any evolution anomalies for the four networks of the MIT
e-mail networks with different resolutions.

For the community structure prediction, we compute the
NMI, ER and Modularity [26] at the future snapshot with
Ĥ (T ), which is obtained according to Ĥ (T )

= H (T−1)Z .
We show the performance of community prediction and
detection for snapshot T on the MIT e-mail networks
((a),(b),(c), and (d)) and the dynamic Grow-shrink net-
works ((e),(f),(g), and (h)) in Fig.7. From the comparison
of results, we discover the accuracy of community predic-
tion keep usually close to community detection over NMI,
ER and Modularity, especially for the MIT e-mail networks

((a),(b),(c), and (d)). The results indicate that our method has
effective predictive ability for community structure.

For temporal link prediction task, we compare our pro-
posed ONMF-CCP with four existing methods: weighted
collapsed tensor (WCT), Katz index-based algorithm (Katz),
singular value decomposition (SVD), symmetric NMF-based
algorithm (SNMF-FC) [13], which are widely used for tem-
poral link prediction problem. WCT and Katz are topol-
ogy based methods, while SVD, SNMF-FC and ONMF-EEP
are matrix decomposition based methods. Similarly, all the
algorithms are repeated 10 times over the evaluation metrics
RMSE, and the average results are demonstrated in bar charts.

We demonstrate the results of link prediction over RMSE
on the dynamic Grow-shrink networks and MIT e-mail net-
works in table 2. The dynamicGrow-shrink networks are gen-
erated with different fuzzy parameters: q = 31, 33, 35, 37.
From the table, we conclude that WCT and SVD are less
accurate than the others, and the proposed ONMF-EEP is a
little bit higher more accurate than SNMF-FC on the four
artificial dynamic networks. The reason is that WCT, Katz
and SVD collapse the snapshot networks into a static net-
work so that eliminate topological information. Similarly,
the MIT e-mail networks are cut into multi-time slices with
different resolutions: 2, 3, 4, 6months as a snapshot, of which
the numbers of snapshots are correspongding to T = 24,
T = 16, T = 12, T = 8 respectively. Fortunately,
the proposed ONMF-EEP is always the most accurate on the
four real-world dynamic networks. Undeniably, we find the
performance of SNMF-FC almost keeps pace with ours. The
reason is that the SNMF-FC, which is similar to the proposed
ONMF-EEP, collapses the feature matrices obtained at var-
ious time points with an immediate purpose to avoid elim-
inating topological information. The results in table 2 show
that our proposed ONMF-EEP outperforms these benchmark

71358 VOLUME 7, 2019



W. Yu et al.: Modeling the Local and Global Evolution Pattern of Community Structures

TABLE 2. The results of link prediction over RMSE on two dynamic networks.

methods on the dynamic Grow-shrink networks and the MIT
e-mail networks.

In summary, our proposed method ONMF-EEP has good
performance for temporal community detection, and has
effective ability for community and link structure prediction
both on real-world network and artificial network.

VI. CONCLUSIONS
Extracting evolution pattern of temporal community struc-
tures helps to understand the time-varying and complicated
dynamic networks. We first extract evolution pattern by
modelling and uncovering the evolution characteristics of
dynamic networks from local and global perspectives. Under
this assumption, we propose a novel framework ONMF-EEP
for community detection, evolution analysis, and commu-
nity and link structure prediction. Fortunately, our proposed
framework has excellent performance for temporal commu-
nity detection both on real-world networks and artificial net-
works. Simultaneously, our approach has an effective ability
for community and link structure prediction in dynamic
networks.

There are still several problems with our proposed
approach to be considered. Firstly, our method is a two-step
strategy, and this is a question worth thinking about how
to skillfully design our framework into a unified model for
extracting LEP and GEP. Secondly, the balance parameters α
and β are set according to experiments, and it is necessary
to study a strategy for determining the balance parameters
based on dynamic networks automatically. Thirdly, we are
interested in exploring the correlation between LEP (or GEP)
and topological features for dynamic networks.
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